NetBSD/usr.sbin/installboot/arch/i386.c
drochner 23174fa441 Invert the flag bits to control module loading: rename
LOADMODULES->NOMODULES and READBOOTCONF->NOBOOTCONF.
This way, the default value (0) wired into old bootxx_* and installed
to file systems remains valid and we avoid problems on partial updates.
2010-01-17 14:54:43 +00:00

556 lines
16 KiB
C

/* $NetBSD: i386.c,v 1.36 2010/01/17 14:54:44 drochner Exp $ */
/*-
* Copyright (c) 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by David Laight.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif
#include <sys/cdefs.h>
#if !defined(__lint)
__RCSID("$NetBSD: i386.c,v 1.36 2010/01/17 14:54:44 drochner Exp $");
#endif /* !__lint */
#include <sys/param.h>
#ifndef HAVE_NBTOOL_CONFIG_H
#include <sys/ioctl.h>
#include <sys/dkio.h>
#endif
#include <assert.h>
#include <errno.h>
#include <err.h>
#include <md5.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "installboot.h"
#define nelem(x) (sizeof (x)/sizeof *(x))
static const struct console_name {
const char *name; /* Name of console selection */
const int dev; /* value matching CONSDEV_* from sys/arch/i386/stand/lib/libi386.h */
} consoles[] = {
{ "pc", 0 /* CONSDEV_PC */ },
{ "com0", 1 /* CONSDEV_COM0 */ },
{ "com1", 2 /* CONSDEV_COM1 */ },
{ "com2", 3 /* CONSDEV_COM2 */ },
{ "com3", 4 /* CONSDEV_COM3 */ },
{ "com0kbd", 5 /* CONSDEV_COM0KBD */ },
{ "com1kbd", 6 /* CONSDEV_COM1KBD */ },
{ "com2kbd", 7 /* CONSDEV_COM2KBD */ },
{ "com3kbd", 8 /* CONSDEV_COM3KBD */ },
{ "auto", -1 /* CONSDEV_AUTO */ },
};
static int i386_setboot(ib_params *);
static int i386_editboot(ib_params *);
struct ib_mach ib_mach_i386 =
{ "i386", i386_setboot, no_clearboot, i386_editboot,
IB_RESETVIDEO | IB_CONSOLE | IB_CONSPEED | IB_CONSADDR |
IB_KEYMAP | IB_PASSWORD | IB_TIMEOUT |
IB_MODULES | IB_BOOTCONF };
struct ib_mach ib_mach_amd64 =
{ "amd64", i386_setboot, no_clearboot, i386_editboot,
IB_RESETVIDEO | IB_CONSOLE | IB_CONSPEED | IB_CONSADDR |
IB_KEYMAP | IB_PASSWORD | IB_TIMEOUT |
IB_MODULES | IB_BOOTCONF };
/*
* Attempting to write the 'labelsector' (or a sector near it - within 8k?)
* using the non-raw disk device fails silently. This can be detected (today)
* by doing a fsync() and a read back.
* This is very likely to affect installboot, indeed the code may need to
* be written into the 'labelsector' itself - especially on non-512 byte media.
* We do all writes with a read verify.
* If EROFS is returned we also try to enable writes to the label sector.
* (Maybe these functions should be in the generic part of installboot.)
*/
static int
pwrite_validate(int fd, const void *buf, size_t n_bytes, off_t offset)
{
void *r_buf;
ssize_t rv;
r_buf = malloc(n_bytes);
if (r_buf == NULL)
return -1;
rv = pwrite(fd, buf, n_bytes, offset);
if (rv == -1) {
free(r_buf);
return -1;
}
fsync(fd);
if (pread(fd, r_buf, rv, offset) == rv && memcmp(r_buf, buf, rv) == 0) {
free(r_buf);
return rv;
}
free(r_buf);
errno = EROFS;
return -1;
}
static int
write_boot_area(ib_params *params, void *v_buf, int len)
{
int rv, i;
uint8_t *buf = v_buf;
/*
* Writing the 'label' sector (likely to be bytes 512-1023) could
* fail, so we try to avoid writing that area.
* Unfortunately, if we are accessing the raw disk, and the sector
* size is larger than 512 bytes that is also doomed.
* See how we get on....
*
* NB: Even if the physical sector size is not 512, the space for
* the label is 512 bytes from the start of the disk.
* So all the '512' constants in these functions are correct.
