NetBSD/dist/ntp/ntpd/ntp_proto.c
christos 766798b654 PR/27137: Martin J. Laubach: core dump when localhost does not support
a given address family and a peer only supports the family localhost does
not support. For example: configure a kernel without IPV6, and then
add a line in ntp.conf server <ipv6addr>. We report that the server is
unreachable and we keep going because there might be more servers around?
XXX: What if it is the last server? Should we detect this? It is not nice
to just bail on this error, because a server might lose its ipv4 address
and only advertise ipv6.
2004-10-05 03:34:38 +00:00

3220 lines
88 KiB
C

/* $NetBSD: ntp_proto.c,v 1.4 2004/10/05 03:34:38 christos Exp $ */
/*
* ntp_proto.c - NTP version 4 protocol machinery
*
* ATTENTION: Get approval from Dave Mills on all changes to this file!
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "ntpd.h"
#include "ntp_stdlib.h"
#include "ntp_unixtime.h"
#include "ntp_control.h"
#include "ntp_string.h"
#include <stdio.h>
#if defined(VMS) && defined(VMS_LOCALUNIT) /*wjm*/
#include "ntp_refclock.h"
#endif
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
#include <sys/sysctl.h>
#endif
/*
* System variables are declared here. See Section 3.2 of the
* specification.
*/
u_char sys_leap; /* system leap indicator */
u_char sys_stratum; /* stratum of system */
s_char sys_precision; /* local clock precision */
double sys_rootdelay; /* roundtrip delay to primary source */
double sys_rootdispersion; /* dispersion to primary source */
u_int32 sys_refid; /* reference source for local clock */
u_int32 sys_peer_refid; /* hashed refid of our current peer */
static double sys_offset; /* current local clock offset */
l_fp sys_reftime; /* time we were last updated */
struct peer *sys_peer; /* our current peer */
struct peer *sys_prefer; /* our cherished peer */
int sys_kod; /* kod credit */
int sys_kod_rate = 2; /* max kod packets per second */
u_long sys_clocktime; /* last system clock update */
#ifdef OPENSSL
u_long sys_automax; /* maximum session key lifetime */
#endif /* OPENSSL */
/*
* Nonspecified system state variables.
*/
int sys_bclient; /* broadcast client enable */
double sys_bdelay; /* broadcast client default delay */
int sys_calldelay; /* modem callup delay (s) */
int sys_authenticate; /* requre authentication for config */
l_fp sys_authdelay; /* authentication delay */
static u_long sys_authdly[2]; /* authentication delay shift reg */
static u_char leap_consensus; /* consensus of survivor leap bits */
static double sys_selerr; /* select error (squares) */
static double sys_syserr; /* system error (squares) */
keyid_t sys_private; /* private value for session seed */
int sys_manycastserver; /* respond to manycast client pkts */
int peer_ntpdate; /* active peers in ntpdate mode */
int sys_survivors; /* truest of the truechimers */
#ifdef OPENSSL
char *sys_hostname; /* gethostname() name */
#endif /* OPENSSL */
/*
* TOS and multicast mapping stuff
*/
int sys_floor = 1; /* cluster stratum floor */
int sys_ceiling = STRATUM_UNSPEC; /* cluster stratum ceiling*/
int sys_minsane = 1; /* minimum candidates */
int sys_minclock = NTP_MINCLOCK; /* minimum survivors */
int sys_cohort = 0; /* cohort switch */
int sys_ttlmax; /* max ttl mapping vector index */
u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */
/*
* Statistics counters
*/
u_long sys_stattime; /* time since reset */
u_long sys_received; /* packets received */
u_long sys_processed; /* packets processed */
u_long sys_newversionpkt; /* current version */
u_long sys_oldversionpkt; /* recent version */
u_long sys_unknownversion; /* invalid version */
u_long sys_restricted; /* access denied */
u_long sys_badlength; /* bad length or format */
u_long sys_badauth; /* bad authentication */
u_long sys_limitrejected; /* rate exceeded */
static double root_distance P((struct peer *));
static double clock_combine P((struct peer **, int));
static void peer_xmit P((struct peer *));
static void fast_xmit P((struct recvbuf *, int, keyid_t, int));
static void clock_update P((void));
int default_get_precision P((void));
static int peer_unfit P((struct peer *));
/*
* transmit - Transmit Procedure. See Section 3.4.2 of the
* specification.
*/
void
transmit(
struct peer *peer /* peer structure pointer */
)
{
int hpoll;
/*
* The polling state machine. There are two kinds of machines,
* those that never expect a reply (broadcast and manycast
* server modes) and those that do (all other modes). The dance
* is intricate...
*/
hpoll = peer->hpoll;
if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) {
/*
* In broadcast mode the poll interval is fixed
* at minpoll.
*/
hpoll = peer->minpoll;
} else if (peer->cast_flags & MDF_ACAST) {
/*
* In manycast mode we start with the minpoll interval
* and ttl. However, the actual poll interval is eight
* times the nominal poll interval shown here. If fewer
* than sys_minclock servers are found, the ttl is
* increased by one and we try again. If this continues
* to the max ttl, the poll interval is bumped by one
* and we try again. If at least sys_minclock servers
* are found, the poll interval increases with the
* system poll interval to the max and we continue
* indefinately. However, about once per day when the
* agreement parameters are refreshed, the manycast
* clients are reset and we start from the beginning.
* This is to catch and clamp the ttl to the lowest
* practical value and avoid knocking on spurious doors.
*/
if (sys_survivors < sys_minclock && peer->ttl <
sys_ttlmax)
peer->ttl++;
hpoll = sys_poll;
} else {
/*
* For associations expecting a reply, the watchdog
* counter is bumped by one if the peer has not been
* heard since the previous poll. If the counter reaches
* the max, the poll interval is doubled and the peer is
* demobilized if not configured.
*/
peer->unreach++;
if (peer->unreach >= NTP_UNREACH) {
hpoll++;
if (peer->flags & FLAG_CONFIG) {
/*
* If nothing is likely to change in
* future, flash the access denied bit
* so we won't bother the dude again.
*/
if (memcmp((char *)&peer->refid,
"DENY", 4) == 0 ||
memcmp((char *)&peer->refid,
"CRYP", 4) == 0)
peer->flash |= TEST4;
} else {
unpeer(peer);
return;
}
}
if (peer->burst == 0) {
u_char oreach;
oreach = peer->reach;
peer->reach <<= 1;
peer->hyst *= HYST_TC;
if (peer->reach == 0) {
/*
* If this association has become
* unreachable, clear it and raise a
* trap.
*/
if (oreach != 0) {
report_event(EVNT_UNREACH,
peer);
peer->timereachable =
current_time;
if (peer->flags & FLAG_CONFIG) {
peer_clear(peer,
"INIT");
} else {
unpeer(peer);
return;
}
}
if (peer->flags & FLAG_IBURST)
peer->burst = NTP_BURST;
} else {
/*
* Here the peer is reachable. If it has
* not been heard for three consecutive
* polls, stuff the clock filter. Next,
* determine the poll interval. If the
* peer is unfit for synchronization,
* increase it by one; otherwise, use
* the system poll interval.
*/
if (!(peer->reach & 0x07)) {
clock_filter(peer, 0., 0.,
MAXDISPERSE);
clock_select();
}
if (peer_unfit(peer))
hpoll++;
else
hpoll = sys_poll;
if (peer->flags & FLAG_BURST)
peer->burst = NTP_BURST;
}
} else {
/*
* Source rate control. If we are restrained,
* each burst consists of only one packet.
*/
if (memcmp((char *)&peer->refid, "RSTR", 4) ==
0)
peer->burst = 0;
else
peer->burst--;
if (peer->burst == 0) {
/*
* If a broadcast client at this point,
* the burst has concluded, so we switch
* to client mode and purge the keylist,
* since no further transmissions will
* be made.
*/
if (peer->cast_flags & MDF_BCLNT) {
peer->hmode = MODE_BCLIENT;
#ifdef OPENSSL
key_expire(peer);
#endif /* OPENSSL */
}
poll_update(peer, hpoll);
if (peer->reach & ((1 << NTP_BURST) - 1))
clock_select();
/*
* If ntpdate mode and the clock has not
* been set and all peers have completed
* the burst, we declare a successful
* failure.
*/
if (mode_ntpdate) {
peer_ntpdate--;
if (peer_ntpdate > 0) {
poll_update(
peer, hpoll);
return;
}
msyslog(LOG_NOTICE,
"no reply; clock not set");
exit (0);
}
poll_update(peer, hpoll);
return;
}
}
}
peer->outdate = current_time;
/*
* Do not transmit if in broadcast cclient mode or access has
* been denied.
*/
if (peer->hmode == MODE_BCLIENT || peer->flash & TEST4) {
poll_update(peer, hpoll);
return;
/*
* Do not transmit in broadcast mode unless we are synchronized.
*/
} else if (peer->hmode == MODE_BROADCAST && sys_peer == NULL) {
poll_update(peer, hpoll);
return;
}
peer_xmit(peer);
poll_update(peer, hpoll);
}
/*
* receive - Receive Procedure. See section 3.4.3 in the specification.
*/
void
receive(
struct recvbuf *rbufp
)
{
register struct peer *peer; /* peer structure pointer */
register struct pkt *pkt; /* receive packet pointer */
int hismode; /* packet mode */
int restrict_mask; /* restrict bits */
int has_mac; /* length of MAC field */
int authlen; /* offset of MAC field */
int is_authentic; /* cryptosum ok */
keyid_t skeyid = 0; /* key ID */
struct sockaddr_storage *dstadr_sin; /* active runway */
struct peer *peer2; /* aux peer structure pointer */
l_fp p_org; /* originate timestamp */
l_fp p_xmt; /* transmit timestamp */
#ifdef OPENSSL
keyid_t tkeyid = 0; /* temporary key ID */
keyid_t pkeyid = 0; /* previous key ID */
struct autokey *ap; /* autokey structure pointer */
int rval; /* cookie snatcher */
#endif /* OPENSSL */
int retcode = AM_NOMATCH;
/*
* Monitor the packet and get restrictions. Note that the packet
* length for control and private mode packets must be checked
* by the service routines. Note that no statistics counters are
* recorded for restrict violations, since these counters are in
* the restriction routine. Note the careful distinctions here
* between a packet with a format error and a packet that is
* simply discarded without prejudice. Some restrictions have to
* be handled later in order to generate a kiss-of-death packet.
*/
/*
* Bogus port check is before anything, since it probably
* reveals a clogging attack.
*/
sys_received++;
if (SRCPORT(&rbufp->recv_srcadr) == 0) {
sys_badlength++;
return; /* bogus port */
}
ntp_monitor(rbufp);
restrict_mask = restrictions(&rbufp->recv_srcadr);
#ifdef DEBUG
if (debug > 1)
printf("receive: at %ld %s<-%s restrict %03x\n",
current_time, stoa(&rbufp->dstadr->sin),
stoa(&rbufp->recv_srcadr), restrict_mask);
#endif
if (restrict_mask & RES_IGNORE) {
sys_restricted++;
return; /* no anything */
}
pkt = &rbufp->recv_pkt;
hismode = (int)PKT_MODE(pkt->li_vn_mode);
if (hismode == MODE_PRIVATE) {
if (restrict_mask & RES_NOQUERY) {
sys_restricted++;
return; /* no query private */
}
process_private(rbufp, ((restrict_mask &
RES_NOMODIFY) == 0));
return;
}
if (hismode == MODE_CONTROL) {
if (restrict_mask & RES_NOQUERY) {
sys_restricted++;
return; /* no query control */
}
process_control(rbufp, restrict_mask);
return;
}
if (restrict_mask & RES_DONTSERVE) {
sys_restricted++;
return; /* no time */
}
if (rbufp->recv_length < LEN_PKT_NOMAC) {
sys_badlength++;
return; /* runt packet */
}
/*
* Version check must be after the query packets, since they
* intentionally use early version.
