NetBSD/sys/arch/hp300/dev/apci.c

994 lines
22 KiB
C

/* $NetBSD: apci.c,v 1.12 2001/06/12 15:17:18 wiz Exp $ */
/*-
* Copyright (c) 1996, 1997, 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997 Michael Smith. All rights reserved.
* Copyright (c) 1982, 1986, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)dca.c 8.2 (Berkeley) 1/12/94
*/
/*
* Device driver for the APCI 8250-like UARTs found on the Apollo
* Utility Chip on HP 9000/400-series workstations.
*
* There are 4 APCI UARTs on the Frodo ASIC. The first one
* is used to communicate with the Domain keyboard. The second
* one is the serial console port when the firmware is in Domain/OS
* mode, and is mapped to select code 9 by the HP-UX firmware (except
* on 425e models).
*
* We don't bother attaching a tty to the first UART; it lacks modem/flow
* control, and is directly connected to the keyboard connector anyhow.
*/
/*
* XXX This driver is very similar to the dca driver, and much
* XXX more code could be shared. (Currently, no code is shared.)
* XXX FIXME!
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/hp300spu.h>
#include <dev/cons.h>
#include <hp300/dev/dioreg.h> /* to check for dca at 9 */
#include <hp300/dev/diovar.h>
#include <hp300/dev/diodevs.h>
#include <hp300/dev/frodoreg.h>
#include <hp300/dev/frodovar.h>
#include <hp300/dev/apcireg.h>
#include <hp300/dev/dcareg.h> /* register bit definitions */
struct apci_softc {
struct device sc_dev; /* generic device glue */
struct apciregs *sc_apci; /* device registers */
struct tty *sc_tty; /* tty glue */
struct callout sc_diag_ch;
int sc_ferr,
sc_perr,
sc_oflow,
sc_toterr; /* stats */
int sc_flags;
};
/* sc_flags */
#define APCI_HASFIFO 0x01 /* unit has a fifo */
#define APCI_ISCONSOLE 0x02 /* unit is console */
#define APCI_SOFTCAR 0x04 /* soft carrier */
int apcimatch __P((struct device *, struct cfdata *, void *));
void apciattach __P((struct device *, struct device *, void *));
struct cfattach apci_ca = {
sizeof(struct apci_softc), apcimatch, apciattach
};
extern struct cfdriver apci_cd;
int apciintr __P((void *));
void apcieint __P((struct apci_softc *, int));
void apcimint __P((struct apci_softc *, u_char));
int apciparam __P((struct tty *, struct termios *));
void apcistart __P((struct tty *));
int apcimctl __P((struct apci_softc *, int, int));
void apciinit __P((struct apciregs *, int));
void apcitimeout __P((void *));
cdev_decl(apci);
#define APCIUNIT(x) (minor(x) & 0x7ffff)
#define APCIDIALOUT(x) (minor(x) & 0x80000)
int apcidefaultrate = TTYDEF_SPEED;
struct speedtab apcispeedtab[] = {
{ 0, 0 },
{ 50, APCIBRD(50) },
{ 75, APCIBRD(75) },
{ 110, APCIBRD(110) },
{ 134, APCIBRD(134) },
{ 150, APCIBRD(150) },
{ 200, APCIBRD(200) },
{ 300, APCIBRD(300) },
{ 600, APCIBRD(600) },
{ 1200, APCIBRD(1200) },
{ 1800, APCIBRD(1800) },
{ 2400, APCIBRD(2400) },
{ 4800, APCIBRD(4800) },
{ 9600, APCIBRD(9600) },
{ 19200, APCIBRD(19200) },
{ 38400, APCIBRD(38400) },
{ -1, -1 },
};
/*
* Console support.
