efee5258bc
The MPFR library is a C library for multiple-precision floating-point computations with exact rounding (also called correct rounding). It is based on the GMP multiple-precision library and should replace the MPF class in further releases of GMP. GCC >= 4.2 requires MPFR.
93 lines
2.5 KiB
C
93 lines
2.5 KiB
C
/* mpfr_min -- min and max of x, y
|
|
|
|
Copyright 2001, 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
|
|
#include "mpfr-impl.h"
|
|
|
|
/* The computation of z=min(x,y)
|
|
|
|
z=x if x <= y
|
|
z=y if x > y
|
|
*/
|
|
|
|
int
|
|
mpfr_min (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode)
|
|
{
|
|
if (MPFR_ARE_SINGULAR(x,y))
|
|
{
|
|
if (MPFR_IS_NAN(x) && MPFR_IS_NAN(y) )
|
|
{
|
|
MPFR_SET_NAN(z);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else if (MPFR_IS_NAN(x))
|
|
return mpfr_set(z, y, rnd_mode);
|
|
else if (MPFR_IS_NAN(y))
|
|
return mpfr_set(z, x, rnd_mode);
|
|
else if (MPFR_IS_ZERO(x) && MPFR_IS_ZERO(y))
|
|
{
|
|
if (MPFR_IS_NEG(x))
|
|
return mpfr_set(z, x, rnd_mode);
|
|
else
|
|
return mpfr_set(z, y, rnd_mode);
|
|
}
|
|
}
|
|
if (mpfr_cmp(x,y) <= 0)
|
|
return mpfr_set(z, x, rnd_mode);
|
|
else
|
|
return mpfr_set(z, y, rnd_mode);
|
|
}
|
|
|
|
/* The computation of z=max(x,y)
|
|
|
|
z=x if x >= y
|
|
z=y if x < y
|
|
*/
|
|
|
|
int
|
|
mpfr_max (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode)
|
|
{
|
|
if (MPFR_ARE_SINGULAR(x,y))
|
|
{
|
|
if (MPFR_IS_NAN(x) && MPFR_IS_NAN(y) )
|
|
{
|
|
MPFR_SET_NAN(z);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else if (MPFR_IS_NAN(x))
|
|
return mpfr_set(z, y, rnd_mode);
|
|
else if (MPFR_IS_NAN(y))
|
|
return mpfr_set(z, x, rnd_mode);
|
|
else if (MPFR_IS_ZERO(x) && MPFR_IS_ZERO(y))
|
|
{
|
|
if (MPFR_IS_NEG(x))
|
|
return mpfr_set(z, y, rnd_mode);
|
|
else
|
|
return mpfr_set(z, x, rnd_mode);
|
|
}
|
|
}
|
|
if (mpfr_cmp(x,y) <= 0)
|
|
return mpfr_set(z, y, rnd_mode);
|
|
else
|
|
return mpfr_set(z, x, rnd_mode);
|
|
}
|