*/
if (PKT_VERSION(pkt->li_vn_mode) == NTP_VERSION) {
sys_newversionpkt++; /* new version */
} else if (!(restrict_mask & RES_VERSION) &&
PKT_VERSION(pkt->li_vn_mode) >= NTP_OLDVERSION) {
sys_oldversionpkt++; /* previous version */
} else {
sys_unknownversion++;
return; /* old version */
}
/*
* Figure out his mode and validate the packet. This has some
* legacy raunch that probably should be removed. In very early
* NTP versions mode 0 was equivalent to what later versions
* would interpret as client mode.
*/
if (hismode == MODE_UNSPEC) {
if (PKT_VERSION(pkt->li_vn_mode) == NTP_OLDVERSION) {
hismode = MODE_CLIENT;
} else {
sys_badlength++;
return; /* invalid mode */
}
}
/*
* Discard broadcast if not enabled as broadcast client. If
* Autokey, the wildcard interface cannot be used, so dump
* packets gettiing off the bus at that stop as well. This means
* that some systems with broken interface code, specifically
* Linux, will not work with Autokey.
*/
if (hismode == MODE_BROADCAST) {
if (!sys_bclient || restrict_mask & RES_NOPEER) {
sys_restricted++;
return; /* no client */
}
#ifdef OPENSSL
if (crypto_flags && rbufp->dstadr == any_interface) {
sys_restricted++;
return; /* no client */
}
#endif /* OPENSSL */
}
/*
* Parse the extension field if present. We figure out whether
* an extension field is present by measuring the MAC size. If
* the number of words following the packet header is 0 or 1, no
* MAC is present and the packet is not authenticated. If 1, the
* packet is a reply to a previous request that failed to
* authenticate. If 3, the packet is authenticated with DES; if
* 5, the packet is authenticated with MD5. If greater than 5,
* an extension field is present. If 2 or 4, the packet is a
* runt and goes poof! with a brilliant flash.
*/
authlen = LEN_PKT_NOMAC;
has_mac = rbufp->recv_length - authlen;
while (has_mac > 0) {
int temp;
if (has_mac % 4 != 0 || has_mac < 0) {
sys_badlength++;
return; /* bad MAC length */
}
if (has_mac == 1 * 4 || has_mac == 3 * 4 || has_mac ==
MAX_MAC_LEN) {
skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]);
break;
} else if (has_mac > MAX_MAC_LEN) {
temp = ntohl(((u_int32 *)pkt)[authlen / 4]) &
0xffff;
if (temp < 4 || temp > NTP_MAXEXTEN || temp % 4
!= 0) {
sys_badlength++;
return; /* bad MAC length */
}
authlen += temp;
has_mac -= temp;
} else {
sys_badlength++;
return; /* bad MAC length */
}
}
#ifdef OPENSSL
pkeyid = tkeyid = 0;
#endif /* OPENSSL */
/*
* We have tossed out as many buggy packets as possible early in
* the game to reduce the exposure to a clogging attack. Now we
* have to burn some cycles to find the association and
* authenticate the packet if required. Note that we burn only
* MD5 cycles, again to reduce exposure. There may be no
* matching association and that's okay.
*
* More on the autokey mambo. Normally the local interface is
* found when the association was mobilized with respect to a
* designated remote address. We assume packets arriving from
* the remote address arrive via this interface and the local
* address used to construct the autokey is the unicast address
* of the interface. However, if the sender is a broadcaster,
* the interface broadcast address is used instead.
* Notwithstanding this technobabble, if the sender is a
* multicaster, the broadcast address is null, so we use the
* unicast address anyway. Don't ask.
*/
peer = findpeer(&rbufp->recv_srcadr, rbufp->dstadr, rbufp->fd,
hismode, &retcode);
is_authentic = 0;
dstadr_sin = &rbufp->dstadr->sin;
if (has_mac == 0) {
#ifdef DEBUG
if (debug)
printf("receive: at %ld %s<-%s mode %d code %d\n",
current_time, stoa(&rbufp->dstadr->sin),
stoa(&rbufp->recv_srcadr), hismode,
retcode);
#endif
} else {
#ifdef OPENSSL
/*
* For autokey modes, generate the session key
* and install in the key cache. Use the socket
* broadcast or unicast address as appropriate.
*/
if (skeyid > NTP_MAXKEY) {
/*
* More on the autokey dance (AKD). A cookie is
* constructed from public and private values.
* For broadcast packets, the cookie is public
* (zero). For packets that match no
* association, the cookie is hashed from the
* addresses and private value. For server
* packets, the cookie was previously obtained
* from the server. For symmetric modes, the
* cookie was previously constructed using an
* agreement protocol; however, should PKI be
* unavailable, we construct a fake agreement as
* the EXOR of the peer and host cookies.
*
* hismode ephemeral persistent
* =======================================
* active 0 cookie#
* passive 0% cookie#
* client sys cookie 0%
* server 0% sys cookie
* broadcast 0 0
*
* # if unsync, 0
* % can't happen
*/
if (hismode == MODE_BROADCAST) {
/*
* For broadcaster, use the interface
* broadcast address when available;
* otherwise, use the unicast address
* found when the association was
* mobilized.
*/
pkeyid = 0;
if (!SOCKNUL(&rbufp->dstadr->bcast))
dstadr_sin =
&rbufp->dstadr->bcast;
} else if (peer == NULL) {
pkeyid = session_key(
&rbufp->recv_srcadr, dstadr_sin, 0,
sys_private, 0);
} else {
pkeyid = peer->pcookie;
}
/*
* The session key includes both the public
* values and cookie. In case of an extension
* field, the cookie used for authentication
* purposes is zero. Note the hash is saved for
* use later in the autokey mambo.
*/
if (authlen > LEN_PKT_NOMAC && pkeyid != 0) {
session_key(&rbufp->recv_srcadr,
dstadr_sin, skeyid, 0, 2);
tkeyid = session_key(
&rbufp->recv_srcadr, dstadr_sin,
skeyid, pkeyid, 0);
} else {
tkeyid = session_key(
&rbufp->recv_srcadr, dstadr_sin,
skeyid, pkeyid, 2);
}
}
#endif /* OPENSSL */
/*
* Compute the cryptosum. Note a clogging attack may
* succeed in bloating the key cache. If an autokey,
* purge it immediately, since we won't be needing it
* again. If the packet is authentic, it may mobilize an
* association.
*/
if (authdecrypt(skeyid, (u_int32 *)pkt, authlen,
has_mac)) {
is_authentic = 1;
restrict_mask &= ~RES_DONTTRUST;
} else {
sys_badauth++;
}
#ifdef OPENSSL
if (skeyid > NTP_MAXKEY)
authtrust(skeyid, 0);
#endif /* OPENSSL */
#ifdef DEBUG
if (debug)
printf(
"receive: at %ld %s<-%s mode %d code %d keyid %08x len %d mac %d auth %d\n",
current_time, stoa(dstadr_sin),
stoa(&rbufp->recv_srcadr), hismode, retcode,
skeyid, authlen, has_mac,
is_authentic);
#endif
}
/*
* The association matching rules are implemented by a set of
* routines and a table in ntp_peer.c. A packet matching an
* association is processed by that association. If not and
* certain conditions prevail, then an ephemeral association is
* mobilized: a broadcast packet mobilizes a broadcast client
* aassociation; a manycast server packet mobilizes a manycast
* client association; a symmetric active packet mobilizes a
* symmetric passive association. And, the adventure
* continues...
*/
switch (retcode) {
case AM_FXMIT:
/*
* This is a client mode packet not matching a known
* association. If from a manycast client we run a few
* sanity checks before deciding to send a unicast
* server response. Otherwise, it must be a client
* request, so send a server response and go home.
*/
if (sys_manycastserver && (rbufp->dstadr->flags &
INT_MULTICAST)) {
/*
* There is no reason to respond to a request if
* our time is worse than the manycaster or it
* has already synchronized to us.
*/
if (sys_peer == NULL ||
PKT_TO_STRATUM(pkt->stratum) <
sys_stratum || (sys_cohort &&
PKT_TO_STRATUM(pkt->stratum) ==
sys_stratum) ||
rbufp->dstadr->addr_refid == pkt->refid)
return; /* manycast dropped */
}
/*
* Note that we don't require an authentication check
* here, since we can't set the system clock; but, we do
* send a crypto-NAK to tell the caller about this.
*/
if (has_mac && !is_authentic)
fast_xmit(rbufp, MODE_SERVER, 0, restrict_mask);
else
fast_xmit(rbufp, MODE_SERVER, skeyid,
restrict_mask);
return;
case AM_MANYCAST:
/*
* This is a server mode packet returned in response to
* a client mode packet sent to a multicast group
* address. The originate timestamp is a good nonce to
* reliably associate the reply with what was sent. If
* there is no match, that's curious and could be an
* intruder attempting to clog, so we just ignore it.
*
* First, make sure the packet is authentic and not
* restricted. If so and the manycast association is
* found, we mobilize a client association and copy
* pertinent variables from the manycast association to
* the new client association.
*
* There is an implosion hazard at the manycast client,
* since the manycast servers send the server packet
* immediately. If the guy is already here, don't fire
* up a duplicate.
*/
if (restrict_mask & RES_DONTTRUST) {
sys_restricted++;
return; /* no trust */
}
if (sys_authenticate && !is_authentic)
return; /* bad auth */
if ((peer2 = findmanycastpeer(rbufp)) == NULL)
return; /* no assoc match */
if ((peer = newpeer(&rbufp->recv_srcadr, rbufp->dstadr,
MODE_CLIENT, PKT_VERSION(pkt->li_vn_mode),
NTP_MINDPOLL, NTP_MAXDPOLL, FLAG_IBURST, MDF_UCAST |
MDF_ACLNT, 0, skeyid)) == NULL)
return; /* system error */
/*
* We don't need these, but it warms the billboards.
*/
peer->ttl = peer2->ttl;
break;
case AM_NEWPASS:
/*
* This is the first packet received from a symmetric
* active peer. First, make sure it is authentic and not
* restricted. If so, mobilize a passive association.
* If authentication fails send a crypto-NAK; otherwise,
* kiss the frog.
*/
if (restrict_mask & RES_DONTTRUST) {
sys_restricted++;
return; /* no trust */
}
if (sys_authenticate && !is_authentic) {
fast_xmit(rbufp, MODE_PASSIVE, 0,
restrict_mask);
return; /* bad auth */
}
if ((peer = newpeer(&rbufp->recv_srcadr, rbufp->dstadr,
MODE_PASSIVE, PKT_VERSION(pkt->li_vn_mode),
NTP_MINDPOLL, NTP_MAXDPOLL, 0, MDF_UCAST, 0,
skeyid)) == NULL)
return; /* system error */
break;
case AM_NEWBCL:
/*
* This is the first packet received from a broadcast
* server. First, make sure it is authentic and not
* restricted and that we are a broadcast client. If so,
* mobilize a broadcast client association. We don't
* kiss any frogs here.
*/
if (restrict_mask & RES_DONTTRUST) {
sys_restricted++;
return; /* no trust */
}
if (sys_authenticate && !is_authentic)
return; /* bad auth */
if (!sys_bclient)
return; /* not a client */
if ((peer = newpeer(&rbufp->recv_srcadr, rbufp->dstadr,
MODE_CLIENT, PKT_VERSION(pkt->li_vn_mode),
NTP_MINDPOLL, NTP_MAXDPOLL, FLAG_MCAST |
FLAG_IBURST, MDF_BCLNT, 0, skeyid)) == NULL)
return; /* system error */
#ifdef OPENSSL
/*
* Danger looms. If this is autokey, go process the
* extension fields. If something goes wrong, abandon
* ship and don't trust subsequent packets.
*/
if (crypto_flags) {
if ((rval = crypto_recv(peer, rbufp)) !=
XEVNT_OK) {
struct sockaddr_storage mskadr_sin;
unpeer(peer);
sys_restricted++;
SET_HOSTMASK(&mskadr_sin,
rbufp->recv_srcadr.ss_family);
hack_restrict(RESTRICT_FLAGS,
&rbufp->recv_srcadr, &mskadr_sin,
0, RES_DONTTRUST | RES_TIMEOUT);
#ifdef DEBUG
if (debug)
printf(
"packet: bad exten %x\n",
rval);
#endif
}
}
#endif /* OPENSSL */
return;
case AM_POSSBCL:
/*
* This is a broadcast packet received in client mode.
