NetBSD/usr.sbin/acpitools/aml/aml_memman.c

481 lines
13 KiB
C

/* $NetBSD: aml_memman.c,v 1.3 2009/01/18 09:46:59 lukem Exp $ */
/*-
* Copyright (c) 1999, 2000 Mitsuru IWASAKI <iwasaki@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Id: aml_memman.c,v 1.10 2000/08/09 14:47:43 iwasaki Exp
* $FreeBSD: src/usr.sbin/acpi/amldb/aml/aml_memman.c,v 1.2 2000/11/09 06:24:45 iwasaki Exp $
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: aml_memman.c,v 1.3 2009/01/18 09:46:59 lukem Exp $");
/*
* Generic Memory Management
*/
#include <sys/param.h>
#include <aml/aml_memman.h>
#ifndef _KERNEL
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#else /* _KERNEL */
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/malloc.h>
MALLOC_DEFINE(M_MEMMAN, "memman", "Generic and Simple Memory Management");
#endif /* !_KERNEL */
unsigned int memid_unkown = 255;
static int manage_block(struct memman *memman, unsigned int id,
void *block, unsigned static_mem,
unsigned entries);
static int blockman_init(struct memman *memman, unsigned int id);
static void memman_flexsize_add_histogram(struct memman *memman,
size_t size,
int tolerance);
static int memman_comp_histogram_size(const void *a,
const void *b);
static void memman_sort_histogram_by_size(struct memman *memman);
static unsigned int memman_guess_memid(struct memman *memman, void *chunk);
static void memman_statistics_fixedsize(struct memman *memman);
static void memman_statistics_flexsize(struct memman *memman);
static int
manage_block(struct memman *memman, unsigned int id, void *block,
unsigned static_mem, unsigned entries)
{
unsigned int i;
size_t alloc_size;
void *tmp, *realblock;
struct memman_blockman *bmp;
struct memman_block *memblock;
struct memman_node *memnodes;
bmp = &memman->blockman[id];
alloc_size = MEMMAN_BLOCKNODE_SIZE(entries);
if (static_mem) {
tmp = (void *)block;
realblock = (char *)block + alloc_size;
} else {
tmp = MEMMAN_SYSMALLOC(alloc_size);
if (!tmp) {
return (-1);
}
realblock = block;
memman->allocated_mem += alloc_size;
memman->salloc_called++;
}
memblock = (struct memman_block *)tmp;
memnodes = (struct memman_node *)((char *)tmp + sizeof(struct memman_block));
memblock->block = realblock;
memblock->static_mem = static_mem;
memblock->allocated = entries;
memblock->available = entries;
if (!static_mem) {
alloc_size += roundup(bmp->size * entries, ROUNDUP_UNIT);
}
memblock->allocated_mem = alloc_size;
LIST_INSERT_HEAD(&bmp->block_list, memblock, links);
for (i = 0; i < entries; ++i) {
memnodes[i].node = ((char *)realblock + (i * (bmp->size)));
memnodes[i].memblock = memblock;
LIST_INSERT_HEAD(&bmp->free_node_list, &memnodes[i], links);
}
bmp->available = entries;
return (0);
}
static int
blockman_init(struct memman *memman, unsigned int id)
{
int status;
struct memman_blockman *bmp;
bmp = &memman->blockman[id];
bmp->initialized = 1;
LIST_INIT(&bmp->block_list);
LIST_INIT(&bmp->free_node_list);
LIST_INIT(&bmp->occupied_node_list);
status = manage_block(memman, id, bmp->initial_block,
1, MEMMAN_INITIAL_SIZE);
return (status);
}
void *
memman_alloc(struct memman *memman, unsigned int id)
{
size_t alloc_size;
void *chunk, *block;
struct memman_blockman *bmp;
struct memman_node *memnode;
if (memman->max_memid <= id) {
printf("memman_alloc: invalid memory type id\n");
return (NULL);
}
bmp = &memman->blockman[id];
if (!bmp->initialized) {
if (blockman_init(memman, id)) {
goto malloc_fail;
}
}
memman->alloc_called++;
if (bmp->available == 0) {
alloc_size = roundup(bmp->size * MEMMAN_INCR_SIZE,
ROUNDUP_UNIT);
block = MEMMAN_SYSMALLOC(alloc_size);
if (!block) {
goto malloc_fail;
}
memman->required_mem += bmp->size * MEMMAN_INCR_SIZE;
memman->allocated_mem += alloc_size;
memman->salloc_called++;
if (manage_block(memman, id, block, 0, MEMMAN_INCR_SIZE)) {
goto malloc_fail;
}
}
memnode = LIST_FIRST(&bmp->free_node_list);
LIST_REMOVE(memnode, links);
