NetBSD/sys/arch/arm/ixp12x0/ixp12x0_intr.c
2003-09-21 19:32:37 +00:00

596 lines
15 KiB
C

/* $NetBSD: ixp12x0_intr.c,v 1.11 2003/09/21 19:32:37 matt Exp $ */
/*
* Copyright (c) 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Ichiro FUKUHARA and Naoto Shimazaki.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ixp12x0_intr.c,v 1.11 2003/09/21 19:32:37 matt Exp $");
/*
* Interrupt support for the Intel ixp12x0
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/termios.h>
#include <uvm/uvm_extern.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <arm/cpufunc.h>
#include <arm/ixp12x0/ixp12x0reg.h>
#include <arm/ixp12x0/ixp12x0var.h>
#include <arm/ixp12x0/ixp12x0_comreg.h>
#include <arm/ixp12x0/ixp12x0_comvar.h>
#include <arm/ixp12x0/ixp12x0_pcireg.h>
extern u_int32_t ixpcom_cr; /* current cr from *_com.c */
extern u_int32_t ixpcom_imask; /* tell mask to *_com.c */
/* Interrupt handler queues. */
struct intrq intrq[NIRQ];
/* Interrupts to mask at each level. */
static u_int32_t imask[NIPL];
static u_int32_t pci_imask[NIPL];
/* Current interrupt priority level. */
__volatile int current_spl_level;
__volatile int hardware_spl_level;
/* Software copy of the IRQs we have enabled. */
__volatile u_int32_t intr_enabled;
__volatile u_int32_t pci_intr_enabled;
/* Interrupts pending. */
static __volatile int ipending;
/*
* Map a software interrupt queue index (to the unused bits in the
* ICU registers -- XXX will need to revisit this if those bits are
* ever used in future steppings).
*/
static const u_int32_t si_to_irqbit[SI_NQUEUES] = {
IXP12X0_INTR_bit30, /* SI_SOFT */
IXP12X0_INTR_bit29, /* SI_SOFTCLOCK */
IXP12X0_INTR_bit28, /* SI_SOFTNET */
IXP12X0_INTR_bit27, /* SI_SOFTSERIAL */
};
#define INT_SWMASK \
((1U << IXP12X0_INTR_bit30) | (1U << IXP12X0_INTR_bit29) | \
(1U << IXP12X0_INTR_bit28) | (1U << IXP12X0_INTR_bit27))
#define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)])
/*
* Map a software interrupt queue to an interrupt priority level.
*/
static const int si_to_ipl[SI_NQUEUES] = {
IPL_SOFT, /* SI_SOFT */
IPL_SOFTCLOCK, /* SI_SOFTCLOCK */
IPL_SOFTNET, /* SI_SOFTNET */
IPL_SOFTSERIAL, /* SI_SOFTSERIAL */
};
void ixp12x0_intr_dispatch(struct irqframe *frame);
#define IXPREG(reg) *((volatile u_int32_t*) (reg))
static __inline u_int32_t
ixp12x0_irq_read(void)
{
return IXPREG(IXP12X0_IRQ_VBASE) & IXP12X0_INTR_MASK;
}
static __inline u_int32_t
ixp12x0_pci_irq_read(void)
{
return IXPREG(IXPPCI_IRQ_STATUS);
}
static void
ixp12x0_enable_uart_irq(void)
{
ixpcom_imask = 0;
if (ixpcom_sc)
bus_space_write_4(ixpcom_sc->sc_iot, ixpcom_sc->sc_ioh,
IXPCOM_CR, ixpcom_cr & ~ixpcom_imask);
}
static void
ixp12x0_disable_uart_irq(void)
{
ixpcom_imask = CR_RIE | CR_XIE;
if (ixpcom_sc)
bus_space_write_4(ixpcom_sc->sc_iot, ixpcom_sc->sc_ioh,
IXPCOM_CR, ixpcom_cr & ~ixpcom_imask);
}
static void
ixp12x0_set_intrmask(u_int32_t irqs, u_int32_t pci_irqs)
{
if (irqs & (1U << IXP12X0_INTR_UART)) {
ixp12x0_disable_uart_irq();
} else {
ixp12x0_enable_uart_irq();