* It could happen if the initial client/server volley
* is not complete before the next broadcast packet is
* received. Be liberal in what we accept.
*/
case AM_PROCPKT:
/*
* This is a symmetric mode packet received in symmetric
* mode, a server packet received in client mode or a
* broadcast packet received in broadcast client mode.
* If it is restricted, this is very strange because it
* is rude to send a packet to a restricted address. If
* anyway, flash a restrain kiss and skedaddle to
* Seattle. If not authentic, leave a light on and
* continue.
*/
peer->flash = 0;
if (restrict_mask & RES_DONTTRUST) {
sys_restricted++;
if (peer->flags & FLAG_CONFIG)
peer_clear(peer, "RSTR");
else
unpeer(peer);
return; /* no trust */
}
if (has_mac && !is_authentic)
peer->flash |= TEST5; /* bad auth */
break;
default:
/*
* Invalid mode combination. This happens when a passive
* mode packet arrives and matches another passive
* association or no association at all, or when a
* server mode packet arrives and matches a broadcast
* client association. This is usually the result of
* reconfiguring a client on-fly. If authenticated
* passive mode packet, send a crypto-NAK; otherwise,
* ignore it.
*/
if (has_mac && hismode == MODE_PASSIVE)
fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask);
#ifdef DEBUG
if (debug)
printf("receive: bad protocol %d\n", retcode);
#endif
return;
}
/*
* We do a little homework. Note we can get here with an
* authentication error. We Need to do this in order to validate
* a crypto-NAK later. Note the order of processing; it is very
* important to avoid livelocks, deadlocks and lockpicks.
*/
peer->timereceived = current_time;
peer->received++;
if (peer->flash & TEST5)
peer->flags &= ~FLAG_AUTHENTIC;
else
peer->flags |= FLAG_AUTHENTIC;
NTOHL_FP(&pkt->org, &p_org);
NTOHL_FP(&pkt->xmt, &p_xmt);
/*
* If the packet is an old duplicate, we let it through so the
* extension fields will be processed.
*/
if (L_ISEQU(&peer->org, &p_xmt)) { /* test 1 */
peer->flash |= TEST1; /* dupe */
/* fall through */
/*
* For broadcast server mode, loopback checking is disabled. An
* authentication error probably means the server restarted or
* rolled a new private value. If so, dump the association
* and wait for the next message.
*/
} else if (hismode == MODE_BROADCAST) {
if (peer->flash & TEST5) {
unpeer(peer);
return;
}
/* fall through */
/*
* For server and symmetric modes, if the association transmit
* timestamp matches the packet originate timestamp, loopback is
* confirmed. Note in symmetric modes this also happens when the
* first packet from the active peer arrives at the newly
* mobilized passive peer. An authentication error probably
* means the server or peer restarted or rolled a new private
* value, but could be an intruder trying to stir up trouble.
* However, if this is a crypto-NAK, we know it is authentic, so
* dump the association and wait for the next message.
*/
} else if (L_ISEQU(&peer->xmt, &p_org)) {
if (peer->flash & TEST5) {
if (has_mac == 4 && pkt->exten[0] == 0) {
if (peer->flags & FLAG_CONFIG)
peer_clear(peer, "AUTH");
else
unpeer(peer);
}
return;
}
/* fall through */
/*
* If the client or passive peer has never transmitted anything,
* this is either the first message from a symmetric peer or
* possibly a duplicate received before the transmit timeout.
* Pass it on.
*/
} else if (L_ISZERO(&peer->xmt)) {
/* fall through */
/*
* Now it gets interesting. We have transmitted at least one
* packet. If the packet originate timestamp is nonzero, it
* does not match the association transmit timestamp, which is a
* loopback error. This error might mean a manycast server has
* answered a manycast honk from us and we already have an
* association for him, in which case quietly drop the packet
* here. It might mean an old duplicate, dropped packet or
* intruder replay, in which case we drop it later after
* extension field processing, but never let it touch the time
* values.
*/
} else if (!L_ISZERO(&p_org)) {
if (peer->cast_flags & MDF_ACLNT)
return; /* not a client */
peer->flash |= TEST2;
/* fall through */
/*
* The packet originate timestamp is zero, meaning the other guy
* either didn't receive the first packet or died and restarted.
* If the association originate timestamp is zero, this is the
* first packet received, so we pass it on.
*/
} else if (L_ISZERO(&peer->org)) {
/* fall through */
/*
* The other guy has restarted and we are still on the wire. We
* should demobilize/clear and get out of Dodge. If this is
* symmetric mode, we should also send a crypto-NAK.
*/
} else {
if (hismode == MODE_ACTIVE)
fast_xmit(rbufp, MODE_PASSIVE, 0,
restrict_mask);
else if (hismode == MODE_PASSIVE)
fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask);
#if DEBUG
if (debug)
printf("receive: dropped %03x\n", peer->flash);
#endif
if (peer->flags & FLAG_CONFIG)
peer_clear(peer, "DROP");
else
unpeer(peer);
return;
}
if (peer->flash & ~TEST2) {
return;
}
#ifdef OPENSSL
/*
* More autokey dance. The rules of the cha-cha are as follows:
*
* 1. If there is no key or the key is not auto, do nothing.
*
* 2. If this packet is in response to the one just previously
* sent or from a broadcast server, do the extension fields.
* Otherwise, assume bogosity and bail out.
*
* 3. If an extension field contains a verified signature, it is
* self-authenticated and we sit the dance.
*
* 4. If this is a server reply, check only to see that the
* transmitted key ID matches the received key ID.
*
* 5. Check to see that one or more hashes of the current key ID
* matches the previous key ID or ultimate original key ID
* obtained from the broadcaster or symmetric peer. If no
* match, sit the dance and wait for timeout.
*/
if (crypto_flags && (peer->flags & FLAG_SKEY)) {
peer->flash |= TEST10;
rval = crypto_recv(peer, rbufp);
if (rval != XEVNT_OK) {
/* fall through */
} else if (hismode == MODE_SERVER) {
if (skeyid == peer->keyid)
peer->flash &= ~TEST10;
} else if (!peer->flash & TEST10) {
peer->pkeyid = skeyid;
} else if ((ap = (struct autokey *)peer->recval.ptr) !=
NULL) {
int i;
for (i = 0; ; i++) {
if (tkeyid == peer->pkeyid ||
tkeyid == ap->key) {
peer->flash &= ~TEST10;
peer->pkeyid = skeyid;
break;
}
if (i > ap->seq)
break;
tkeyid = session_key(
&rbufp->recv_srcadr, dstadr_sin,
tkeyid, pkeyid, 0);
}
}
if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 11 */
peer->flash |= TEST11; /* not proventic */
/*
* If the transmit queue is nonempty, clamp the host
* poll interval to the packet poll interval.
*/
if (peer->cmmd != 0) {
peer->ppoll = pkt->ppoll;
poll_update(peer, 0);
}
/*
* If the return code from extension field processing is
* not okay, we scrub the association and start over.
*/
if (rval != XEVNT_OK) {
/*
* If the return code is bad, the crypto machine
* may be jammed or an intruder may lurk. First,
* we demobilize the association, then see if
* the error is recoverable.
*/
if (peer->flags & FLAG_CONFIG)
peer_clear(peer, "CRYP");
else
unpeer(peer);
#ifdef DEBUG
if (debug)
printf("packet: bad exten %x\n", rval);
#endif
return;
}
/*
* If TEST10 is lit, the autokey sequence has broken,
* which probably means the server has refreshed its
* private value. We reset the poll interval to the
& minimum and scrub the association clean.
*/
if (peer->flash & TEST10 && peer->crypto &
CRYPTO_FLAG_AUTO) {
poll_update(peer, peer->minpoll);
#ifdef DEBUG
if (debug)
printf(
"packet: bad auto %03x\n",
peer->flash);
#endif
if (peer->flags & FLAG_CONFIG)
peer_clear(peer, "AUTO");
else
unpeer(peer);
return;
}
}
#endif /* OPENSSL */
/*
* We have survived the gaunt. Forward to the packet routine. If
* a symmetric passive association has been mobilized and the
* association doesn't deserve to live, it will die in the
* transmit routine if not reachable after timeout. However, if
* either symmetric mode and the crypto code has something
* urgent to say, we expedite the response.
*/
process_packet(peer, pkt, &rbufp->recv_time);
}
/*
* process_packet - Packet Procedure, a la Section 3.4.4 of the
* specification. Or almost, at least. If we're in here we have a
* reasonable expectation that we will be having a long term
* relationship with this host.
*/
void
process_packet(
register struct peer *peer,
register struct pkt *pkt,
l_fp *recv_ts
)
{
l_fp t34, t21;
double p_offset, p_del, p_disp;
double dtemp;
l_fp p_rec, p_xmt, p_org, p_reftime;
l_fp ci;
u_char pmode, pleap, pstratum;
/*
* Swap header fields and keep the books. The books amount to
* the receive timestamp and poll interval in the header. We
* need these even if there are other problems in order to crank
* up the state machine.
*/
sys_processed++;
peer->processed++;
p_del = FPTOD(NTOHS_FP(pkt->rootdelay));
p_disp = FPTOD(NTOHS_FP(pkt->rootdispersion));
NTOHL_FP(&pkt->reftime, &p_reftime);
NTOHL_FP(&pkt->rec, &p_rec);
NTOHL_FP(&pkt->xmt, &p_xmt);
pmode = PKT_MODE(pkt->li_vn_mode);
pleap = PKT_LEAP(pkt->li_vn_mode);
if (pmode != MODE_BROADCAST)
NTOHL_FP(&pkt->org, &p_org);
else
p_org = peer->rec;
pstratum = PKT_TO_STRATUM(pkt->stratum);
/*
* Test for unsynchronized server.
*/
if (L_ISHIS(&peer->org, &p_xmt)) /* count old packets */
peer->oldpkt++;
if (pmode != MODE_BROADCAST && (L_ISZERO(&p_rec) ||
L_ISZERO(&p_org))) /* test 3 */
peer->flash |= TEST3; /* unsynch */
if (L_ISZERO(&p_xmt)) /* test 3 */
peer->flash |= TEST3; /* unsynch */
/*
* If any tests fail, the packet is discarded leaving only the
* timestamps, which are enough to get the protocol started. The
* originate timestamp is copied from the packet transmit
* timestamp and the receive timestamp is copied from the
* packet receive timestamp. If okay so far, we save the leap,
* stratum and refid for billboards.
*/
peer->org = p_xmt;
peer->rec = *recv_ts;
if (peer->flash) {
#ifdef DEBUG
if (debug)
printf("packet: bad data %03x from address: %s\n",
peer->flash, stoa(&peer->srcadr));
#endif
return;
}
peer->leap = pleap;
peer->stratum = pstratum;
peer->refid = pkt->refid;
/*
* Test for valid peer data (tests 6-8)
*/
ci = p_xmt;
L_SUB(&ci, &p_reftime);
LFPTOD(&ci, dtemp);
if (pleap == LEAP_NOTINSYNC || /* test 6 */
pstratum >= STRATUM_UNSPEC || dtemp < 0)
peer->flash |= TEST6; /* bad synch */
if (!(peer->flags & FLAG_CONFIG) && sys_peer != NULL) { /* test 7 */
if (pstratum > sys_stratum && pmode != MODE_ACTIVE)
peer->flash |= TEST7; /* bad stratum */
}
if (p_del < 0 || p_disp < 0 || p_del / /* test 8 */
2 + p_disp >= MAXDISPERSE)
peer->flash |= TEST8; /* bad peer values */
/*
* If any tests fail at this point, the packet is discarded.