*/
struct apciregs *apci_cn = NULL; /* console hardware */
int apciconsinit; /* has been initialized */
int apcimajor; /* our major number */
void apcicnprobe __P((struct consdev *));
void apcicninit __P((struct consdev *));
int apcicngetc __P((dev_t));
void apcicnputc __P((dev_t, int));
int
apcimatch(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct frodo_attach_args *fa = aux;
/* Looking for an apci? */
if (strcmp(fa->fa_name, apci_cd.cd_name) != 0)
return (0);
/* Are we checking a valid APCI offset? */
switch (fa->fa_offset) {
case FRODO_APCI_OFFSET(1):
case FRODO_APCI_OFFSET(2):
case FRODO_APCI_OFFSET(3):
/* Yup, we exist! */
return (1);
}
return (0);
}
void
apciattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct apci_softc *sc = (struct apci_softc *)self;
struct apciregs *apci;
struct frodo_attach_args *fa = aux;
sc->sc_apci = apci =
(struct apciregs *)IIOV(FRODO_BASE + fa->fa_offset);
sc->sc_flags = 0;
callout_init(&sc->sc_diag_ch);
/* Are we the console? */
if (apci == apci_cn) {
sc->sc_flags |= APCI_ISCONSOLE;
delay(100000);
/*
* We didn't know which unit this would be during
* the console probe, so we have to fixup cn_dev here.
*/
cn_tab->cn_dev = makedev(apcimajor, self->dv_unit);
}
/* Look for a FIFO. */
apci->ap_fifo = FIFO_ENABLE|FIFO_RCV_RST|FIFO_XMT_RST|FIFO_TRIGGER_14;
delay(100);
if ((apci->ap_iir & IIR_FIFO_MASK) == IIR_FIFO_MASK)
sc->sc_flags |= APCI_HASFIFO;
/* Establish out interrupt handler. */
frodo_intr_establish(parent, apciintr, sc, fa->fa_line,
(sc->sc_flags & APCI_HASFIFO) ? IPL_TTY : IPL_TTYNOBUF);
/* Set soft carrier if requested by operator. */
if (self->dv_cfdata->cf_flags)
sc->sc_flags |= APCI_SOFTCAR;
/*
* Need to reset baud rate, etc. of next print, so reset apciconsinit.
* Also make sure console is always "hardwired".
*/
if (sc->sc_flags & APCI_ISCONSOLE) {
apciconsinit = 0;
sc->sc_flags |= APCI_SOFTCAR;
printf(": console, ");
} else
printf(": ");
if (sc->sc_flags & APCI_HASFIFO)
printf("working fifo\n");
else
printf("no fifo\n");
}
/* ARGSUSED */
int
apciopen(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
int unit = APCIUNIT(dev);
struct apci_softc *sc;
struct tty *tp;
struct apciregs *apci;
u_char code;
int s, error = 0;
if (unit >= apci_cd.cd_ndevs ||
(sc = apci_cd.cd_devs[unit]) == NULL)
return (ENXIO);
apci = sc->sc_apci;
if (sc->sc_tty == NULL) {
tp = sc->sc_tty = ttymalloc();
tty_attach(tp);
} else
tp = sc->sc_tty;
tp->t_oproc = apcistart;
tp->t_param = apciparam;
tp->t_dev = dev;
if ((tp->t_state & TS_ISOPEN) &&
(tp->t_state & TS_XCLUDE) &&
p->p_ucred->cr_uid != 0)
return (EBUSY);
s = spltty();
if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
/*
* Sanity clause: reset the chip on first open.
* The chip might be left in an inconsistent state
* if it is read inadventently.