}
IXPREG(IXPPCI_IRQ_ENABLE_CLEAR) = pci_irqs;
IXPREG(IXPPCI_IRQ_ENABLE_SET) = pci_intr_enabled & ~pci_irqs;
}
static void
ixp12x0_enable_irq(int irq)
{
if (irq < SYS_NIRQ) {
intr_enabled |= (1U << irq);
switch (irq) {
case IXP12X0_INTR_UART:
ixp12x0_enable_uart_irq();
break;
case IXP12X0_INTR_PCI:
/* nothing to do */
break;
default:
panic("enable_irq:bad IRQ %d", irq);
}
} else {
pci_intr_enabled |= (1U << (irq - SYS_NIRQ));
IXPREG(IXPPCI_IRQ_ENABLE_SET) = (1U << (irq - SYS_NIRQ));
}
}
static __inline void
ixp12x0_disable_irq(int irq)
{
if (irq < SYS_NIRQ) {
intr_enabled ^= ~(1U << irq);
switch (irq) {
case IXP12X0_INTR_UART:
ixp12x0_disable_uart_irq();
break;
case IXP12X0_INTR_PCI:
/* nothing to do */
break;
default:
/* nothing to do */
break;
}
} else {
pci_intr_enabled &= ~(1U << (irq - SYS_NIRQ));
IXPREG(IXPPCI_IRQ_ENABLE_CLEAR) = (1U << (irq - SYS_NIRQ));
}
}
/*
* NOTE: This routine must be called with interrupts disabled in the CPSR.
*/
static void
ixp12x0_intr_calculate_masks(void)
{
struct intrq *iq;
struct intrhand *ih;
int irq, ipl;
/* First, figure out which IPLs each IRQ has. */
for (irq = 0; irq < NIRQ; irq++) {
int levels = 0;
iq = &intrq[irq];
ixp12x0_disable_irq(irq);
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list))
levels |= (1U << ih->ih_ipl);
iq->iq_levels = levels;
}
/* Next, figure out which IRQs are used by each IPL. */
for (ipl = 0; ipl < NIPL; ipl++) {
int irqs = 0;
int pci_irqs = 0;
for (irq = 0; irq < SYS_NIRQ; irq++) {
if (intrq[irq].iq_levels & (1U << ipl))
irqs |= (1U << irq);
}
imask[ipl] = irqs;
for (irq = 0; irq < SYS_NIRQ; irq++) {
if (intrq[irq + SYS_NIRQ].iq_levels & (1U << ipl))
pci_irqs |= (1U << irq);
}
pci_imask[ipl] = pci_irqs;
}
imask[IPL_NONE] = 0;
pci_imask[IPL_NONE] = 0;
/*
* Initialize the soft interrupt masks to block themselves.
*/
imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
/*
* splsoftclock() is the only interface that users of the
* generic software interrupt facility have to block their
* soft intrs, so splsoftclock() must also block IPL_SOFT.
*/
imask[IPL_SOFTCLOCK] |= imask[IPL_SOFT];
pci_imask[IPL_SOFTCLOCK] |= pci_imask[IPL_SOFT];
/*
* splsoftnet() must also block splsoftclock(), since we don't
* want timer-driven network events to occur while we're
* processing incoming packets.
*/
imask[IPL_SOFTNET] |= imask[IPL_SOFTCLOCK];
pci_imask[IPL_SOFTNET] |= pci_imask[IPL_SOFTCLOCK];
/*
* Enforce a heirarchy that gives "slow" device (or devices with
* limited input buffer space/"real-time" requirements) a better
* chance at not dropping data.
*/
imask[IPL_BIO] |= imask[IPL_SOFTNET];
pci_imask[IPL_BIO] |= pci_imask[IPL_SOFTNET];
imask[IPL_NET] |= imask[IPL_BIO];
pci_imask[IPL_NET] |= pci_imask[IPL_BIO];
imask[IPL_SOFTSERIAL] |= imask[IPL_NET];
pci_imask[IPL_SOFTSERIAL] |= pci_imask[IPL_NET];
imask[IPL_TTY] |= imask[IPL_SOFTSERIAL];
pci_imask[IPL_TTY] |= pci_imask[IPL_SOFTSERIAL];
/*
* splvm() blocks all interrupts that use the kernel memory
* allocation facilities.