*/
if (peer->flash) {
#ifdef DEBUG
if (debug)
printf("packet: bad header %03x\n",
peer->flash);
#endif
return;
}
/*
* The header is valid. Capture the remaining header values and
* mark as reachable.
*/
record_raw_stats(&peer->srcadr, &peer->dstadr->sin, &p_org,
&p_rec, &p_xmt, &peer->rec);
peer->pmode = pmode;
peer->ppoll = pkt->ppoll;
peer->precision = pkt->precision;
peer->rootdelay = p_del;
peer->rootdispersion = p_disp;
peer->reftime = p_reftime;
if (!(peer->reach)) {
report_event(EVNT_REACH, peer);
peer->timereachable = current_time;
}
peer->reach |= 1;
peer->unreach = 0;
poll_update(peer, 0);
/*
* If running in a client/server association, calculate the
* clock offset c, roundtrip delay d and dispersion e. We use
* the equations (reordered from those in the spec). Note that,
* in a broadcast association, org has been set to the time of
* last reception. Note the computation of dispersion includes
* the system precision plus that due to the frequency error
* since the originate time.
*
* Let t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->rec:
*/
t34 = p_xmt; /* t3 - t4 */
L_SUB(&t34, &peer->rec);
t21 = p_rec; /* t2 - t1 */
L_SUB(&t21, &p_org);
ci = peer->rec; /* t4 - t1 */
L_SUB(&ci, &p_org);
LFPTOD(&ci, p_disp);
p_disp = clock_phi * max(p_disp, LOGTOD(sys_precision));
/*
* If running in a broadcast association, the clock offset is
* (t1 - t0) corrected by the one-way delay, but we can't
* measure that directly. Therefore, we start up in MODE_CLIENT
* mode, set FLAG_MCAST and exchange eight messages to determine
* the clock offset. When the last message is sent, we switch to
* MODE_BCLIENT mode. The next broadcast message after that
* computes the broadcast offset and clears FLAG_MCAST.
*/
ci = t34;
if (pmode == MODE_BROADCAST) {
if (peer->flags & FLAG_MCAST) {
LFPTOD(&ci, p_offset);
peer->estbdelay = peer->offset - p_offset;
if (peer->hmode == MODE_CLIENT)
return;
peer->flags &= ~FLAG_MCAST;
}
DTOLFP(peer->estbdelay, &t34);
L_ADD(&ci, &t34);
p_del = peer->delay;
} else {
L_ADD(&ci, &t21); /* (t2 - t1) + (t3 - t4) */
L_RSHIFT(&ci);
L_SUB(&t21, &t34); /* (t2 - t1) - (t3 - t4) */
LFPTOD(&t21, p_del);
}
p_del = max(p_del, LOGTOD(sys_precision));
LFPTOD(&ci, p_offset);
if ((peer->rootdelay + p_del) / 2. + peer->rootdispersion +
p_disp >= MAXDISPERSE) /* test 9 */
peer->flash |= TEST9; /* bad root distance */
/*
* If any flasher bits remain set at this point, abandon ship.
* Otherwise, forward to the clock filter.
*/
if (peer->flash) {
#ifdef DEBUG
if (debug)
printf("packet: bad packet data %03x\n",
peer->flash);
#endif
return;
}
clock_filter(peer, p_offset, p_del, p_disp);
if (peer->burst == 0)
clock_select();
record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
peer->offset, peer->delay, peer->disp,
SQRT(peer->jitter));
}
/*
* clock_update - Called at system process update intervals.
*/
static void
clock_update(void)
{
u_char oleap;
u_char ostratum;
/*
* Reset/adjust the system clock. Do this only if there is a
* system peer and the peer epoch is not older than the last
* update.
*/
if (sys_peer == NULL)
return;
if (sys_peer->epoch <= sys_clocktime)
return;
sys_clocktime = sys_peer->epoch;
#ifdef DEBUG
if (debug)
printf("clock_update: at %ld assoc %d \n", current_time,
peer_associations);
#endif
oleap = sys_leap;
ostratum = sys_stratum;
switch (local_clock(sys_peer, sys_offset, sys_syserr)) {
/*
* Clock is too screwed up. Just exit for now.
*/
case -1:
report_event(EVNT_SYSFAULT, NULL);
exit (-1);
/*NOTREACHED*/
/*
* Clock was stepped. Flush all time values of all peers.
*/
case 1:
clear_all();
sys_peer = NULL;
sys_stratum = STRATUM_UNSPEC;
memcpy(&sys_refid, "STEP", 4);
sys_poll = NTP_MINPOLL;
report_event(EVNT_CLOCKRESET, NULL);
#ifdef OPENSSL
if (oleap != LEAP_NOTINSYNC)
expire_all();
#endif /* OPENSSL */
break;
/*
* Update the system stratum, leap bits, root delay, root
* dispersion, reference ID and reference time. We also update
* select dispersion and max frequency error. If the leap
* changes, we gotta reroll the keys.
*/
default:
sys_stratum = (u_char) (sys_peer->stratum + 1);
if (sys_stratum == 1 || sys_stratum == STRATUM_UNSPEC)
sys_refid = sys_peer->refid;
else
sys_refid = sys_peer_refid;
sys_reftime = sys_peer->rec;
sys_rootdelay = sys_peer->rootdelay + sys_peer->delay;
sys_leap = leap_consensus;
if (oleap == LEAP_NOTINSYNC) {
report_event(EVNT_SYNCCHG, NULL);
#ifdef OPENSSL
expire_all();
#endif /* OPENSSL */
}
}
if (ostratum != sys_stratum)
report_event(EVNT_PEERSTCHG, NULL);
}
/*
* poll_update - update peer poll interval
*/
void
poll_update(
struct peer *peer,
int hpoll
)
{
#ifdef OPENSSL
int oldpoll;
#endif /* OPENSSL */
/*
* A little foxtrot to determine what controls the poll
* interval. If the peer is reachable, but the last four polls
* have not been answered, use the minimum. If declared
* truechimer, use the system poll interval. This allows each
* association to ramp up the poll interval for useless sources
* and to clamp it to the minimum when first starting up.
*/
#ifdef OPENSSL
oldpoll = peer->kpoll;
#endif /* OPENSSL */
if (hpoll > 0) {
if (hpoll > peer->maxpoll)
peer->hpoll = peer->maxpoll;
else if (hpoll < peer->minpoll)
peer->hpoll = peer->minpoll;
else
peer->hpoll = (u_char)hpoll;
}
/*
* Bit of adventure here. If during a burst and not a poll, just
* slink away. If a poll, figure what the next poll should be.
* If a burst is pending and a reference clock or a pending
* crypto response, delay for one second. If the first sent in a
* burst, delay ten seconds for the modem to come up. For others
* in the burst, delay two seconds.
*
* In case of manycast server, make the poll interval, which is
* axtually the manycast beacon interval, eight times the system
* poll interval. Normally when the host poll interval settles
* up to 1024 s, the beacon interval settles up to 2.3 hours.
*/
#ifdef OPENSSL
if (peer->cmmd != NULL && (sys_leap != LEAP_NOTINSYNC ||
peer->crypto)) {
peer->nextdate = current_time + RESP_DELAY;
} else if (peer->burst > 0) {
#else /* OPENSSL */
if (peer->burst > 0) {
#endif /* OPENSSL */
if (hpoll == 0 && peer->nextdate != current_time)
return;
#ifdef REFCLOCK
else if (peer->flags & FLAG_REFCLOCK)
peer->nextdate += RESP_DELAY;
#endif
else if (peer->flags & (FLAG_IBURST | FLAG_BURST) &&
peer->burst == NTP_BURST)
peer->nextdate += sys_calldelay;
else
peer->nextdate += BURST_DELAY;
} else if (peer->cast_flags & MDF_ACAST) {
if (sys_survivors >= sys_minclock || peer->ttl >=
sys_ttlmax)
peer->kpoll = (u_char) (peer->hpoll + 3);
else
peer->kpoll = peer->hpoll;
peer->nextdate = peer->outdate + RANDPOLL(peer->kpoll);
} else {
peer->kpoll = (u_char) max(min(peer->ppoll,
peer->hpoll), peer->minpoll);
peer->nextdate = peer->outdate + RANDPOLL(peer->kpoll);
}
if (peer->nextdate < current_time)
peer->nextdate = current_time;
#ifdef OPENSSL
/*
* Bit of crass arrogance at this point. If the poll interval
* has changed and we have a keylist, the lifetimes in the
* keylist are probably bogus. In this case purge the keylist
* and regenerate it later.
*/
if (peer->kpoll != oldpoll)
key_expire(peer);
#endif /* OPENSSL */
#ifdef DEBUG
if (debug > 1)
printf("poll_update: at %lu %s flags %04x poll %d burst %d last %lu next %lu\n",
current_time, ntoa(&peer->srcadr), peer->flags,
peer->kpoll, peer->burst, peer->outdate,
peer->nextdate);
#endif
}
/*
* clear - clear peer filter registers. See Section 3.4.8 of the spec.
*/
void
peer_clear(
struct peer *peer, /* peer structure */
char *ident /* tally lights */
)
{
u_char oreach, i;
/*
* If cryptographic credentials have been acquired, toss them to
* Valhalla. Note that autokeys are ephemeral, in that they are
* tossed immediately upon use. Therefore, the keylist can be
* purged anytime without needing to preserve random keys. Note
* that, if the peer is purged, the cryptographic variables are
* purged, too. This makes it much harder to sneak in some
* unauthenticated data in the clock filter.
*/
oreach = peer->reach;
#ifdef OPENSSL
key_expire(peer);
if (peer->pkey != NULL)
EVP_PKEY_free(peer->pkey);
if (peer->ident_pkey != NULL)
EVP_PKEY_free(peer->ident_pkey);
if (peer->subject != NULL)
free(peer->subject);
if (peer->issuer != NULL)
free(peer->issuer);
if (peer->iffval != NULL)
BN_free(peer->iffval);
if (peer->grpkey != NULL)
BN_free(peer->grpkey);
if (peer->cmmd != NULL)
free(peer->cmmd);
value_free(&peer->cookval);
value_free(&peer->recval);
value_free(&peer->tai_leap);
value_free(&peer->encrypt);
value_free(&peer->sndval);
#endif /* OPENSSL */
/*
* Wipe the association clean and initialize the nonzero values.
*/
memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO);
if (peer == sys_peer)
sys_peer = NULL;
peer->estbdelay = sys_bdelay;
peer->hpoll = peer->kpoll = peer->minpoll;
peer->ppoll = peer->maxpoll;
peer->jitter = MAXDISPERSE;
peer->epoch = current_time;
#ifdef REFCLOCK
if (!(peer->flags & FLAG_REFCLOCK)) {
peer->leap = LEAP_NOTINSYNC;
peer->stratum = STRATUM_UNSPEC;
memcpy(&peer->refid, ident, 4);
}
#else
peer->leap = LEAP_NOTINSYNC;
peer->stratum = STRATUM_UNSPEC;
memcpy(&peer->refid, ident, 4);
#endif
for (i = 0; i < NTP_SHIFT; i++) {
peer->filter_order[i] = i;
peer->filter_disp[i] = MAXDISPERSE;
peer->filter_epoch[i] = current_time;
}
/*
* If he dies as a broadcast client, he comes back to life as
* a broadcast client in client mode in order to recover the
* initial autokey values.
*/
if (peer->cast_flags & MDF_BCLNT) {
peer->flags |= FLAG_MCAST;
peer->hmode = MODE_CLIENT;
}
/*
* Randomize the first poll to avoid bunching, but only if the
* rascal has never been heard. During initialization use the
* association count to spread out the polls at one-second
* intervals.
*/
peer->nextdate = peer->update = peer->outdate = current_time;
peer->burst = 0;
if (oreach)
poll_update(peer, 0);
else if (initializing)
peer->nextdate = current_time + peer_associations;
else
peer->nextdate = current_time + (u_int)RANDOM %
peer_associations;
#ifdef DEBUG
if (debug)
printf("peer_clear: at %ld assoc ID %d refid %s\n",
current_time, peer->associd, ident);
#endif
}
/*
* clock_filter - add incoming clock sample to filter register and run
* the filter procedure to find the best sample.
