NetBSD/sys/arch/amiga/dev/ite_rt.c
2014-01-22 00:25:16 +00:00

477 lines
14 KiB
C

/* $NetBSD: ite_rt.c,v 1.25 2014/01/22 00:25:16 christos Exp $ */
/*
* Copyright (c) 1993 Markus Wild
* Copyright (c) 1993 Lutz Vieweg
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Lutz Vieweg.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ite_rt.c,v 1.25 2014/01/22 00:25:16 christos Exp $");
#include "grfrt.h"
#if NGRFRT > 0
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/systm.h>
#include <dev/cons.h>
#include <machine/cpu.h>
#include <amiga/amiga/device.h>
#include <amiga/dev/itevar.h>
#include <amiga/dev/grfioctl.h>
#include <amiga/dev/grfvar.h>
#include <amiga/dev/grf_rtreg.h>
int retina_console = 1;
void retina_cursor(struct ite_softc *, int);
void retina_scroll(struct ite_softc *, int, int, int, int);
void retina_deinit(struct ite_softc *);
void retina_clear(struct ite_softc *, int, int, int, int);
void retina_putc(struct ite_softc *, int, int, int, int);
void retina_init(struct ite_softc *);
#ifdef RETINA_SPEED_HACK
static void screen_up(struct ite_softc *, int, int, int);
static void screen_down(struct ite_softc *, int, int, int);
#endif
/*
* this function is called from grf_rt to init the grf_softc->g_conpri
* field each time a retina is attached.
*/
int
grfrt_cnprobe(void)
{
static int done;
int rv;
if (retina_console && done == 0)
rv = CN_INTERNAL;
else
rv = CN_NORMAL;
done = 1;
return(rv);
}
/*
* init the required fields in the grf_softc struct for a
* grf to function as an ite.
*/
void
grfrt_iteinit(struct grf_softc *gp)
{
gp->g_iteinit = retina_init;
gp->g_itedeinit = retina_deinit;
gp->g_iteclear = retina_clear;
gp->g_iteputc = retina_putc;
gp->g_itescroll = retina_scroll;
gp->g_itecursor = retina_cursor;
}
void
retina_init(struct ite_softc *ip)
{
struct MonDef *md;
ip->priv = ip->grf->g_data;
md = (struct MonDef *) ip->priv;
ip->cols = md->TX;
ip->rows = md->TY;
}
void
retina_cursor(struct ite_softc *ip, int flag)
{
volatile void *ba = ip->grf->g_regkva;
if (flag == ERASE_CURSOR)
{
/* disable cursor */
WCrt (ba, CRT_ID_CURSOR_START, RCrt (ba, CRT_ID_CURSOR_START) | 0x20);
}
else
{
int pos = ip->curx + ip->cury * ip->cols;
/* make sure to enable cursor */
WCrt (ba, CRT_ID_CURSOR_START, RCrt (ba, CRT_ID_CURSOR_START) & ~0x20);
/* and position it */
WCrt (ba, CRT_ID_CURSOR_LOC_HIGH, (u_char) (pos >> 8));
WCrt (ba, CRT_ID_CURSOR_LOC_LOW, (u_char) pos);
ip->cursorx = ip->curx;
ip->cursory = ip->cury;
}
}
#ifdef RETINA_SPEED_HACK
static void
screen_up(struct ite_softc *ip, int top, int bottom, int lines)
{
volatile void *ba = ip->grf->g_regkva;
volatile void *fb = ip->grf->g_fbkva;
const struct MonDef * md = (struct MonDef *) ip->priv;
/* do some bounds-checking here.. */
if (top >= bottom)
return;
if (top + lines >= bottom)
{
retina_clear (ip, top, 0, bottom - top, ip->cols);
return;
}
/* the trick here is to use a feature of the NCR chip. It can
optimize data access in various read/write modes. One of
the modes is able to read/write from/to different zones.
Thus, by setting the read-offset to lineN, and the write-offset
to line0, we just cause read/write cycles for all characters
up to the last line, and have the chip transfer the data. The
`addqb' are the cheapest way to cause read/write cycles (DONT
use `tas' on the Amiga!), their results are completely ignored
by the NCR chip, it just replicates what it just read. */
/* write to primary, read from secondary */
WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA,
(RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 );
/* clear extended chain4 mode */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
/* set write mode 1, "[...] data in the read latches is written
to memory during CPU memory write cycles. [...]" */
WGfx (ba, GCT_ID_GRAPHICS_MODE,
(RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
{
/* write to line TOP */
long toploc = top * (md->TX / 16);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, ((unsigned char)toploc));
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, ((unsigned char)(toploc >> 8)));
}
{
/* read from line TOP + LINES */
long fromloc = (top+lines) * (md->TX / 16);
WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, ((unsigned char)fromloc)) ;
WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, ((unsigned char)(fromloc >> 8))) ;
}
{
void *p = (void *)fb;
/* transfer all characters but LINES lines, unroll by 16 */
short x = (1 + bottom - (top + lines)) * (md->TX / 16) - 1;
do {
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@+" : "=a" (p) : "0" (p));
} while (x--);
}
/* reset to default values */
WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0);
WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0);
/* write mode 0 */
WGfx (ba, GCT_ID_GRAPHICS_MODE,
(RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
/* extended chain4 enable */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR,
RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
/* read/write to primary on A0, secondary on B0 */
WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA,
(RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0x40);
/* fill the free lines with spaces */
{ /* feed latches with value */
unsigned short * f = (unsigned short *) fb;
f += (1 + bottom - lines) * md->TX * 2;
*f = 0x2010;
}
/* clear extended chain4 mode */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
/* set write mode 1, "[...] data in the read latches is written
to memory during CPU memory write cycles. [...]" */
WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
{
unsigned long * p = (unsigned long *) fb;
short x = (lines * (md->TX/16)) - 1;
const unsigned long dummyval = 0;
p += (1 + bottom - lines) * (md->TX/4);
do {
*p++ = dummyval;
*p++ = dummyval;
*p++ = dummyval;
*p++ = dummyval;
} while (x--);
}
/* write mode 0 */
WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
/* extended chain4 enable */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
};
static void
screen_down(struct ite_softc *ip, int top, int bottom, int lines)
{
volatile void *ba = ip->grf->g_regkva;
volatile void *fb = ip->grf->g_fbkva;
const struct MonDef * md = (struct MonDef *) ip->priv;
/* do some bounds-checking here.. */
if (top >= bottom)
return;
if (top + lines >= bottom)
{
retina_clear (ip, top, 0, bottom - top, ip->cols);
return;
}
/* see screen_up() for explanation of chip-tricks */
/* write to primary, read from secondary */
WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA,
(RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 );
/* clear extended chain4 mode */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
/* set write mode 1, "[...] data in the read latches is written
to memory during CPU memory write cycles. [...]" */
WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
{
/* write to line TOP + LINES */
long toloc = (top + lines) * (md->TX / 16);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, ((unsigned char)toloc));
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, ((unsigned char)(toloc >> 8)));
}
{
/* read from line TOP */
long fromloc = top * (md->TX / 16);
WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, ((unsigned char)fromloc));
WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, ((unsigned char)(fromloc >> 8))) ;
}
{
void *p = (void *)fb;
short x = (1 + bottom - (top + lines)) * (md->TX / 16) - 1;
p += (1 + bottom - (top + lines)) * md->TX;
do {
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
__asm volatile("addqb #1,%0@-" : "=a" (p) : "0" (p));
} while (x--);
}
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0);
WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0);
WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0);
/* write mode 0 */
WGfx (ba, GCT_ID_GRAPHICS_MODE,
(RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
/* extended chain4 enable */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
/* read/write to primary on A0, secondary on B0 */
WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA,
(RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0x40 );
/* fill the free lines with spaces */
{ /* feed latches with value */
unsigned short * f = (unsigned short *) fb;
f += top * md->TX * 2;
*f = 0x2010;
}
/* clear extended chain4 mode */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) & ~0x02);
/* set write mode 1, "[...] data in the read latches is written
to memory during CPU memory write cycles. [...]" */
WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
{
unsigned long * p = (unsigned long *) fb;
short x = (lines * (md->TX/16)) - 1;
const unsigned long dummyval = 0;
p += top * (md->TX/4);
do {
*p++ = dummyval;
*p++ = dummyval;
*p++ = dummyval;
*p++ = dummyval;
} while (x--);
}
/* write mode 0 */
WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 0);
/* extended chain4 enable */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR , RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
};
#endif /* RETINA_SPEED_HACK */
void
retina_deinit(struct ite_softc *ip)
{
ip->flags &= ~ITE_INITED;
}
void
retina_putc(struct ite_softc *ip, int c, int dy, int dx, int mode)
{
volatile char *fb = (volatile char*)ip->grf->g_fbkva;
register u_char attr;
attr = (mode & ATTR_INV) ? 0x21 : 0x10;
if (mode & ATTR_UL) attr = 0x01; /* ???????? */
if (mode & ATTR_BOLD) attr |= 0x08;
if (mode & ATTR_BLINK) attr |= 0x80;
fb += 4 * (dy * ip->cols + dx);
*fb++ = c; *fb = attr;
}
void
retina_clear(struct ite_softc *ip, int sy, int sx, int h, int w)
{
volatile u_short * fb = (volatile u_short *) ip->grf->g_fbkva;
short x;
const u_short fillval = 0x2010;
/* could probably be optimized just like the scrolling functions !! */
fb += 2 * (sy * ip->cols + sx);
while (h--)
{
for (x = 2 * (w - 1); x >= 0; x -= 2)
fb[x] = fillval;
fb += 2 * ip->cols;
}
}
/*
* RETINA_SPEED_HACK code seems to work on some boards and on others
* it causes text to smear horizontally
*/
void
retina_scroll(struct ite_softc *ip, int sy, int sx, int count, int dir)
{
u_long *fb;
fb = (u_long *)__UNVOLATILE(ip->grf->g_fbkva);
retina_cursor(ip, ERASE_CURSOR);
if (dir == SCROLL_UP) {
#ifdef RETINA_SPEED_HACK
screen_up(ip, sy - count, ip->bottom_margin, count);
#else
memcpy(fb + (sy - count) * ip->cols, fb + sy * ip->cols,
4 * (ip->bottom_margin - sy + 1) * ip->cols);
retina_clear(ip, ip->bottom_margin + 1 - count, 0, count,
ip->cols);
#endif
} else if (dir == SCROLL_DOWN) {
#ifdef RETINA_SPEED_HACK
screen_down(ip, sy, ip->bottom_margin, count);
#else
memcpy(fb + (sy + count) * ip->cols, fb + sy * ip->cols,
4 * (ip->bottom_margin - sy - count + 1) * ip->cols);
retina_clear(ip, sy, 0, count, ip->cols);
#endif
} else if (dir == SCROLL_RIGHT) {
memcpy(fb + sx + sy * ip->cols + count, fb + sx + sy * ip->cols,
4 * (ip->cols - (sx + count)));
retina_clear(ip, sy, sx, 1, count);
} else {
memcpy(fb + sx - count + sy * ip->cols, fb + sx + sy * ip->cols,
4 * (ip->cols - sx));
retina_clear(ip, sy, ip->cols - count, 1, count);
}
#ifndef RETINA_SPEED_HACK
retina_cursor(ip, !ERASE_CURSOR);
#endif
}
#endif /* NGRFRT */