*/
imask[IPL_VM] |= imask[IPL_TTY];
pci_imask[IPL_VM] |= pci_imask[IPL_TTY];
/*
* Audio devices are not allowed to perform memory allocation
* in their interrupt routines, and they have fairly "real-time"
* requirements, so give them a high interrupt priority.
*/
imask[IPL_AUDIO] |= imask[IPL_VM];
pci_imask[IPL_AUDIO] |= pci_imask[IPL_VM];
/*
* splclock() must block anything that uses the scheduler.
*/
imask[IPL_CLOCK] |= imask[IPL_AUDIO];
pci_imask[IPL_CLOCK] |= pci_imask[IPL_AUDIO];
/*
* No separate statclock on the IXP12x0.
*/
imask[IPL_STATCLOCK] |= imask[IPL_CLOCK];
pci_imask[IPL_STATCLOCK] |= pci_imask[IPL_CLOCK];
/*
* splhigh() must block "everything".
*/
imask[IPL_HIGH] |= imask[IPL_STATCLOCK];
pci_imask[IPL_HIGH] |= pci_imask[IPL_STATCLOCK];
/*
* XXX We need serial drivers to run at the absolute highest priority
* in order to avoid overruns, so serial > high.
*/
imask[IPL_SERIAL] |= imask[IPL_HIGH];
pci_imask[IPL_SERIAL] |= pci_imask[IPL_HIGH];
/*
* Now compute which IRQs must be blocked when servicing any
* given IRQ.
*/
for (irq = 0; irq < NIRQ; irq++) {
int irqs;
int pci_irqs;
if (irq < SYS_NIRQ) {
irqs = (1U << irq);
pci_irqs = 0;
} else {
irqs = 0;
pci_irqs = (1U << (irq - SYS_NIRQ));
}
iq = &intrq[irq];
if (TAILQ_FIRST(&iq->iq_list) != NULL)
ixp12x0_enable_irq(irq);
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list)) {
irqs |= imask[ih->ih_ipl];
pci_irqs |= pci_imask[ih->ih_ipl];
}
iq->iq_mask = irqs;
iq->iq_pci_mask = pci_irqs;
}
}
static void
ixp12x0_do_pending(void)
{
static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
int new;
u_int oldirqstate;
if (__cpu_simple_lock_try(&processing) == 0)
return;
new = current_spl_level;
oldirqstate = disable_interrupts(I32_bit);
#define DO_SOFTINT(si) \
if ((ipending & ~imask[new]) & SI_TO_IRQBIT(si)) { \
ipending &= ~SI_TO_IRQBIT(si); \
current_spl_level = si_to_ipl[(si)]; \
restore_interrupts(oldirqstate); \
softintr_dispatch(si); \
oldirqstate = disable_interrupts(I32_bit); \
current_spl_level = new; \
}
DO_SOFTINT(SI_SOFTSERIAL);
DO_SOFTINT(SI_SOFTNET);
DO_SOFTINT(SI_SOFTCLOCK);
DO_SOFTINT(SI_SOFT);
__cpu_simple_unlock(&processing);
restore_interrupts(oldirqstate);
}
__inline void
splx(int new)
{
int old;
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
old = current_spl_level;
current_spl_level = new;
if (new != hardware_spl_level) {
hardware_spl_level = new;
ixp12x0_set_intrmask(imask[new], pci_imask[new]);
}
restore_interrupts(oldirqstate);
/* If there are software interrupts to process, do it. */
if ((ipending & INT_SWMASK) & ~imask[new])
ixp12x0_do_pending();
}
int
_splraise(int ipl)
{
int old;
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
old = current_spl_level;
current_spl_level = ipl;
restore_interrupts(oldirqstate);
return (old);
}
int
_spllower(int ipl)
{
int old = current_spl_level;
if (old <= ipl)
return (old);
splx(ipl);
return (old);
}
void
_setsoftintr(int si)
{
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
ipending |= SI_TO_IRQBIT(si);
restore_interrupts(oldirqstate);
/* Process unmasked pending soft interrupts. */
if ((ipending & INT_SWMASK) & ~imask[current_spl_level])
ixp12x0_do_pending();
}
/*
* ixp12x0_intr_init:
*
* Initialize the rest of the interrupt subsystem, making it
* ready to handle interrupts from devices.