*/
/* Write out first 512 bytes - the pbr code */
rv = pwrite_validate(params->fsfd, buf, 512, 0);
if (rv == 512) {
/* That worked, do the rest */
if (len == 512)
return 1;
len -= 512 * 2;
rv = pwrite_validate(params->fsfd, buf + 512 * 2, len, 512 * 2);
if (rv != len)
goto bad_write;
return 1;
}
if (rv != -1 || (errno != EINVAL && errno != EROFS))
goto bad_write;
if (errno == EINVAL) {
/* Assume the failure was due to to the sector size > 512 */
rv = pwrite_validate(params->fsfd, buf, len, 0);
if (rv == len)
return 1;
if (rv != -1 || (errno != EROFS))
goto bad_write;
}
#ifdef DIOCWLABEL
/* Pesky label is protected, try to unprotect it */
i = 1;
rv = ioctl(params->fsfd, DIOCWLABEL, &i);
if (rv != 0) {
warn("Cannot enable writes to the label sector");
return 0;
}
/* Try again with label write-enabled */
rv = pwrite_validate(params->fsfd, buf, len, 0);
/* Reset write-protext */
i = 0;
ioctl(params->fsfd, DIOCWLABEL, &i);
if (rv == len)
return 1;
#endif
bad_write:
if (rv == -1)
warn("Writing `%s'", params->filesystem);
else
warnx("Writing `%s': short write, %u bytes",
params->filesystem, rv);
return 0;
}
static void
show_i386_boot_params(struct x86_boot_params *bpp)
{
size_t i;
printf("Boot options: ");
printf("timeout %d, ", le32toh(bpp->bp_timeout));
printf("flags %x, ", le32toh(bpp->bp_flags));
printf("speed %d, ", le32toh(bpp->bp_conspeed));
printf("ioaddr %x, ", le32toh(bpp->bp_consaddr));
for (i = 0; i < nelem(consoles); i++) {
if (consoles[i].dev == (int)le32toh(bpp->bp_consdev))
break;
}
if (i == nelem(consoles))
printf("console %d\n", le32toh(bpp->bp_consdev));
else
printf("console %s\n", consoles[i].name);
if (bpp->bp_keymap[0])
printf(" keymap %s\n", bpp->bp_keymap);
}
static int
is_zero(const uint8_t *p, unsigned int len)
{
return len == 0 || (p[0] == 0 && memcmp(p, p + 1, len - 1) == 0);
}
static int
update_i386_boot_params(ib_params *params, struct x86_boot_params *bpp)
{
struct x86_boot_params bp;
uint32_t bplen;
size_t i;
bplen = le32toh(bpp->bp_length);
if (bplen > sizeof bp)
/* Ignore pad space in bootxx */
bplen = sizeof bp;
/* Take (and update) local copy so we handle size mismatches */
memset(&bp, 0, sizeof bp);
memcpy(&bp, bpp, bplen);
if (params->flags & IB_TIMEOUT)
bp.bp_timeout = htole32(params->timeout);
if (params->flags & IB_RESETVIDEO)
bp.bp_flags ^= htole32(X86_BP_FLAGS_RESET_VIDEO);
if (params->flags & IB_CONSPEED)
bp.bp_conspeed = htole32(params->conspeed);
if (params->flags & IB_CONSADDR)
bp.bp_consaddr = htole32(params->consaddr);
if (params->flags & IB_CONSOLE) {
for (i = 0; i < nelem(consoles); i++)
if (strcmp(consoles[i].name, params->console) == 0)
break;
if (i == nelem(consoles)) {
warnx("invalid console name, valid names are:");
(void)fprintf(stderr, "\t%s", consoles[0].name);
for (i = 1; consoles[i].name != NULL; i++)
(void)fprintf(stderr, ", %s", consoles[i].name);
(void)fprintf(stderr, "\n");
return 1;
}
bp.bp_consdev = htole32(consoles[i].dev);
}
if (params->flags & IB_PASSWORD) {
if (params->password[0]) {
MD5_CTX md5ctx;
MD5Init(&md5ctx);
MD5Update(&md5ctx, params->password,
strlen(params->password));
MD5Final(bp.bp_password, &md5ctx);
bp.bp_flags |= htole32(X86_BP_FLAGS_PASSWORD);
} else {
memset(&bp.bp_password, 0, sizeof bp.bp_password);
bp.bp_flags &= ~htole32(X86_BP_FLAGS_PASSWORD);
}
}
if (params->flags & IB_KEYMAP)
strlcpy(bp.bp_keymap, params->keymap, sizeof bp.bp_keymap);
if (params->flags & IB_MODULES)
bp.bp_flags ^= htole32(X86_BP_FLAGS_NOMODULES);
if (params->flags & IB_BOOTCONF)
bp.bp_flags ^= htole32(X86_BP_FLAGS_NOBOOTCONF);
if (params->flags & (IB_NOWRITE | IB_VERBOSE))
show_i386_boot_params(&bp);
/* Check we aren't trying to set anything we can't save */
if (!is_zero((char *)&bp + bplen, sizeof bp - bplen)) {
warnx("Patch area in stage1 bootstrap is too small");
return 1;
}
memcpy(bpp, &bp, bplen);
return 0;
}
static int
i386_setboot(ib_params *params)
{
unsigned int u;
ssize_t rv;
uint32_t *magic, expected_magic;
union {
struct mbr_sector mbr;
uint8_t b[8192];
} disk_buf, bootstrap;
assert(params != NULL);
assert(params->fsfd != -1);
assert(params->filesystem != NULL);
assert(params->s1fd != -1);
assert(params->stage1 != NULL);
/*
* There is only 8k of space in a FFSv1 partition (and ustarfs)
* so ensure we don't splat over anything important.