*/
apciinit(apci, apcidefaultrate);
ttychars(tp);
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_cflag = TTYDEF_CFLAG;
tp->t_lflag = TTYDEF_LFLAG;
tp->t_ispeed = tp->t_ospeed = apcidefaultrate;
apciparam(tp, &tp->t_termios);
ttsetwater(tp);
/* Set the FIFO threshold based on the receive speed. */
if (sc->sc_flags & APCI_HASFIFO)
apci->ap_fifo = FIFO_ENABLE | FIFO_RCV_RST |
FIFO_XMT_RST |
(tp->t_ispeed <= 1200 ? FIFO_TRIGGER_1 :
FIFO_TRIGGER_14);
/* Flush any pending I/O. */
while ((apci->ap_iir & IIR_IMASK) == IIR_RXRDY)
code = apci->ap_data;
/* Set the modem control state. */
(void) apcimctl(sc, MCR_DTR | MCR_RTS, DMSET);
/* Set soft-carrier if so configured. */
if ((sc->sc_flags & APCI_SOFTCAR) ||
(apcimctl(sc, 0, DMGET) & MSR_DCD))
tp->t_state |= TS_CARR_ON;
}
splx(s);
error = ttyopen(tp, APCIDIALOUT(dev), (flag & O_NONBLOCK));
if (error)
goto bad;
error = (*tp->t_linesw->l_open)(dev, tp);
if (error)
goto bad;
/* clear errors, start timeout */
sc->sc_ferr = sc->sc_perr = sc->sc_oflow = sc->sc_toterr = 0;
callout_reset(&sc->sc_diag_ch, hz, apcitimeout, sc);
bad:
return (error);
}
/* ARGSUSED */
int
apciclose(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
struct apci_softc *sc;
struct tty *tp;
struct apciregs *apci;
int unit = APCIUNIT(dev);
int s;
sc = apci_cd.cd_devs[unit];
apci = sc->sc_apci;
tp = sc->sc_tty;
(*tp->t_linesw->l_close)(tp, flag);
s = spltty();
apci->ap_cfcr &= ~CFCR_SBREAK;
apci->ap_ier = 0;
if (tp->t_cflag & HUPCL && (sc->sc_flags & APCI_SOFTCAR) == 0) {
/* XXX perhaps only clear DTR */
(void) apcimctl(sc, 0, DMSET);
}
tp->t_state &= ~(TS_BUSY | TS_FLUSH);
splx(s);
ttyclose(tp);
#if 0
tty_detach(tp);
ttyfree(tp);
sc->sc_tty = NULL;
#endif
return (0);
}
int
apciread(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
struct apci_softc *sc = apci_cd.cd_devs[APCIUNIT(dev)];
struct tty *tp = sc->sc_tty;
return ((*tp->t_linesw->l_read)(tp, uio, flag));
}
int
apciwrite(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
struct apci_softc *sc = apci_cd.cd_devs[APCIUNIT(dev)];
struct tty *tp = sc->sc_tty;
return ((*tp->t_linesw->l_write)(tp, uio, flag));
}
int
apcipoll(dev, events, p)
dev_t dev;
int events;
struct proc *p;
{
struct apci_softc *sc = apci_cd.cd_devs[APCIUNIT(dev)];
struct tty *tp = sc->sc_tty;
return ((*tp->t_linesw->l_poll)(tp, events, p));
}
struct tty *
apcitty(dev)
dev_t dev;
{
struct apci_softc *sc = apci_cd.cd_devs[APCIUNIT(dev)];
return (sc->sc_tty);
}
int
apciintr(arg)
void *arg;
{
struct apci_softc *sc = arg;
struct apciregs *apci = sc->sc_apci;
struct tty *tp = sc->sc_tty;
u_char iir, lsr, c;
int iflowdone = 0, claimed = 0;
#define RCVBYTE() \
c = apci->ap_data; \
if ((tp->t_state & TS_ISOPEN) != 0) \
(*tp->t_linesw->l_rint)(c, tp)
for (;;) {
iir = apci->ap_iir; /* get UART status */
switch (iir & IIR_IMASK) {
case IIR_RLS:
apcieint(sc, apci->ap_lsr);
break;
case IIR_RXRDY:
case IIR_RXTOUT:
RCVBYTE();
if (sc->sc_flags & APCI_HASFIFO) {
while ((lsr = apci->ap_lsr) & LSR_RCV_MASK) {
if (lsr == LSR_RXRDY) {
RCVBYTE();
} else
apcieint(sc, lsr);
}
}
if (iflowdone == 0 && (tp->t_cflag & CRTS_IFLOW) &&
tp->t_rawq.c_cc > (TTYHOG / 2)) {
apci->ap_mcr &= ~MCR_RTS;
iflowdone = 1;
}
break;
case IIR_TXRDY:
tp->t_state &=~ (TS_BUSY|TS_FLUSH);
if (tp->t_linesw != linesw[0])
(*tp->t_linesw->l_start)(tp);
else
apcistart(tp);
break;
default:
if (iir & IIR_NOPEND)
return (claimed);