*/
void
ixp12x0_intr_init(void)
{
struct intrq *iq;
int i;
intr_enabled = 0;
pci_intr_enabled = 0;
for (i = 0; i < NIRQ; i++) {
iq = &intrq[i];
TAILQ_INIT(&iq->iq_list);
sprintf(iq->iq_name, "ipl %d", i);
evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
NULL, "ixpintr", iq->iq_name);
}
current_intr_depth = 0;
current_spl_level = 0;
hardware_spl_level = 0;
ixp12x0_intr_calculate_masks();
/* Enable IRQs (don't yet use FIQs). */
enable_interrupts(I32_bit);
}
void *
ixp12x0_intr_establish(int irq, int ipl, int (*ih_func)(void *), void *arg)
{
struct intrq* iq;
struct intrhand* ih;
u_int oldirqstate;
#ifdef DEBUG
printf("ixp12x0_intr_establish(irq=%d, ipl=%d, ih_func=%08x, arg=%08x)\n",
irq, ipl, (u_int32_t) ih_func, (u_int32_t) arg);
#endif
if (irq < 0 || irq > NIRQ)
panic("ixp12x0_intr_establish: IRQ %d out of range", ipl);
if (ipl < 0 || ipl > NIPL)
panic("ixp12x0_intr_establish: IPL %d out of range", ipl);
ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
if (ih == NULL)
return (NULL);
ih->ih_func = ih_func;
ih->ih_arg = arg;
ih->ih_irq = irq;
ih->ih_ipl = ipl;
iq = &intrq[irq];
iq->iq_ist = IST_LEVEL;
oldirqstate = disable_interrupts(I32_bit);
TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
ixp12x0_intr_calculate_masks();
restore_interrupts(oldirqstate);
return (ih);
}
void
ixp12x0_intr_disestablish(void *cookie)
{
struct intrhand* ih = cookie;
struct intrq* iq = &intrq[ih->ih_ipl];
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
ixp12x0_intr_calculate_masks();
restore_interrupts(oldirqstate);
}
void
ixp12x0_intr_dispatch(struct clockframe *frame)
{
struct intrq* iq;
struct intrhand* ih;
u_int oldirqstate;
int pcpl;
u_int32_t hwpend;
u_int32_t pci_hwpend;
int irq;
u_int32_t ibit;
pcpl = current_spl_level;
hwpend = ixp12x0_irq_read();
pci_hwpend = ixp12x0_pci_irq_read();
hardware_spl_level = pcpl;
ixp12x0_set_intrmask(imask[pcpl] | hwpend,
pci_imask[pcpl] | pci_hwpend);
hwpend &= ~imask[pcpl];
pci_hwpend &= ~pci_imask[pcpl];
while (hwpend) {
irq = ffs(hwpend) - 1;
ibit = (1U << irq);
iq = &intrq[irq];
iq->iq_ev.ev_count++;
uvmexp.intrs++;
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list)) {
int ipl;
current_spl_level = ipl = ih->ih_ipl;
oldirqstate = enable_interrupts(I32_bit);
(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
restore_interrupts(oldirqstate);
hwpend &= ~ibit;
}
}
while (pci_hwpend) {
irq = ffs(pci_hwpend) - 1;
ibit = (1U << irq);
iq = &intrq[irq + SYS_NIRQ];
iq->iq_ev.ev_count++;
uvmexp.intrs++;
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list)) {
int ipl;
current_spl_level = ipl = ih->ih_ipl;
oldirqstate = enable_interrupts(I32_bit);
(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
restore_interrupts(oldirqstate);
pci_hwpend &= ~ibit;
}
}
current_spl_level = pcpl;
hardware_spl_level = pcpl;
ixp12x0_set_intrmask(imask[pcpl], pci_imask[pcpl]);
/* Check for pendings soft intrs. */
if ((ipending & INT_SWMASK) & ~imask[pcpl]) {
oldirqstate = enable_interrupts(I32_bit);
ixp12x0_do_pending();
restore_interrupts(oldirqstate);
}
}