*/
if (params->s1stat.st_size > (off_t)(sizeof bootstrap)) {
warnx("stage1 bootstrap `%s' (%u bytes) is larger than 8192 bytes",
params->stage1, (unsigned int)params->s1stat.st_size);
return 0;
}
if (params->s1stat.st_size < 3 * 512 && params->s1stat.st_size != 512) {
warnx("stage1 bootstrap `%s' (%u bytes) is too small",
params->stage1, (unsigned int)params->s1stat.st_size);
return 0;
}
/* Read in the existing disk header and boot code */
rv = pread(params->fsfd, &disk_buf, sizeof (disk_buf), 0);
if (rv != sizeof(disk_buf)) {
if (rv == -1)
warn("Reading `%s'", params->filesystem);
else
warnx("Reading `%s': short read, %ld bytes"
" (should be %ld)", params->filesystem, (long)rv,
(long)sizeof(disk_buf));
return 0;
}
if (disk_buf.mbr.mbr_magic != le16toh(MBR_MAGIC)) {
if (params->flags & IB_VERBOSE) {
printf(
"Ignoring PBR with invalid magic in sector 0 of `%s'\n",
params->filesystem);
}
memset(&disk_buf, 0, 512);
}
/* Read the new bootstrap code. */
rv = pread(params->s1fd, &bootstrap, params->s1stat.st_size, 0);
if (rv != params->s1stat.st_size) {
if (rv == -1)
warn("Reading `%s'", params->stage1);
else
warnx("Reading `%s': short read, %ld bytes"
" (should be %ld)", params->stage1, (long)rv,
(long)params->s1stat.st_size);
return 0;
}
/*
* The bootstrap code is either 512 bytes for booting FAT16, or best
* part of 8k (with bytes 512-1023 all zeros).
*/
if (params->s1stat.st_size == 512) {
/* Magic number is at end of pbr code */
magic = (void *)(bootstrap.b + 512 - 16 + 4);
expected_magic = htole32(X86_BOOT_MAGIC_FAT);
} else {
/* Magic number is at start of sector following label */
magic = (void *)(bootstrap.b + 512 * 2 + 4);
expected_magic = htole32(X86_BOOT_MAGIC_1);
/*
* For a variety of reasons we restrict our 'normal' partition
* boot code to a size which enable it to be used as mbr code.
* IMHO this is bugus (dsl).
*/
if (!is_zero(bootstrap.b + 512-2-64, 64)) {
warnx("Data in mbr partition table of new bootstrap");
return 0;
}
if (!is_zero(bootstrap.b + 512, 512)) {
warnx("Data in label part of new bootstrap");
return 0;
}
/* Copy mbr table and label from existing disk buffer */
memcpy(bootstrap.b + 512-2-64, disk_buf.b + 512-2-64, 64);
memcpy(bootstrap.b + 512, disk_buf.b + 512, 512);
}
/* Validate the 'magic number' that marks the parameter block */
if (*magic != expected_magic) {
warnx("Invalid magic in stage1 bootstrap %x != %x",
*magic, expected_magic);
return 0;
}
/*
* If the partition has a FAT (or NTFS) filesystem, then we must
* preserve the BIOS Parameter Block (BPB).
* It is also very likely that there isn't 8k of space available
* for (say) bootxx_msdos, and that blindly installing it will trash
* the FAT filesystem.
* To avoid this we check the number of 'reserved' sectors to ensure
* there there is enough space.
* Unfortunately newfs(8) doesn't (yet) splat the BPB (which is
* effectively the FAT superblock) when a filesystem is initailised
* so this code tends to complain rather too often,
* Specifying 'installboot -f' will delete the old BPB info.