*/
void
clock_filter(
struct peer *peer, /* peer structure pointer */
double sample_offset, /* clock offset */
double sample_delay, /* roundtrip delay */
double sample_disp /* dispersion */
)
{
double dst[NTP_SHIFT]; /* distance vector */
int ord[NTP_SHIFT]; /* index vector */
int i, j, k, m;
double dsp, jit, dtemp, etemp;
/*
* Shift the new sample into the register and discard the oldest
* one. The new offset and delay come directly from the
* timestamp calculations. The dispersion grows from the last
* outbound packet or reference clock update to the present time
* and increased by the sum of the peer precision and the system
* precision. The delay can sometimes swing negative due to
* frequency skew, so it is clamped non-negative.
*/
dsp = min(LOGTOD(peer->precision) + LOGTOD(sys_precision) +
sample_disp, MAXDISPERSE);
j = peer->filter_nextpt;
peer->filter_offset[j] = sample_offset;
peer->filter_delay[j] = max(0, sample_delay);
peer->filter_disp[j] = dsp;
j++; j %= NTP_SHIFT;
peer->filter_nextpt = (u_short) j;
/*
* Update dispersions since the last update and at the same
* time initialize the distance and index lists. The distance
* list uses a compound metric. If the sample is valid and
* younger than the minimum Allan intercept, use delay;
* otherwise, use biased dispersion.
*/
dtemp = clock_phi * (current_time - peer->update);
peer->update = current_time;
for (i = NTP_SHIFT - 1; i >= 0; i--) {
if (i != 0)
peer->filter_disp[j] += dtemp;
if (peer->filter_disp[j] >= MAXDISPERSE)
peer->filter_disp[j] = MAXDISPERSE;
if (peer->filter_disp[j] >= MAXDISPERSE)
dst[i] = MAXDISPERSE;
else if (peer->update - peer->filter_epoch[j] >
allan_xpt)
dst[i] = MAXDISTANCE + peer->filter_disp[j];
else
dst[i] = peer->filter_delay[j];
ord[i] = j;
j++; j %= NTP_SHIFT;
}
peer->filter_epoch[j] = current_time;
/*
* Sort the samples in both lists by distance.
*/
for (i = 1; i < NTP_SHIFT; i++) {
for (j = 0; j < i; j++) {
if (dst[j] > dst[i]) {
k = ord[j];
ord[j] = ord[i];
ord[i] = k;
etemp = dst[j];
dst[j] = dst[i];
dst[i] = etemp;
}
}
}
/*
* Copy the index list to the association structure so ntpq
* can see it later. Prune the distance list to samples less
* than MAXDISTANCE, but keep at least two valid samples for
* jitter calculation.
*/
m = 0;
for (i = 0; i < NTP_SHIFT; i++) {
peer->filter_order[i] = (u_char) ord[i];
if (dst[i] >= MAXDISPERSE || (m >= 2 && dst[i] >=
MAXDISTANCE))
continue;
m++;
}
/*
* Compute the dispersion and jitter squares. The dispersion
* is weighted exponentially by NTP_FWEIGHT (0.5) so it is
* normalized close to 1.0. The jitter is the mean of the square
* differences relative to the lowest delay sample. If no
* acceptable samples remain in the shift register, quietly
* tiptoe home leaving only the dispersion.
*/
jit = 0;
peer->disp = 0;
k = ord[0];
for (i = NTP_SHIFT - 1; i >= 0; i--) {
j = ord[i];
peer->disp = NTP_FWEIGHT * (peer->disp +
peer->filter_disp[j]);
if (i < m)
jit += DIFF(peer->filter_offset[j],
peer->filter_offset[k]);
}
/*
* If no acceptable samples remain in the shift register,
* quietly tiptoe home leaving only the dispersion. Otherwise,
* save the offset, delay and jitter average. Note the jitter
* must not be less than the system precision.
*/
if (m == 0)
return;
etemp = fabs(peer->offset - peer->filter_offset[k]);
dtemp = sqrt(peer->jitter);
peer->offset = peer->filter_offset[k];
peer->delay = peer->filter_delay[k];
if (m > 1)
jit /= m - 1;
peer->jitter = max(jit, SQUARE(LOGTOD(sys_precision)));
/*
* A new sample is useful only if it is younger than the last
* one used, but only if the sucker has been synchronized.
*/
if (peer->filter_epoch[k] <= peer->epoch && sys_leap !=
LEAP_NOTINSYNC) {
#ifdef DEBUG
if (debug)
printf("clock_filter: discard %lu\n",
peer->epoch - peer->filter_epoch[k]);
#endif
return;
}
/*
* If the difference between the last offset and the current one
* exceeds the jitter by CLOCK_SGATE and the interval since the
* last update is less than twice the system poll interval,
* consider the update a popcorn spike and ignore it.
*/
if (m > 1 && etemp > CLOCK_SGATE * dtemp &&
(long)(peer->filter_epoch[k] - peer->epoch) < (1 << (sys_poll +
1))) {
#ifdef DEBUG
if (debug)
printf("clock_filter: popcorn %.6f %.6f\n",
etemp, dtemp);
#endif
return;
}
/*
* The mitigated sample statistics are saved for later
* processing.
*/
peer->epoch = peer->filter_epoch[k];
#ifdef DEBUG
if (debug)
printf(
"clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f, age %lu\n",
m, peer->offset, peer->delay, peer->disp,
SQRT(peer->jitter), peer->update - peer->epoch);
#endif
}
/*
* clock_select - find the pick-of-the-litter clock
*
* LOCKCLOCK: If the local clock is the prefer peer, it will always be
* enabled, even if declared falseticker, (2) only the prefer peer can
* be selected as the system peer, (3) if the external source is down,
* the system leap bits are set to 11 and the stratum set to infinity.
*/
void
clock_select(void)
{
struct peer *peer;
int i, j, k, n;
int nlist, nl3;
double d, e, f;
int allow, sw, osurv;
double high, low;
double synch[NTP_MAXCLOCK], error[NTP_MAXCLOCK];
struct peer *osys_peer;
struct peer *typeacts = NULL;
struct peer *typelocal = NULL;
struct peer *typepps = NULL;
struct peer *typesystem = NULL;
static int list_alloc = 0;
static struct endpoint *endpoint = NULL;
static int *indx = NULL;
static struct peer **peer_list = NULL;
static u_int endpoint_size = 0;
static u_int indx_size = 0;
static u_int peer_list_size = 0;
/*
* Initialize and create endpoint, index and peer lists big
* enough to handle all associations.
*/
osys_peer = sys_peer;
sys_peer = NULL;
osurv = sys_survivors;
sys_survivors = 0;
sys_prefer = NULL;
#ifdef LOCKCLOCK
sys_leap = LEAP_NOTINSYNC;
sys_stratum = STRATUM_UNSPEC;
memcpy(&sys_refid, "DOWN", 4);
#endif /* LOCKCLOCK */
nlist = 0;
for (n = 0; n < HASH_SIZE; n++)
nlist += peer_hash_count[n];
if (nlist > list_alloc) {
if (list_alloc > 0) {
free(endpoint);
free(indx);
free(peer_list);
}
while (list_alloc < nlist) {
list_alloc += 5;
endpoint_size += 5 * 3 * sizeof(*endpoint);
indx_size += 5 * 3 * sizeof(*indx);
peer_list_size += 5 * sizeof(*peer_list);
}
endpoint = emalloc(endpoint_size);
indx = emalloc(indx_size);
peer_list = emalloc(peer_list_size);
}
/*
* Initially, we populate the island with all the rifraff peers
* that happen to be lying around. Those with seriously
* defective clocks are immediately booted off the island. Then,
* the falsetickers are culled and put to sea. The truechimers
* remaining are subject to repeated rounds where the most
* unpopular at each round is kicked off. When the population
* has dwindled to sys_minclock, the survivors split a million
* bucks and collectively crank the chimes.
*/
nlist = nl3 = 0; /* none yet */
for (n = 0; n < HASH_SIZE; n++) {
for (peer = peer_hash[n]; peer != NULL; peer =
peer->next) {
peer->flags &= ~FLAG_SYSPEER;
peer->status = CTL_PST_SEL_REJECT;
/*
* Leave the island immediately if the peer is
* unfit to synchronize.
*/
if (peer_unfit(peer) || root_distance(peer) >=
MAXDISTANCE + 2. * clock_phi *
ULOGTOD(sys_poll))
continue;
/*
* Don't allow the local clock or modem drivers
* in the kitchen at this point, unless the
* prefer peer. Do that later, but only if
* nobody else is around. These guys are all
* configured, so we never throw them away.
*/
if (peer->refclktype == REFCLK_LOCALCLOCK
#if defined(VMS) && defined(VMS_LOCALUNIT)
/* wjm: VMS_LOCALUNIT taken seriously */
&& REFCLOCKUNIT(&peer->srcadr) !=
VMS_LOCALUNIT
#endif /* VMS && VMS_LOCALUNIT */
) {
typelocal = peer;
if (!(peer->flags & FLAG_PREFER))
continue; /* no local clock */
#ifdef LOCKCLOCK
else
sys_prefer = peer;
#endif /* LOCKCLOCK */
}
if (peer->sstclktype == CTL_SST_TS_TELEPHONE) {
typeacts = peer;
if (!(peer->flags & FLAG_PREFER))
continue; /* no acts */
}
/*
* If we get this far, the peer can stay on the
* island, but does not yet have the immunity
* idol.
*/
peer->status = CTL_PST_SEL_SANE;
peer_list[nlist++] = peer;
/*
* Insert each interval endpoint on the sorted
* list.
*/
e = peer->offset; /* Upper end */
f = root_distance(peer);
e = e + f;
for (i = nl3 - 1; i >= 0; i--) {
if (e >= endpoint[indx[i]].val)
break;
indx[i + 3] = indx[i];
}
indx[i + 3] = nl3;
endpoint[nl3].type = 1;
endpoint[nl3++].val = e;
e = e - f; /* Center point */
for (; i >= 0; i--) {
if (e >= endpoint[indx[i]].val)
break;
indx[i + 2] = indx[i];
}
indx[i + 2] = nl3;
endpoint[nl3].type = 0;
endpoint[nl3++].val = e;
e = e - f; /* Lower end */
for (; i >= 0; i--) {
if (e >= endpoint[indx[i]].val)
break;
indx[i + 1] = indx[i];
}
indx[i + 1] = nl3;
endpoint[nl3].type = -1;
endpoint[nl3++].val = e;
}
}
#ifdef DEBUG
if (debug > 2)
for (i = 0; i < nl3; i++)
printf("select: endpoint %2d %.6f\n",
endpoint[indx[i]].type,
endpoint[indx[i]].val);
#endif
/*
* This is the actual algorithm that cleaves the truechimers
* from the falsetickers. The original algorithm was described
* in Keith Marzullo's dissertation, but has been modified for
* better accuracy.
*
* Briefly put, we first assume there are no falsetickers, then
* scan the candidate list first from the low end upwards and
* then from the high end downwards. The scans stop when the
* number of intersections equals the number of candidates less
* the number of falsetickers. If this doesn't happen for a
* given number of falsetickers, we bump the number of
* falsetickers and try again. If the number of falsetickers
* becomes equal to or greater than half the number of
* candidates, the Albanians have won the Byzantine wars and
* correct synchronization is not possible.
*
* Here, nlist is the number of candidates and allow is the
* number of falsetickers.
*/
low = 1e9;
high = -1e9;
for (allow = 0; 2 * allow < nlist; allow++) {
int found;
/*
* Bound the interval (low, high) as the largest
* interval containing points from presumed truechimers.