chunk = memnode->node;
LIST_INSERT_HEAD(&bmp->occupied_node_list, memnode, links);
memnode->memblock->available--;
bmp->available--;
return (chunk);
malloc_fail:
printf("memman_alloc: could not allocate memory\n");
return (NULL);
}
static void
memman_flexsize_add_histogram(struct memman *memman, size_t size,
int tolerance)
{
unsigned int i;
int gap;
if (size == 0) {
return;
}
for (i = 0; i < memman->flex_mem_histogram_ptr; i++) {
gap = memman->flex_mem_histogram[i].mem_size - size;
if (gap >= (tolerance * -1) && gap <= tolerance) {
memman->flex_mem_histogram[i].count++;
if (memman->flex_mem_histogram[i].mem_size < size) {
memman->flex_mem_histogram[i].mem_size = size;
}
return;
}
}
if (memman->flex_mem_histogram_ptr == MEMMAN_HISTOGRAM_SIZE) {
memman_flexsize_add_histogram(memman, size, tolerance + 1);
return;
}
i = memman->flex_mem_histogram_ptr;
memman->flex_mem_histogram[i].mem_size = size;
memman->flex_mem_histogram[i].count = 1;
memman->flex_mem_histogram_ptr++;
}
static int
memman_comp_histogram_size(const void *a, const void *b)
{
int delta;
delta = ((const struct memman_histogram *)a)->mem_size -
((const struct memman_histogram *)b)->mem_size;
return (delta);
}
static void
memman_sort_histogram_by_size(struct memman *memman)
{
qsort(memman->flex_mem_histogram, memman->flex_mem_histogram_ptr,
sizeof(struct memman_histogram), memman_comp_histogram_size);
}
void *
memman_alloc_flexsize(struct memman *memman, size_t size)
{
void *mem;
struct memman_flexmem_info *info;
if (size == 0) {
return (NULL);
}
if ((mem = MEMMAN_SYSMALLOC(size)) != NULL) { /* XXX */
info = MEMMAN_SYSMALLOC(sizeof(struct memman_flexmem_info));
if (info) {
if (!memman->flex_mem_initialized) {
LIST_INIT(&memman->flexmem_info_list);
bzero(memman->flex_mem_histogram,
sizeof(struct memman_histogram));
memman->flex_mem_initialized = 1;
}
info->addr = mem;
info->mem_size = size;
LIST_INSERT_HEAD(&memman->flexmem_info_list, info, links);
}
memman->flex_alloc_called++;
memman->flex_salloc_called++;
memman->flex_required_mem += size;
memman->flex_allocated_mem += size;
if (memman->flex_mem_size_min == 0 ||
memman->flex_mem_size_min > size) {
memman->flex_mem_size_min = size;
}
if (memman->flex_mem_size_max < size) {
memman->flex_mem_size_max = size;
}
if (memman->flex_peak_mem_usage <
(memman->flex_allocated_mem - memman->flex_reclaimed_mem)) {
memman->flex_peak_mem_usage =
(memman->flex_allocated_mem - memman->flex_reclaimed_mem);
}
memman_flexsize_add_histogram(memman, size,
memman->flex_mem_histogram_initial_tolerance);
}
return (mem);
}
static unsigned int
memman_guess_memid(struct memman *memman, void *chunk)
{
unsigned int id;
struct memman_blockman *bmp;
struct memman_node *memnode;
for (id = 0; id < memman->max_memid; id++) {
bmp = &memman->blockman[id];
if (!bmp->initialized) {
if (blockman_init(memman, id)) {
printf("memman_free: could not initialized\n");
}
}
LIST_FOREACH(memnode, &bmp->occupied_node_list, links) {
if (memnode->node == chunk) {
return (id); /* got it! */
}
}
}
return (memid_unkown); /* gave up */
}
void
memman_free(struct memman *memman, unsigned int memid, void *chunk)
{
unsigned int id;
unsigned found;
void *block;
struct memman_blockman *bmp;
struct memman_block *memblock;
struct memman_node *memnode;
id = memid;
if (memid == memid_unkown) {
id = memman_guess_memid(memman, chunk);
}
if (memman->max_memid <= id) {
printf("memman_free: invalid memory type id\n");
MEMMAN_SYSABORT();
return;
}
bmp = &memman->blockman[id];
if (!bmp->initialized) {
if (blockman_init(memman, id)) {
printf("memman_free: could not initialized\n");
}
}
found = 0;
LIST_FOREACH(memnode, &bmp->occupied_node_list, links) {
if (memnode->node == chunk) {
found = 1;
break;
}
}
if (!found) {
printf("memman_free: invalid address\n");
return;
}
memman->free_called++;
LIST_REMOVE(memnode, links);
memblock = memnode->memblock;
memblock->available++;