*/
if (!(params->flags & IB_FORCE)) {
#define USE_F ", use -f (may invalidate filesystem)"
/*
* For FAT compatibility, the pbr code starts 'jmp xx; nop'
* followed by the BIOS Parameter Block (BPB).
* The 2nd byte (jump offset) is the size of the nop + BPB.
*/
if (bootstrap.b[0] != 0xeb || bootstrap.b[2] != 0x90) {
warnx("No BPB in new bootstrap %02x:%02x:%02x" USE_F,
bootstrap.b[0], bootstrap.b[1], bootstrap.b[2]);
return 0;
}
/* Find size of old BPB, and copy into new bootcode */
if (!is_zero(disk_buf.b + 3 + 8, disk_buf.b[1] - 1 - 8)) {
struct mbr_bpbFAT16 *bpb = (void *)(disk_buf.b + 3 + 8);
/* Check enough space before the FAT for the bootcode */
u = le16toh(bpb->bpbBytesPerSec)
* le16toh(bpb->bpbResSectors);
if (u != 0 && u < params->s1stat.st_size) {
warnx("Insufficient reserved space before FAT "
"(%u bytes available)" USE_F, u);
return 0;
}
/* Check we have enough space for the old bpb */
if (disk_buf.b[1] > bootstrap.b[1]) {
/* old BPB is larger, allow if extra zeros */
if (!is_zero(disk_buf.b + 2 + bootstrap.b[1],
disk_buf.b[1] - bootstrap.b[1])) {
warnx("Old BPB too big" USE_F);
return 0;
}
u = bootstrap.b[1];
} else {
/* Old BPB is shorter, leave zero filled */
u = disk_buf.b[1];
}
memcpy(bootstrap.b + 2, disk_buf.b + 2, u);
}
#undef USE_F
}
/*
* Fill in any user-specified options into the
* struct x86_boot_params
* that follows the magic number.
* See sys/arch/i386/stand/bootxx/bootxx.S for more information.
*/
if (update_i386_boot_params(params, (void *)(magic + 1)))
return 0;
if (params->flags & IB_NOWRITE) {
return 1;
}
/* Copy new bootstrap data into disk buffer, ignoring label area */
memcpy(&disk_buf, &bootstrap, 512);
if (params->s1stat.st_size > 512 * 2) {
memcpy(disk_buf.b + 2 * 512, bootstrap.b + 2 * 512,
params->s1stat.st_size - 2 * 512);
/* Zero pad to 512 byte sector boundary */
memset(disk_buf.b + params->s1stat.st_size, 0,
(8192 - params->s1stat.st_size) & 511);
}
return write_boot_area(params, &disk_buf, sizeof disk_buf);
}
static int
i386_editboot(ib_params *params)
{
int retval;
uint8_t buf[512];
ssize_t rv;
uint32_t magic;
uint32_t offset;
struct x86_boot_params *bpp;
assert(params != NULL);
assert(params->fsfd != -1);
assert(params->filesystem != NULL);
retval = 0;
/*
* Read in the existing bootstrap.
* Look in any of the first 4 sectors.
*/
bpp = NULL;
for (offset = 0; offset < 4 * 512; offset += 512) {
rv = pread(params->fsfd, &buf, sizeof buf, offset);
if (rv == -1) {
warn("Reading `%s'", params->filesystem);
goto done;
} else if (rv != sizeof buf) {
warnx("Reading `%s': short read", params->filesystem);
goto done;
}
/* Magic number is 4 bytes in (to allow for a jmps) */
/* Also allow any of the magic numbers. */
magic = le32toh(*(uint32_t *)(buf + 4)) | 0xf;
if (magic != (X86_BOOT_MAGIC_1 | 0xf))
continue;
/* The parameters are just after the magic number */
bpp = (void *)(buf + 8);
break;
}
if (bpp == NULL) {
warnx("Invalid magic in existing bootstrap");
goto done;
}
/*
* Fill in any user-specified options into the
* struct x86_boot_params
* that's 8 bytes in from the start of the third sector.
* See sys/arch/i386/stand/bootxx/bootxx.S for more information.
*/
if (update_i386_boot_params(params, bpp))
goto done;
if (params->flags & IB_NOWRITE) {
retval = 1;
goto done;
}
/*
* Write boot code back
*/
rv = pwrite(params->fsfd, buf, sizeof buf, offset);
if (rv == -1) {
warn("Writing `%s'", params->filesystem);
goto done;
} else if (rv != sizeof buf) {
warnx("Writing `%s': short write, %ld bytes (should be %ld)",
params->filesystem, (long)rv, (long)sizeof(buf));
goto done;
}
retval = 1;
done:
return retval;
}