log(LOG_WARNING, "%s: weird interrupt: 0x%x\n",
sc->sc_dev.dv_xname, iir);
/* fall through */
case IIR_MLSC:
apcimint(sc, apci->ap_msr);
break;
}
claimed = 1;
}
}
void
apcieint(sc, stat)
struct apci_softc *sc;
int stat;
{
struct tty *tp = sc->sc_tty;
struct apciregs *apci = sc->sc_apci;
int c;
c = apci->ap_data;
if ((tp->t_state & TS_ISOPEN) == 0)
return;
if (stat & (LSR_BI | LSR_FE)) {
c |= TTY_FE;
sc->sc_ferr++;
} else if (stat & LSR_PE) {
c |= TTY_PE;
sc->sc_perr++;
} else if (stat & LSR_OE)
sc->sc_oflow++;
(*tp->t_linesw->l_rint)(c, tp);
}
void
apcimint(sc, stat)
struct apci_softc *sc;
u_char stat;
{
struct tty *tp = sc->sc_tty;
struct apciregs *apci = sc->sc_apci;
if ((stat & MSR_DDCD) &&
(sc->sc_flags & APCI_SOFTCAR) == 0) {
if (stat & MSR_DCD)
(void)(*tp->t_linesw->l_modem)(tp, 1);
else if ((*tp->t_linesw->l_modem)(tp, 0) == 0)
apci->ap_mcr &= ~(MCR_DTR | MCR_RTS);
}
/*
* CTS change.
* If doing HW output flow control, start/stop output as appropriate.
*/
if ((stat & MSR_DCTS) &&
(tp->t_state & TS_ISOPEN) && (tp->t_cflag & CCTS_OFLOW)) {
if (stat & MSR_CTS) {
tp->t_state &=~ TS_TTSTOP;
apcistart(tp);
} else
tp->t_state |= TS_TTSTOP;
}
}
int
apciioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
struct apci_softc *sc = apci_cd.cd_devs[APCIUNIT(dev)];
struct tty *tp = sc->sc_tty;
struct apciregs *apci = sc->sc_apci;
int error;
error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
error = ttioctl(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
switch (cmd) {
case TIOCSBRK:
apci->ap_cfcr |= CFCR_SBREAK;
break;
case TIOCCBRK:
apci->ap_cfcr &= ~CFCR_SBREAK;
break;
case TIOCSDTR:
(void) apcimctl(sc, MCR_DTR | MCR_RTS, DMBIS);
break;
case TIOCCDTR:
(void) apcimctl(sc, MCR_DTR | MCR_RTS, DMBIC);
break;
case TIOCMSET:
(void) apcimctl(sc, *(int *)data, DMSET);
break;
case TIOCMBIS:
(void) apcimctl(sc, *(int *)data, DMBIS);
break;
case TIOCMBIC:
(void) apcimctl(sc, *(int *)data, DMBIC);
break;
case TIOCMGET:
*(int *)data = apcimctl(sc, 0, DMGET);
break;
case TIOCGFLAGS: {
int bits = 0;
if (sc->sc_flags & APCI_SOFTCAR)
bits |= TIOCFLAG_SOFTCAR;
if (tp->t_cflag & CLOCAL)
bits |= TIOCFLAG_CLOCAL;
*(int *)data = bits;
break;
}
case TIOCSFLAGS: {
int userbits;
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return (EPERM);
userbits = *(int *)data;
if ((userbits & TIOCFLAG_SOFTCAR) ||
(sc->sc_flags & APCI_ISCONSOLE))
sc->sc_flags |= APCI_SOFTCAR;
if (userbits & TIOCFLAG_CLOCAL)
tp->t_cflag |= CLOCAL;
break;
}
default:
return (ENOTTY);
}
return (0);
}
int
apciparam(tp, t)
struct tty *tp;
struct termios *t;
{
struct apci_softc *sc = apci_cd.cd_devs[APCIUNIT(tp->t_dev)];
struct apciregs *apci = sc->sc_apci;
int cfcr, cflag = t->c_cflag;
int ospeed = ttspeedtab(t->c_ospeed, apcispeedtab);
int s;
/* check requested parameters */
if (ospeed < 0 || (t->c_ispeed && t->c_ispeed != t->c_ospeed))
return (EINVAL);
switch (cflag & CSIZE) {
case CS5:
cfcr = CFCR_5BITS;
break;
case CS6:
cfcr = CFCR_6BITS;
break;
case CS7:
cfcr = CFCR_7BITS;
break;
case CS8:
default: /* XXX gcc whines about cfcr being uninitialized... */
cfcr = CFCR_8BITS;
break;
}
if (cflag & PARENB) {
cfcr |= CFCR_PENAB;
if ((cflag & PARODD) == 0)
cfcr |= CFCR_PEVEN;
}
if (cflag & CSTOPB)
cfcr |= CFCR_STOPB;
s = spltty();
if (ospeed == 0)
(void) apcimctl(sc, 0, DMSET); /* hang up line */
/*
* Set the FIFO threshold based on the receive speed, if we
* are changing it.
