NetBSD/sys/arch/arm32/footbridge/footbridge_clock.c

314 lines
7.5 KiB
C

/* $NetBSD: footbridge_clock.c,v 1.1 1998/09/06 02:20:34 mark Exp $ */
/*
* Copyright (c) 1997 Mark Brinicombe.
* Copyright (c) 1997 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Include header files */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/device.h>
#include <machine/cpufunc.h>
#include <machine/irqhandler.h>
#include <arm32/footbridge/dc21285reg.h>
#include <arm32/footbridge/footbridgevar.h>
extern struct footbridge_softc *clock_sc;
extern u_int dc21285_fclk;
#if 0
static int clockmatch __P((struct device *parent, struct cfdata *cf, void *aux));
static void clockattach __P((struct device *parent, struct device *self, void *aux));
struct cfattach footbridge_clock_ca = {
sizeof(struct clock_softc), clockmatch, clockattach
};
/*
* int clockmatch(struct device *parent, void *match, void *aux)
*
* Just return ok for this if it is device 0
*/
static int
clockmatch(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
union footbridge_attach_args *fba = aux;
if (strcmp(fba->fba_ca.ca_name, "clk") == 0 && cf->cf_unit == 0)
return(1);
return(0);
}
/*
* void clockattach(struct device *parent, struct device *dev, void *aux)
*
*/
static void
clockattach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct clock_softc *sc = (struct clock_softc *)self;
union footbridge_attach_args *fba = aux;
sc->sc_iot = fba->fba_ca.ca_iot;
sc->sc_ioh = fba->fba_ca.ca_ioh;
clock_sc = sc;
/* Cannot do anything until cpu_initclocks() has been called */
printf("\n");
}
#endif
/*
* int clockhandler(struct clockframe *frame)
*
* Function called by timer 1 interrupts.
* This just clears the interrupt condition and calls hardclock().
*/
int
clockhandler(frame)
struct clockframe *frame;
{
bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
TIMER_1_CLEAR, 0);
hardclock(frame);
return(0); /* Pass the interrupt on down the chain */
}
/*
* int statclockhandler(struct clockframe *frame)
*
* Function called by timer 2 interrupts.
* This just clears the interrupt condition and calls statclock().
*/
int
statclockhandler(frame)
struct clockframe *frame;
{
bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
TIMER_2_CLEAR, 0);
statclock(frame);
return(0); /* Pass the interrupt on down the chain */
}
static int
load_timer(base, hz)
int base;
int hz;
{
unsigned int timer_count;
int control;
timer_count = dc21285_fclk / hz;
if (timer_count > TIMER_MAX * 16) {
control = TIMER_FCLK_256;
timer_count >>= 8;
} else if (timer_count > TIMER_MAX) {
control = TIMER_FCLK_16;
timer_count >>= 4;
} else
control = TIMER_FCLK;
control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
base + TIMER_LOAD, timer_count);
bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
base + TIMER_CONTROL, control);
bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
base + TIMER_CLEAR, 0);
return(timer_count);
}
/*
* void setstatclockrate(int hz)
*
* Set the stat clock rate. The stat clock uses timer2
*/
void
setstatclockrate(hz)
int hz;
{
clock_sc->sc_statclock_count = load_timer(TIMER_2_BASE, hz);
}
/*
* void cpu_initclocks(void)
*
* Initialise the clocks.
*
* Timer 1 is used for the main system clock (hardclock)
* Timer 2 is used for the statistics clock (statclock)
*/
void
cpu_initclocks()
{
/* Report the clock frequencies */
printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
/* Setup timer 1 and claim interrupt */
clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
/*
* Use ticks per 256us for accuracy since ticks per us is often
* fractional e.g. @ 66MHz
*/
clock_sc->sc_clock_ticks_per_256us =
((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
clock_sc->sc_clockintr = intr_claim(IRQ_TIMER_1, IPL_CLOCK,
"tmr1 hard clk", clockhandler, 0);
if (clock_sc->sc_clockintr == NULL)
panic("%s: Cannot install timer 1 interrupt handler\n",
clock_sc->sc_dev.dv_xname);
/* If stathz is non-zero then setup the stat clock */
if (stathz) {
/* Setup timer 2 and claim interrupt */
setstatclockrate(stathz);
clock_sc->sc_statclockintr = intr_claim(IRQ_TIMER_2, IPL_CLOCK,
"tmr2 stat clk", statclockhandler, 0);
if (clock_sc->sc_statclockintr == NULL)
panic("%s: Cannot install timer 2 interrupt handler\n",
clock_sc->sc_dev.dv_xname);
}
}
/*
* void microtime(struct timeval *tvp)
*
* Fill in the specified timeval struct with the current time
* accurate to the microsecond.
*/
void
microtime(tvp)
struct timeval *tvp;
{
int s;
int tm;
int deltatm;
static struct timeval oldtv;
s = splhigh();
tm = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
TIMER_1_VALUE);
deltatm = clock_sc->sc_clock_count - tm;
#ifdef DIAGNOSTIC
if (deltatm < 0)
panic("opps deltatm < 0 tm=%d deltatm=%d\n", tm, deltatm);
#endif
/* Fill in the timeval struct */
*tvp = time;
tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us);
/* Make sure the micro seconds don't overflow. */
while (tvp->tv_usec > 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
/* Make sure the time has advanced. */
if (tvp->tv_sec == oldtv.tv_sec &&
tvp->tv_usec <= oldtv.tv_usec) {
tvp->tv_usec = oldtv.tv_usec + 1;
if (tvp->tv_usec > 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
}
oldtv = *tvp;
(void)splx(s);
}
void
need_proftick(p)
struct proc *p;
{
}
/*
* Estimated loop for n microseconds
*/
/* Need to re-write this to use the timers */
/* One day soon I will actually do this */
int delaycount = 50;
void
delay(n)
u_int n;
{
u_int i;
if (n == 0) return;
while (--n > 0) {
if (cputype == ID_SA110) /* XXX - Seriously gross hack */
for (i = delaycount; --i;);
else
for (i = 8; --i;);
}
}
/* End of footbridge_clock.c */