*/
found = 0;
n = 0;
for (i = 0; i < nl3; i++) {
low = endpoint[indx[i]].val;
n -= endpoint[indx[i]].type;
if (n >= nlist - allow)
break;
if (endpoint[indx[i]].type == 0)
found++;
}
n = 0;
for (j = nl3 - 1; j >= 0; j--) {
high = endpoint[indx[j]].val;
n += endpoint[indx[j]].type;
if (n >= nlist - allow)
break;
if (endpoint[indx[j]].type == 0)
found++;
}
/*
* If the number of candidates found outside the
* interval is greater than the number of falsetickers,
* then at least one truechimer is outside the interval,
* so go around again. This is what makes this algorithm
* different than Marzullo's.
*/
if (found > allow)
continue;
/*
* If an interval containing truechimers is found, stop.
* If not, increase the number of falsetickers and go
* around again.
*/
if (high > low)
break;
}
/*
* If no survivors remain at this point, check if the local
* clock or modem drivers have been found. If so, nominate one
* of them as the only survivor. Otherwise, give up and leave
* the island to the rats.
*/
if (high <= low) {
if (typeacts != 0) {
typeacts->status = CTL_PST_SEL_SANE;
peer_list[0] = typeacts;
nlist = 1;
} else if (typelocal != 0) {
typelocal->status = CTL_PST_SEL_SANE;
peer_list[0] = typelocal;
nlist = 1;
} else {
if (osys_peer != NULL) {
sys_poll = NTP_MINPOLL;
NLOG(NLOG_SYNCSTATUS)
msyslog(LOG_INFO,
"no servers reachable");
report_event(EVNT_PEERSTCHG, NULL);
}
if (osurv > 0)
resetmanycast();
return;
}
}
/*
* We can only trust the survivors if the number of candidates
* sys_minsane is at least the number required to detect and
* cast out one falsticker. For the Byzantine agreement
* algorithm used here, that number is 4; however, the default
* sys_minsane is 1 to speed initial synchronization. Careful
* operators will tinker the value to 4 and use at least that
* number of synchronization sources.
*/
if (nlist < sys_minsane)
return;
/*
* Clustering algorithm. Construct candidate list in order first
* by stratum then by root distance, but keep only the best
* NTP_MAXCLOCK of them. Scan the list to find falsetickers, who
* leave the island immediately. If a falseticker is not
* configured, his association raft is drowned as well, but only
* if at at least eight poll intervals have gone. We must leave
* at least one peer to collect the million bucks.
*
* Note the hysteresis gimmick that increases the effective
* distance for those rascals that have not made the final cut.
* This is to discourage clockhopping. Note also the prejudice
* against lower stratum peers if the floor is elevated.
*/
j = 0;
for (i = 0; i < nlist; i++) {
peer = peer_list[i];
if (nlist > 1 && (peer->offset <= low || peer->offset >=
high)) {
if (!(peer->flags & FLAG_CONFIG))
unpeer(peer);
continue;
}
peer->status = CTL_PST_SEL_DISTSYSPEER;
d = peer->stratum;
if (d < sys_floor)
d += sys_floor;
if (d > sys_ceiling)
d = STRATUM_UNSPEC;
d = root_distance(peer) + d * MAXDISTANCE;
d *= 1. - peer->hyst;
if (j >= NTP_MAXCLOCK) {
if (d >= synch[j - 1])
continue;
else
j--;
}
for (k = j; k > 0; k--) {
if (d >= synch[k - 1])
break;
peer_list[k] = peer_list[k - 1];
error[k] = error[k - 1];
synch[k] = synch[k - 1];
}
peer_list[k] = peer;
error[k] = peer->jitter;
synch[k] = d;
j++;
}
nlist = j;
if (nlist == 0) {
#ifdef DEBUG
if (debug)
printf("clock_select: empty intersection interval\n");
#endif
return;
}
for (i = 0; i < nlist; i++) {
peer_list[i]->status = CTL_PST_SEL_SELCAND;
#ifdef DEBUG
if (debug > 2)
printf("select: %s distance %.6f jitter %.6f\n",
ntoa(&peer_list[i]->srcadr), synch[i],
SQRT(error[i]));
#endif
}
/*
* Now, vote outlyers off the island by select jitter weighted
* by root dispersion. Continue voting as long as there are more
* than sys_minclock survivors and the minimum select jitter
* squared is greater than the maximum peer jitter squared. Stop
* if we are about to discard a prefer peer, who of course has
* the immunity idol.
*/
while (1) {
d = 1e9;
e = -1e9;
k = 0;
for (i = 0; i < nlist; i++) {
if (error[i] < d)
d = error[i];
f = 0;
if (nlist > 1) {
for (j = 0; j < nlist; j++)
f += DIFF(peer_list[j]->offset,
peer_list[i]->offset);
f /= nlist - 1;
}
if (f * synch[i] > e) {
sys_selerr = f;
e = f * synch[i];
k = i;
}
}
f = max(sys_selerr, SQUARE(LOGTOD(sys_precision)));
if (nlist <= sys_minclock || f <= d ||
peer_list[k]->flags & FLAG_PREFER)
break;
#ifdef DEBUG
if (debug > 2)
printf(
"select: drop %s select %.6f jitter %.6f\n",
ntoa(&peer_list[k]->srcadr),
SQRT(sys_selerr), SQRT(d));
#endif
if (!(peer_list[k]->flags & FLAG_CONFIG) &&
peer_list[k]->hmode == MODE_CLIENT)
unpeer(peer_list[k]);
for (j = k + 1; j < nlist; j++) {
peer_list[j - 1] = peer_list[j];
error[j - 1] = error[j];
}
nlist--;
}
/*
* What remains is a list usually not greater than sys_minclock
* peers. We want only a peer at the lowest stratum to become
* the system peer, although all survivors are eligible for the
* combining algorithm. First record their order, diddle the
* flags and clamp the poll intervals. Then, consider each peer
* in turn and OR the leap bits on the assumption that, if some
* of them honk nonzero bits, they must know what they are
* doing. Check for prefer and pps peers at any stratum. Check
* if the old system peer is among the peers at the lowest
* stratum. Note that the head of the list is at the lowest
* stratum and that unsynchronized peers cannot survive this
* far.
*
* Fiddle for hysteresis. Pump it up for a peer only if the peer
* stratum is at least the floor and there are enough survivors.
* This minimizes the pain when tossing out rascals beneath the
* floorboard. Don't count peers with stratum above the ceiling.
* Manycast is sooo complicated.
*/
leap_consensus = 0;
for (i = nlist - 1; i >= 0; i--) {
peer = peer_list[i];
leap_consensus |= peer->leap;
peer->status = CTL_PST_SEL_SYNCCAND;
peer->rank++;
peer->flags |= FLAG_SYSPEER;
if (peer->stratum >= sys_floor && osurv >= sys_minclock)
peer->hyst = HYST;
else
peer->hyst = 0;
if (peer->stratum <= sys_ceiling)
sys_survivors++;
if (peer->flags & FLAG_PREFER)
sys_prefer = peer;
if (peer->refclktype == REFCLK_ATOM_PPS &&
peer->stratum < STRATUM_UNSPEC)
typepps = peer;
if (peer->stratum == peer_list[0]->stratum && peer ==
osys_peer)
typesystem = peer;
}
/*
* In manycast client mode we may have spooked a sizeable number
* of peers that we don't need. If there are at least
* sys_minclock of them, the manycast message will be turned
* off. By the time we get here we nay be ready to prune some of
* them back, but we want to make sure all the candicates have
* had a chance. If they didn't pass the sanity and intersection
* tests, they have already been voted off the island.
*/
if (sys_survivors < sys_minclock && osurv >= sys_minclock)
resetmanycast();
/*
* Mitigation rules of the game. There are several types of
* peers that make a difference here: (1) prefer local peers
* (type REFCLK_LOCALCLOCK with FLAG_PREFER) or prefer modem
* peers (type REFCLK_NIST_ATOM etc with FLAG_PREFER), (2) pps
* peers (type REFCLK_ATOM_PPS), (3) remaining prefer peers
* (flag FLAG_PREFER), (4) the existing system peer, if any, (5)
* the head of the survivor list. Note that only one peer can be
* declared prefer. The order of preference is in the order
* stated. Note that all of these must be at the lowest stratum,
* i.e., the stratum of the head of the survivor list.
*/
if (sys_prefer)
sw = sys_prefer->refclktype == REFCLK_LOCALCLOCK ||
sys_prefer->sstclktype == CTL_SST_TS_TELEPHONE ||
!typepps;
else
sw = 0;
if (sw) {
sys_peer = sys_prefer;
sys_peer->status = CTL_PST_SEL_SYSPEER;
sys_offset = sys_peer->offset;
sys_syserr = sys_peer->jitter;
#ifdef DEBUG
if (debug > 1)
printf("select: prefer offset %.6f\n",
sys_offset);
#endif
}
#ifndef LOCKCLOCK
else if (typepps) {
sys_peer = typepps;
sys_peer->status = CTL_PST_SEL_PPS;
sys_offset = sys_peer->offset;
sys_syserr = sys_peer->jitter;
if (!pps_control)
NLOG(NLOG_SYSEVENT)
msyslog(LOG_INFO, "pps sync enabled");
pps_control = current_time;
#ifdef DEBUG
if (debug > 1)
printf("select: pps offset %.6f\n",
sys_offset);
#endif
} else {
if (typesystem)
sys_peer = osys_peer;
else
sys_peer = peer_list[0];
sys_peer->status = CTL_PST_SEL_SYSPEER;
sys_peer->rank++;
sys_offset = clock_combine(peer_list, nlist);
sys_syserr = sys_peer->jitter + sys_selerr;
#ifdef DEBUG
if (debug > 1)
printf("select: combine offset %.6f\n",
sys_offset);
#endif
}
#endif /* LOCKCLOCK */
if (osys_peer != sys_peer) {
char *src;
if (sys_peer == NULL)
sys_peer_refid = 0;
else
sys_peer_refid = addr2refid(&sys_peer->srcadr);
report_event(EVNT_PEERSTCHG, NULL);
#ifdef REFCLOCK
if (ISREFCLOCKADR(&sys_peer->srcadr))
src = refnumtoa(&sys_peer->srcadr);
else
#endif
src = ntoa(&sys_peer->srcadr);
NLOG(NLOG_SYNCSTATUS)
msyslog(LOG_INFO, "synchronized to %s, stratum=%d", src,
sys_peer->stratum);
}
clock_update();
}
/*
* clock_combine - combine offsets from selected peers
*/
static double
clock_combine(
struct peer **peers,
int npeers
)
{
int i;
double x, y, z;
y = z = 0;
for (i = 0; i < npeers; i++) {
x = root_distance(peers[i]);
y += 1. / x;
z += peers[i]->offset / x;
}
return (z / y);
}
/*
* root_distance - compute synchronization distance from peer to root
*/
static double
root_distance(
struct peer *peer
)
{
/*
* Careful squeak here. The value returned must be greater than
* zero blamed on the peer jitter, which must be at least the
* square of sys_precision.
*/
return ((peer->rootdelay + peer->delay) / 2 +
peer->rootdispersion + peer->disp + clock_phi *
(current_time - peer->update) + SQRT(peer->jitter));
}
/*
* peer_xmit - send packet for persistent association.
*/
static void
peer_xmit(
struct peer *peer /* peer structure pointer */
)
{
struct pkt xpkt; /* transmit packet */
int sendlen, authlen;
keyid_t xkeyid = 0; /* transmit key ID */
l_fp xmt_tx;
/*
* Initialize transmit packet header fields.
*/
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version,
peer->hmode);
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
xpkt.ppoll = peer->hpoll;
xpkt.precision = sys_precision;
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
xpkt.rootdispersion = HTONS_FP(DTOUFP(sys_rootdispersion));
xpkt.refid = sys_refid;
HTONL_FP(&sys_reftime, &xpkt.reftime);
HTONL_FP(&peer->org, &xpkt.org);
HTONL_FP(&peer->rec, &xpkt.rec);
/*
* If the received packet contains a MAC, the transmitted packet
* is authenticated and contains a MAC. If not, the transmitted
* packet is not authenticated.
*
* In the current I/O semantics the default interface is set
* until after receiving a packet and setting the right
* interface. So, the first packet goes out unauthenticated.
* That's why the really icky test next is here.