*/
if (tp->t_ispeed != t->c_ispeed) {
if (sc->sc_flags & APCI_HASFIFO)
apci->ap_fifo = FIFO_ENABLE |
(t->c_ispeed <= 1200 ? FIFO_TRIGGER_1 :
FIFO_TRIGGER_14);
}
if (ospeed != 0) {
apci->ap_cfcr |= CFCR_DLAB;
apci->ap_data = ospeed & 0xff;
apci->ap_ier = (ospeed >> 8) & 0xff;
apci->ap_cfcr = cfcr;
} else
apci->ap_cfcr = cfcr;
/* and copy to tty */
tp->t_ispeed = t->c_ispeed;
tp->t_ospeed = t->c_ospeed;
tp->t_cflag = cflag;
apci->ap_ier = IER_ERXRDY | IER_ETXRDY | IER_ERLS | IER_EMSC;
apci->ap_mcr |= MCR_IEN;
splx(s);
return (0);
}
void
apcistart(tp)
struct tty *tp;
{
struct apci_softc *sc = apci_cd.cd_devs[APCIUNIT(tp->t_dev)];
struct apciregs *apci = sc->sc_apci;
int s, c;
s = spltty();
if (tp->t_state & (TS_TIMEOUT|TS_TTSTOP))
goto out;
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (tp->t_state & TS_ASLEEP) {
tp->t_state &= ~TS_ASLEEP;
wakeup((caddr_t)&tp->t_outq);
}
if (tp->t_outq.c_cc == 0)
goto out;
selwakeup(&tp->t_wsel);
}
if (apci->ap_lsr & LSR_TXRDY) {
tp->t_state |= TS_BUSY;
if (sc->sc_flags & APCI_HASFIFO) {
for (c = 0; c < 16 && tp->t_outq.c_cc; ++c)
apci->ap_data = getc(&tp->t_outq);
} else
apci->ap_data = getc(&tp->t_outq);
}
out:
splx(s);
}
/*
* Stop output on a line.