LIST_INSERT_HEAD(&bmp->free_node_list, memnode, links);
bmp->available++;
if (!memblock->static_mem &&
memblock->available == memblock->allocated) {
LIST_FOREACH(memnode, &bmp->free_node_list, links) {
if (memnode->memblock != memblock) {
continue;
}
LIST_REMOVE(memnode, links);
bmp->available--;
}
block = memblock->block;
MEMMAN_SYSFREE(block);
memman->sfree_called++;
LIST_REMOVE(memblock, links);
memman->sfree_called++;
memman->reclaimed_mem += memblock->allocated_mem;
MEMMAN_SYSFREE(memblock);
}
}
void
memman_free_flexsize(struct memman *memman, void *chunk)
{
struct memman_flexmem_info *info;
LIST_FOREACH(info, &memman->flexmem_info_list, links) {
if (info->addr == chunk) {
memman->flex_reclaimed_mem += info->mem_size;
LIST_REMOVE(info, links);
MEMMAN_SYSFREE(info);
break;
}
}
/* XXX */
memman->flex_free_called++;
memman->flex_sfree_called++;
MEMMAN_SYSFREE(chunk);
}
void
memman_freeall(struct memman *memman)
{
unsigned int id;
void *chunk;
struct memman_blockman *bmp;
struct memman_node *memnode;
struct memman_block *memblock;
struct memman_flexmem_info *info;
for (id = 0; id < memman->max_memid; id++) {
bmp = &memman->blockman[id];
while ((memnode = LIST_FIRST(&bmp->occupied_node_list))) {
chunk = memnode->node;
printf("memman_freeall: fixed size (id = %u)\n", id);
memman_free(memman, id, chunk);
}
while ((memblock = LIST_FIRST(&bmp->block_list))) {
LIST_REMOVE(memblock, links);
if (!memblock->static_mem) {
memman->sfree_called++;
memman->reclaimed_mem += memblock->allocated_mem;
MEMMAN_SYSFREE(memblock);
}
}
bmp->initialized = 0;
}
LIST_FOREACH(info, &memman->flexmem_info_list, links) {
printf("memman_freeall: flex size (size = %zd, addr = %p)\n",
info->mem_size, info->addr);
memman_free_flexsize(memman, info->addr);
}
}
static void
memman_statistics_fixedsize(struct memman *memman)
{
printf(" fixed size memory blocks\n");
printf(" alloc(): %d times\n", memman->alloc_called);
printf(" system malloc(): %d times\n", memman->salloc_called);
printf(" free(): %d times\n", memman->free_called);
printf(" system free(): %d times\n", memman->sfree_called);
printf(" required memory: %zd bytes\n", memman->required_mem);
printf(" allocated memory: %zd bytes\n", memman->allocated_mem);
printf(" reclaimed memory: %zd bytes\n", memman->reclaimed_mem);
}
static void
memman_statistics_flexsize(struct memman *memman)
{
unsigned int i;
printf(" flexible size memory blocks\n");
printf(" alloc(): %d times\n", memman->flex_alloc_called);
printf(" system malloc(): %d times\n", memman->flex_salloc_called);
printf(" free(): %d times\n", memman->flex_free_called);
printf(" system free(): %d times\n", memman->flex_sfree_called);
printf(" required memory: %zd bytes\n", memman->flex_required_mem);
printf(" allocated memory: %zd bytes\n", memman->flex_allocated_mem);
printf(" reclaimed memory: %zd bytes\n", memman->flex_reclaimed_mem);
printf(" peak memory usage: %zd bytes\n", memman->flex_peak_mem_usage);
printf(" min memory size: %zd bytes\n", memman->flex_mem_size_min);
printf(" max memory size: %zd bytes\n", memman->flex_mem_size_max);
printf(" avg memory size: %zd bytes\n",
(memman->flex_alloc_called) ?
memman->flex_allocated_mem / memman->flex_alloc_called : 0);
printf(" memory size histogram (%d entries):\n",
memman->flex_mem_histogram_ptr);
printf(" size count\n");
memman_sort_histogram_by_size(memman);
for (i = 0; i < memman->flex_mem_histogram_ptr; i++) {
printf(" %zu %d\n",
memman->flex_mem_histogram[i].mem_size,
memman->flex_mem_histogram[i].count);
}
}
void
memman_statistics(struct memman *memman)
{
printf("memman: reporting statistics\n");
memman_statistics_fixedsize(memman);
memman_statistics_flexsize(memman);
}
size_t
memman_memid2size(struct memman *memman, unsigned int id)
{
if (memman->max_memid <= id) {
printf("memman_alloc: invalid memory type id\n");
return (0);
}
return (memman->blockman[id].size);
}