*/
sendlen = LEN_PKT_NOMAC;
if (!(peer->flags & FLAG_AUTHENABLE)) {
get_systime(&peer->xmt);
HTONL_FP(&peer->xmt, &xpkt.xmt);
sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl],
&xpkt, sendlen);
peer->sent++;
#ifdef DEBUG
if (debug)
printf("transmit: at %ld %s->%s mode %d\n",
current_time, peer->dstadr ?
stoa(&peer->dstadr->sin) : "null",
stoa(&peer->srcadr), peer->hmode);
#endif
return;
}
/*
* The received packet contains a MAC, so the transmitted packet
* must be authenticated. If autokey is enabled, fuss with the
* various modes; otherwise, private key cryptography is used.
*/
#ifdef OPENSSL
if (crypto_flags && (peer->flags & FLAG_SKEY)) {
struct exten *exten; /* extension field */
u_int opcode;
/*
* The Public Key Dance (PKD): Cryptographic credentials
* are contained in extension fields, each including a
* 4-octet length/code word followed by a 4-octet
* association ID and optional additional data. Optional
* data includes a 4-octet data length field followed by
* the data itself. Request messages are sent from a
* configured association; response messages can be sent
* from a configured association or can take the fast
* path without ever matching an association. Response
* messages have the same code as the request, but have
* a response bit and possibly an error bit set. In this
* implementation, a message may contain no more than
* one command and no more than one response.
*
* Cryptographic session keys include both a public and
* a private componet. Request and response messages
* using extension fields are always sent with the
* private component set to zero. Packets without
* extension fields indlude the private component when
* the session key is generated.
*/
while (1) {
/*
* Allocate and initialize a keylist if not
* already done. Then, use the list in inverse
* order, discarding keys once used. Keep the
* latest key around until the next one, so
* clients can use client/server packets to
* compute propagation delay.
*
* Note that once a key is used from the list,
* it is retained in the key cache until the
* next key is used. This is to allow a client
* to retrieve the encrypted session key
* identifier to verify authenticity.
*
* If for some reason a key is no longer in the
* key cache, a birthday has happened and the
* pseudo-random sequence is probably broken. In
* that case, purge the keylist and regenerate
* it.
*/
if (peer->keynumber == 0)
make_keylist(peer, peer->dstadr);
else
peer->keynumber--;
xkeyid = peer->keylist[peer->keynumber];
if (authistrusted(xkeyid))
break;
else
key_expire(peer);
}
peer->keyid = xkeyid;
switch (peer->hmode) {
/*
* In broadcast server mode the autokey values are
* required by the broadcast clients. Push them when a
* new keylist is generated; otherwise, push the
* association message so the client can request them at
* other times.
*/
case MODE_BROADCAST:
if (peer->flags & FLAG_ASSOC)
exten = crypto_args(peer, CRYPTO_AUTO |
CRYPTO_RESP, NULL);
else
exten = crypto_args(peer, CRYPTO_ASSOC |
CRYPTO_RESP, NULL);
sendlen += crypto_xmit(&xpkt, &peer->srcadr,
sendlen, exten, 0);
free(exten);
break;
/*
* In symmetric modes the digest, certificate, agreement
* parameters, cookie and autokey values are required.
* The leapsecond table is optional. But, a passive peer
* will not believe the active peer until the latter has
* synchronized, so the agreement must be postponed
* until then. In any case, if a new keylist is
* generated, the autokey values are pushed.
*/
case MODE_ACTIVE:
case MODE_PASSIVE:
if (peer->cmmd != NULL) {
peer->cmmd->associd =
htonl(peer->associd);
sendlen += crypto_xmit(&xpkt,
&peer->srcadr, sendlen, peer->cmmd,
0);
free(peer->cmmd);
peer->cmmd = NULL;
}
exten = NULL;
if (!peer->crypto)
exten = crypto_args(peer, CRYPTO_ASSOC,
sys_hostname);
else if (!(peer->crypto & CRYPTO_FLAG_VALID))
exten = crypto_args(peer, CRYPTO_CERT,
peer->issuer);
/*
* Identity. Note we have to sign the
* certificate before the cookie to avoid a
* deadlock when the passive peer is walking the
* certificate trail. Awesome.
*/
else if ((opcode = crypto_ident(peer)) != 0)
exten = crypto_args(peer, opcode, NULL);
else if (sys_leap != LEAP_NOTINSYNC &&
!(peer->crypto & CRYPTO_FLAG_SIGN))
exten = crypto_args(peer, CRYPTO_SIGN,
sys_hostname);
/*
* Autokey. We request the cookie only when the
* server and client are synchronized and
* signatures work both ways. On the other hand,
* the active peer needs the autokey values
* before then and when the passive peer is
* waiting for the active peer to synchronize.
* Any time we regenerate the key list, we offer
* the autokey values without being asked.
*/
else if (sys_leap != LEAP_NOTINSYNC &&
peer->leap != LEAP_NOTINSYNC &&
!(peer->crypto & CRYPTO_FLAG_AGREE))
exten = crypto_args(peer, CRYPTO_COOK,
NULL);
else if (peer->flags & FLAG_ASSOC)
exten = crypto_args(peer, CRYPTO_AUTO |
CRYPTO_RESP, NULL);
else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
exten = crypto_args(peer, CRYPTO_AUTO,
NULL);
/*
* Postamble. We trade leapseconds only when the
* server and client are synchronized.
*/
else if (sys_leap != LEAP_NOTINSYNC &&
peer->leap != LEAP_NOTINSYNC &&
peer->crypto & CRYPTO_FLAG_TAI &&
!(peer->crypto & CRYPTO_FLAG_LEAP))
exten = crypto_args(peer, CRYPTO_TAI,
NULL);
if (exten != NULL) {
sendlen += crypto_xmit(&xpkt,
&peer->srcadr, sendlen, exten, 0);
free(exten);
}
break;
/*
* In client mode the digest, certificate, agreement
* parameters and cookie are required. The leapsecond
* table is optional. If broadcast client mode, the
* autokey values are required as well. In broadcast
* client mode, these values must be acquired during the
* client/server exchange to avoid having to wait until
* the next key list regeneration. Otherwise, the poor
* dude may die a lingering death until becoming
* unreachable and attempting rebirth.
*
* If neither the server or client have the agreement
* parameters, the protocol transmits the cookie in the
* clear. If the server has the parameters, the client
* requests them and the protocol blinds it using the
* agreed key. It is a protocol error if the client has
* the parameters but the server does not.
*/
case MODE_CLIENT:
if (peer->cmmd != NULL) {
peer->cmmd->associd =
htonl(peer->associd);
sendlen += crypto_xmit(&xpkt,
&peer->srcadr, sendlen, peer->cmmd,
0);
free(peer->cmmd);
peer->cmmd = NULL;
}
exten = NULL;
if (!peer->crypto)
exten = crypto_args(peer, CRYPTO_ASSOC,
sys_hostname);
else if (!(peer->crypto & CRYPTO_FLAG_VALID))
exten = crypto_args(peer, CRYPTO_CERT,
peer->issuer);
/*
* Identity.
*/
else if ((opcode = crypto_ident(peer)) != 0)
exten = crypto_args(peer, opcode, NULL);
/*
* Autokey
*/
else if (!(peer->crypto & CRYPTO_FLAG_AGREE))
exten = crypto_args(peer, CRYPTO_COOK,
NULL);
else if (!(peer->crypto & CRYPTO_FLAG_AUTO) &&
(peer->cast_flags & MDF_BCLNT))
exten = crypto_args(peer, CRYPTO_AUTO,
NULL);
/*
* Postamble. We can sign the certificate here,
* since there is no chance of deadlock.
*/
else if (sys_leap != LEAP_NOTINSYNC &&
!(peer->crypto & CRYPTO_FLAG_SIGN))
exten = crypto_args(peer, CRYPTO_SIGN,
sys_hostname);
else if (sys_leap != LEAP_NOTINSYNC &&
peer->crypto & CRYPTO_FLAG_TAI &&
!(peer->crypto & CRYPTO_FLAG_LEAP))
exten = crypto_args(peer, CRYPTO_TAI,
NULL);
if (exten != NULL) {
sendlen += crypto_xmit(&xpkt,
&peer->srcadr, sendlen, exten, 0);
free(exten);
}
break;
}
/*
* If extension fields are present, we must use a
* private value of zero and force min poll interval.
* Most intricate.
*/
if (sendlen > LEN_PKT_NOMAC)
session_key(&peer->dstadr->sin, &peer->srcadr,
xkeyid, 0, 2);
}
#endif /* OPENSSL */
xkeyid = peer->keyid;
get_systime(&peer->xmt);
L_ADD(&peer->xmt, &sys_authdelay);
HTONL_FP(&peer->xmt, &xpkt.xmt);
authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
if (authlen == 0) {
msyslog(LOG_INFO,
"transmit: encryption key %d not found", xkeyid);
if (peer->flags & FLAG_CONFIG)
peer_clear(peer, "NKEY");
else
unpeer(peer);
return;
}
sendlen += authlen;
#ifdef OPENSSL
if (xkeyid > NTP_MAXKEY)
authtrust(xkeyid, 0);
#endif /* OPENSSL */
get_systime(&xmt_tx);
if (sendlen > sizeof(xpkt)) {
msyslog(LOG_ERR, "buffer overflow %u", sendlen);
exit (-1);
}
sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl], &xpkt,
sendlen);
/*
* Calculate the encryption delay. Keep the minimum over
* the latest two samples.
*/
L_SUB(&xmt_tx, &peer->xmt);
L_ADD(&xmt_tx, &sys_authdelay);
sys_authdly[1] = sys_authdly[0];
sys_authdly[0] = xmt_tx.l_uf;
if (sys_authdly[0] < sys_authdly[1])
sys_authdelay.l_uf = sys_authdly[0];
else
sys_authdelay.l_uf = sys_authdly[1];
peer->sent++;
#ifdef OPENSSL
#ifdef DEBUG
if (debug)
printf(
"transmit: at %ld %s->%s mode %d keyid %08x len %d mac %d index %d\n",
current_time, ntoa(&peer->dstadr->sin),
ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen -
authlen, authlen, peer->keynumber);
#endif
#else
#ifdef DEBUG
if (debug)
printf(
"transmit: at %ld %s->%s mode %d keyid %08x len %d mac %d\n",
current_time, ntoa(&peer->dstadr->sin),
ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen -
authlen, authlen);
#endif
#endif /* OPENSSL */
}
/*
* fast_xmit - Send packet for nonpersistent association. Note that
* neither the source or destination can be a broadcast address.
*/
static void
fast_xmit(
struct recvbuf *rbufp, /* receive packet pointer */
int xmode, /* transmit mode */
keyid_t xkeyid, /* transmit key ID */
int mask /* restrict mask */
)
{
struct pkt xpkt; /* transmit packet structure */
struct pkt *rpkt; /* receive packet structure */
l_fp xmt_ts; /* timestamp */
l_fp xmt_tx; /* timestamp after authent */
int sendlen, authlen;
#ifdef OPENSSL
u_int32 temp32;
#endif
/*
* Initialize transmit packet header fields from the receive
* buffer provided. We leave some fields intact as received. If
* the gazinta was from a multicast address, the gazouta must go
* out another way.
*/
rpkt = &rbufp->recv_pkt;
if (rbufp->dstadr->flags & INT_MULTICAST)
rbufp->dstadr = findinterface(&rbufp->recv_srcadr);
/*
* If the packet has picked up a restriction due to either
* access denied or rate exceeded, decide what to do with it.
*/
if (mask & (RES_DONTTRUST | RES_LIMITED)) {
char *code = "????";
if (mask & RES_LIMITED) {
sys_limitrejected++;
code = "RATE";
} else if (mask & RES_DONTTRUST) {
sys_restricted++;
code = "DENY";
}
/*
* Here we light up a kiss-of-death packet. Note the
* rate limit on these packets. Once a second initialize
* a bucket counter. Every packet sent decrements the
* counter until reaching zero. If the counter is zero,
* drop the kod.