*/
/* ARGSUSED */
void
apcistop(tp, flag)
struct tty *tp;
int flag;
{
int s;
s = spltty();
if (tp->t_state & TS_BUSY)
if ((tp->t_state & TS_TTSTOP) == 0)
tp->t_state |= TS_FLUSH;
splx(s);
}
int
apcimctl(sc, bits, how)
struct apci_softc *sc;
int bits, how;
{
struct apciregs *apci = sc->sc_apci;
int s;
/*
* Always make sure MCR_IEN is set (unless setting to 0)
*/
if (how == DMBIS || (how == DMSET && bits))
bits |= MCR_IEN;
else if (how == DMBIC)
bits &= ~MCR_IEN;
s = spltty();
switch (how) {
case DMSET:
apci->ap_mcr = bits;
break;
case DMBIS:
apci->ap_mcr |= bits;
break;
case DMBIC:
apci->ap_mcr &= ~bits;
break;
case DMGET:
bits = apci->ap_msr;
break;
}
splx(s);
return (bits);
}
void
apciinit(apci, rate)
struct apciregs *apci;
int rate;
{
int s;
short stat;
s = splhigh();
rate = ttspeedtab(rate, apcispeedtab);
apci->ap_cfcr = CFCR_DLAB;
apci->ap_data = rate & 0xff;
apci->ap_ier = (rate >> 8) & 0xff;
apci->ap_cfcr = CFCR_8BITS;
apci->ap_ier = IER_ERXRDY | IER_ETXRDY;
apci->ap_fifo =
FIFO_ENABLE | FIFO_RCV_RST | FIFO_XMT_RST | FIFO_TRIGGER_1;
apci->ap_mcr = MCR_DTR | MCR_RTS;
delay(100);
stat = apci->ap_iir;
splx(s);
}
void
apcitimeout(arg)
void *arg;
{
struct apci_softc *sc = arg;
int ferr, perr, oflow, s;
if (sc->sc_tty == NULL ||
(sc->sc_tty->t_state & TS_ISOPEN) == 0)
return;
/* Log any errors. */
if (sc->sc_ferr || sc->sc_perr || sc->sc_oflow) {
s = spltty(); /* XXX necessary? */
ferr = sc->sc_ferr;
perr = sc->sc_perr;
oflow = sc->sc_oflow;
sc->sc_ferr = sc->sc_perr = sc->sc_oflow = 0;
splx(s);
sc->sc_toterr += ferr + perr + oflow;
log(LOG_WARNING,
"%s: %d frame, %d parity, %d overflow, %d total errors\n",
sc->sc_dev.dv_xname, ferr, perr, oflow, sc->sc_toterr);
}
callout_reset(&sc->sc_diag_ch, hz, apcitimeout, sc);
}
/*
* The following routines are required for the APCI to act as the console.
*/
void
apcicnprobe(cp)
struct consdev *cp;
{
/* locate the major number */
for (apcimajor = 0; apcimajor < nchrdev; apcimajor++)
if (cdevsw[apcimajor].d_open == apciopen)
break;
/* initialize the required fields */
cp->cn_dev = makedev(apcimajor, 0); /* XXX */
cp->cn_pri = CN_DEAD;
/* Abort early if console is already forced. */
if (conforced)
return;
/*
* The APCI can only be a console on a 425e; on other 4xx
* models, the "first" serial port is mapped to the DCA
* at select code 9. See frodo.c for the autoconfiguration
* version of this check.
*/
if (machineid != HP_425 || mmuid != MMUID_425_E)
return;
#ifdef APCI_FORCE_CONSOLE
cp->cn_pri = CN_REMOTE;
conforced = 1;
conscode = -2; /* XXX */
#else
cp->cn_pri = CN_NORMAL;
#endif
/*
* If our priority is higher than the currently-remembered
* console, install ourselves.
*/
if (((cn_tab == NULL) || (cp->cn_pri > cn_tab->cn_pri)) || conforced)
cn_tab = cp;
}
/* ARGSUSED */
void
apcicninit(cp)
struct consdev *cp;
{
apci_cn = (struct apciregs *)IIOV(FRODO_BASE + FRODO_APCI_OFFSET(1));
apciinit(apci_cn, apcidefaultrate);
apciconsinit = 1;
}
/* ARGSUSED */
int
apcicngetc(dev)
dev_t dev;
{
u_char stat;
int c, s;
s = splhigh();
while (((stat = apci_cn->ap_lsr) & LSR_RXRDY) == 0)
;
c = apci_cn->ap_data;
stat = apci_cn->ap_iir;
splx(s);
return (c);
}
/* ARGSUSED */
void
apcicnputc(dev, c)
dev_t dev;
int c;
{
int timo;
u_char stat;
int s;
s = splhigh();
if (apciconsinit == 0) {
apciinit(apci_cn, apcidefaultrate);
apciconsinit = 1;
}
/* wait for any pending transmission to finish */
timo = 50000;
while (((stat = apci_cn->ap_lsr) & LSR_TXRDY) == 0 && --timo)
;
apci_cn->ap_data = c & 0xff;
/* wait for this transmission to complete */
timo = 1500000;
while (((stat = apci_cn->ap_lsr) & LSR_TXRDY) == 0 && --timo)
;
/* clear any interrupts generated by this transmission */
stat = apci_cn->ap_iir;
splx(s);
}