*/
if (sys_kod == 0 || !(mask & RES_DEMOBILIZE))
return;
sys_kod--;
memcpy(&xpkt.refid, code, 4);
xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC,
PKT_VERSION(rpkt->li_vn_mode), xmode);
xpkt.stratum = STRATUM_UNSPEC;
} else {
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap,
PKT_VERSION(rpkt->li_vn_mode), xmode);
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
xpkt.refid = sys_refid;
}
xpkt.ppoll = rpkt->ppoll;
xpkt.precision = sys_precision;
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
xpkt.rootdispersion =
HTONS_FP(DTOUFP(sys_rootdispersion));
HTONL_FP(&sys_reftime, &xpkt.reftime);
xpkt.org = rpkt->xmt;
HTONL_FP(&rbufp->recv_time, &xpkt.rec);
/*
* If the received packet contains a MAC, the transmitted packet
* is authenticated and contains a MAC. If not, the transmitted
* packet is not authenticated.
*/
sendlen = LEN_PKT_NOMAC;
if (rbufp->recv_length == sendlen) {
get_systime(&xmt_ts);
HTONL_FP(&xmt_ts, &xpkt.xmt);
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt,
sendlen);
#ifdef DEBUG
if (debug)
printf("transmit: at %ld %s->%s mode %d\n",
current_time, stoa(&rbufp->dstadr->sin),
stoa(&rbufp->recv_srcadr), xmode);
#endif
return;
}
/*
* The received packet contains a MAC, so the transmitted packet
* must be authenticated. For private-key cryptography, use the
* predefined private keys to generate the cryptosum. For
* autokey cryptography, use the server private value to
* generate the cookie, which is unique for every source-
* destination-key ID combination.
*/
#ifdef OPENSSL
if (xkeyid > NTP_MAXKEY) {
keyid_t cookie;
/*
* The only way to get here is a reply to a legitimate
* client request message, so the mode must be
* MODE_SERVER. If an extension field is present, there
* can be only one and that must be a command. Do what
* needs, but with private value of zero so the poor
* jerk can decode it. If no extension field is present,
* use the cookie to generate the session key.
*/
cookie = session_key(&rbufp->recv_srcadr,
&rbufp->dstadr->sin, 0, sys_private, 0);
if (rbufp->recv_length >= (int)(sendlen + MAX_MAC_LEN + 2 *
sizeof(u_int32))) {
session_key(&rbufp->dstadr->sin,
&rbufp->recv_srcadr, xkeyid, 0, 2);
temp32 = CRYPTO_RESP;
rpkt->exten[0] |= htonl(temp32);
sendlen += crypto_xmit(&xpkt,
&rbufp->recv_srcadr, sendlen,
(struct exten *)rpkt->exten, cookie);
} else {
session_key(&rbufp->dstadr->sin,
&rbufp->recv_srcadr, xkeyid, cookie, 2);
}
}
#endif /* OPENSSL */
get_systime(&xmt_ts);
L_ADD(&xmt_ts, &sys_authdelay);
HTONL_FP(&xmt_ts, &xpkt.xmt);
authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
sendlen += authlen;
#ifdef OPENSSL
if (xkeyid > NTP_MAXKEY)
authtrust(xkeyid, 0);
#endif /* OPENSSL */
get_systime(&xmt_tx);
if (sendlen > sizeof(xpkt)) {
msyslog(LOG_ERR, "buffer overflow %u", sendlen);
exit (-1);
}
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen);
/*
* Calculate the encryption delay. Keep the minimum over the
* latest two samples.
*/
L_SUB(&xmt_tx, &xmt_ts);
L_ADD(&xmt_tx, &sys_authdelay);
sys_authdly[1] = sys_authdly[0];
sys_authdly[0] = xmt_tx.l_uf;
if (sys_authdly[0] < sys_authdly[1])
sys_authdelay.l_uf = sys_authdly[0];
else
sys_authdelay.l_uf = sys_authdly[1];
#ifdef DEBUG
if (debug)
printf(
"transmit: at %ld %s->%s mode %d keyid %08x len %d mac %d\n",
current_time, ntoa(&rbufp->dstadr->sin),
ntoa(&rbufp->recv_srcadr), xmode, xkeyid, sendlen -
authlen, authlen);
#endif
}
#ifdef OPENSSL
/*
* key_expire - purge the key list
*/
void
key_expire(
struct peer *peer /* peer structure pointer */
)
{
int i;
if (peer->keylist != NULL) {
for (i = 0; i <= peer->keynumber; i++)
authtrust(peer->keylist[i], 0);
free(peer->keylist);
peer->keylist = NULL;
}
value_free(&peer->sndval);
peer->keynumber = 0;
#ifdef DEBUG
if (debug)
printf("key_expire: at %lu\n", current_time);
#endif
}
#endif /* OPENSSL */
/*
* Determine if the peer is unfit for synchronization
*
* A peer is unfit for synchronization if
* > not reachable
* > a synchronization loop would form
* > never been synchronized
* > stratum undefined or too high
* > too long without synchronization
* > designated noselect
*/
static int /* 0 if no, 1 if yes */
peer_unfit(
struct peer *peer /* peer structure pointer */
)
{
return (!peer->reach || (peer->stratum > 1 && peer->refid ==
peer->dstadr->addr_refid) || peer->leap == LEAP_NOTINSYNC ||
peer->stratum >= STRATUM_UNSPEC || peer->flags &
FLAG_NOSELECT);
}
/*
* Find the precision of this particular machine
*/
#define MINSTEP 100e-9 /* minimum clock increment (s) */
#define MAXSTEP 20e-3 /* maximum clock increment (s) */
#define MINLOOPS 5 /* minimum number of step samples */
/*
* This routine calculates the system precision, defined as the minimum
* of a sequency of differences between successive readings of the
* system clock. However, if the system clock can be read more than once
* during a tick interval, the difference can be zero or one LSB unit,
* where the LSB corresponds to one nanosecond or one microsecond.
* Conceivably, if some other process preempts this one and reads the
* clock, the difference can be more than one LSB unit.
*
* For hardware clock frequencies of 10 MHz or less, we assume the
* logical clock advances only at the hardware clock tick. For higher
* frequencies, we assume the logical clock can advance no more than 100
* nanoseconds between ticks.
*/
int
default_get_precision(void)
{
l_fp val; /* current seconds fraction */
l_fp last; /* last seconds fraction */
l_fp diff; /* difference */
double tick; /* computed tick value */
double dtemp; /* scratch */
int i; /* log2 precision */
/*
* Loop to find tick value in nanoseconds. Toss out outlyer
* values less than the minimun tick value. In wacky cases, use
* the default maximum value.
*/
get_systime(&last);
tick = MAXSTEP;
for (i = 0; i < MINLOOPS;) {
get_systime(&val);
diff = val;
L_SUB(&diff, &last);
last = val;
LFPTOD(&diff, dtemp);
if (dtemp < MINSTEP)
continue;
i++;
if (dtemp < tick)
tick = dtemp;
}
/*
* Find the nearest power of two.
*/
NLOG(NLOG_SYSEVENT)
msyslog(LOG_INFO, "precision = %.3f usec", tick * 1e6);
for (i = 0; tick <= 1; i++)
tick *= 2;
if (tick - 1. > 1. - tick / 2)
i--;
return (-i);
}
/*
* kod_proto - called once per second to limit kiss-of-death packets
*/
void
kod_proto(void)
{
sys_kod = sys_kod_rate;
}
/*
* init_proto - initialize the protocol module's data
*/
void
init_proto(void)
{
l_fp dummy;
int i;
/*
* Fill in the sys_* stuff. Default is don't listen to
* broadcasting, authenticate.
*/
sys_leap = LEAP_NOTINSYNC;
sys_stratum = STRATUM_UNSPEC;
memcpy(&sys_refid, "INIT", 4);
sys_precision = (s_char)default_get_precision();
sys_jitter = LOGTOD(sys_precision);
sys_rootdelay = 0;
sys_rootdispersion = 0;
L_CLR(&sys_reftime);
sys_peer = NULL;
sys_survivors = 0;
get_systime(&dummy);
sys_manycastserver = 0;
sys_bclient = 0;
sys_bdelay = DEFBROADDELAY;
sys_calldelay = BURST_DELAY;
sys_authenticate = 1;
L_CLR(&sys_authdelay);
sys_authdly[0] = sys_authdly[1] = 0;
sys_stattime = 0;
proto_clr_stats();
for (i = 0; i < MAX_TTL; i++) {
sys_ttl[i] = (u_char)((i * 256) / MAX_TTL);
sys_ttlmax = i;
}
#ifdef OPENSSL
sys_automax = 1 << NTP_AUTOMAX;
#endif /* OPENSSL */
/*
* Default these to enable
*/
ntp_enable = 1;
#ifndef KERNEL_FLL_BUG
kern_enable = 1;
#endif
pps_enable = 0;
stats_control = 1;
}
/*
* proto_config - configure the protocol module
*/
void
proto_config(
int item,
u_long value,
double dvalue,
struct sockaddr_storage* svalue
)
{
/*
* Figure out what he wants to change, then do it
*/
switch (item) {
/*
* Turn on/off kernel discipline.
*/
case PROTO_KERNEL:
kern_enable = (int)value;
break;
/*
* Turn on/off clock discipline.
*/
case PROTO_NTP:
ntp_enable = (int)value;
break;
/*
* Turn on/off monitoring.
*/
case PROTO_MONITOR:
if (value)
mon_start(MON_ON);
else
mon_stop(MON_ON);
break;
/*
* Turn on/off statistics.
*/
case PROTO_FILEGEN:
stats_control = (int)value;
break;
/*
* Turn on/off facility to listen to broadcasts.
*/
case PROTO_BROADCLIENT:
sys_bclient = (int)value;
if (value)
io_setbclient();
else
io_unsetbclient();
break;
/*
* Add muliticast group address.
*/
case PROTO_MULTICAST_ADD:
if (svalue)
io_multicast_add(*svalue);
break;
/*
* Delete multicast group address.
*/
case PROTO_MULTICAST_DEL:
if (svalue)
io_multicast_del(*svalue);
break;
/*
* Set default broadcast delay.
*/
case PROTO_BROADDELAY:
sys_bdelay = dvalue;
break;
/*
* Set modem call delay.
*/
case PROTO_CALLDELAY:
sys_calldelay = (int)value;
break;
/*
* Require authentication to mobilize ephemeral associations.
*/
case PROTO_AUTHENTICATE:
sys_authenticate = (int)value;
break;
/*
* Turn on/off PPS discipline.
*/
case PROTO_PPS:
pps_enable = (int)value;
break;
/*
* Set the minimum number of survivors.
*/
case PROTO_MINCLOCK:
sys_minclock = (int)dvalue;
break;
/*
* Set the minimum number of candidates.
*/
case PROTO_MINSANE:
sys_minsane = (int)dvalue;
break;
/*
* Set the stratum floor.
*/
case PROTO_FLOOR:
sys_floor = (int)dvalue;
break;
/*
* Set the stratum ceiling.
*/
case PROTO_CEILING:
sys_ceiling = (int)dvalue;
break;
/*
* Set the cohort switch.
*/
case PROTO_COHORT:
sys_cohort= (int)dvalue;
break;
/*
* Set the adjtime() resolution (s).
*/
case PROTO_ADJ:
sys_tick = dvalue;
break;
#ifdef REFCLOCK
/*
* Turn on/off refclock calibrate
*/
case PROTO_CAL:
cal_enable = (int)value;
break;
#endif
default:
/*
* Log this error.
*/
msyslog(LOG_INFO,
"proto_config: illegal item %d, value %ld",
item, value);
}
}
/*
* proto_clr_stats - clear protocol stat counters
*/
void
proto_clr_stats(void)
{
sys_stattime = current_time;
sys_received = 0;
sys_processed = 0;
sys_newversionpkt = 0;
sys_oldversionpkt = 0;
sys_unknownversion = 0;
sys_restricted = 0;
sys_badlength = 0;
sys_badauth = 0;
sys_limitrejected = 0;
}