6f25f8641b
The N1 SDP has a few bugs that we need to work around: - PCIe root port config space lives in a non-standard location. - Access to PCIe config space of devices that do not exist results in an sync SError. Firmware creates a "known devices" table at a fixed physical address that we use to filter PCI conf access to only known devices. This change splits the Arm ACPI PCI quirks into separate files for each host controller, and allows per-segment quirks to be applied. These changes exposed some bugs in the MI ACPI layer related to multi-segment support. The MI ACPI PCI code was using a shared PCI chipset tag to access devices, and these accesses can happen before our PCI host bridge drivers are attached! The global chipset tag is now gone, and an MD callback can provide a custom tag on a per-segment basis.
1253 lines
34 KiB
C
1253 lines
34 KiB
C
/* $NetBSD: acpi_pci_link.c,v 1.26 2020/01/17 17:06:32 jmcneill Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2002 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: acpi_pci_link.c,v 1.26 2020/01/17 17:06:32 jmcneill Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <dev/acpi/acpireg.h>
|
|
#include <dev/acpi/acpivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include "opt_acpi.h"
|
|
|
|
|
|
#define _COMPONENT ACPI_BUS_COMPONENT
|
|
ACPI_MODULE_NAME ("acpi_pci_link")
|
|
|
|
MALLOC_DECLARE(M_ACPI);
|
|
|
|
#define NUM_ISA_INTERRUPTS 16
|
|
#define NUM_ACPI_INTERRUPTS 256
|
|
|
|
#define PCI_INVALID_IRQ 255
|
|
#define PCI_INTERRUPT_VALID(x) ((x) != PCI_INVALID_IRQ && (x) != 0)
|
|
|
|
#define ACPI_SERIAL_BEGIN(x)
|
|
#define ACPI_SERIAL_END(x)
|
|
|
|
/*
|
|
* An ACPI PCI link device may contain multiple links. Each link has its
|
|
* own ACPI resource. _PRT entries specify which link is being used via
|
|
* the Source Index.
|
|
*
|
|
* XXX: A note about Source Indices and DPFs: Currently we assume that
|
|
* the DPF start and end tags are not counted towards the index that
|
|
* Source Index corresponds to. Also, we assume that when DPFs are in use
|
|
* they various sets overlap in terms of Indices. Here's an example
|
|
* resource list indicating these assumptions:
|
|
*
|
|
* Resource Index
|
|
* -------- -----
|
|
* I/O Port 0
|
|
* Start DPF -
|
|
* IRQ 1
|
|
* MemIO 2
|
|
* Start DPF -
|
|
* IRQ 1
|
|
* MemIO 2
|
|
* End DPF -
|
|
* DMA Channel 3
|
|
*
|
|
* The XXX is because I'm not sure if this is a valid assumption to make.
|
|
*/
|
|
|
|
/* States during DPF processing. */
|
|
#define DPF_OUTSIDE 0
|
|
#define DPF_FIRST 1
|
|
#define DPF_IGNORE 2
|
|
|
|
struct link;
|
|
|
|
struct acpi_pci_link_softc {
|
|
int pl_num_links;
|
|
int pl_crs_bad;
|
|
struct link *pl_links;
|
|
char pl_name[32];
|
|
ACPI_HANDLE pl_handle;
|
|
TAILQ_ENTRY(acpi_pci_link_softc) pl_list;
|
|
};
|
|
|
|
static TAILQ_HEAD(, acpi_pci_link_softc) acpi_pci_linkdevs =
|
|
TAILQ_HEAD_INITIALIZER(acpi_pci_linkdevs);
|
|
|
|
|
|
struct link {
|
|
struct acpi_pci_link_softc *l_sc;
|
|
uint8_t l_bios_irq;
|
|
uint8_t l_irq;
|
|
uint8_t l_trig;
|
|
uint8_t l_pol;
|
|
uint8_t l_initial_irq;
|
|
int l_res_index;
|
|
int l_num_irqs;
|
|
int *l_irqs;
|
|
int l_references;
|
|
int l_dev_count;
|
|
pcitag_t *l_devices;
|
|
u_int l_routed:1;
|
|
u_int l_isa_irq:1;
|
|
ACPI_RESOURCE l_prs_template;
|
|
};
|
|
|
|
struct link_count_request {
|
|
int in_dpf;
|
|
int count;
|
|
};
|
|
|
|
struct link_res_request {
|
|
struct acpi_pci_link_softc *sc;
|
|
int in_dpf;
|
|
int res_index;
|
|
int link_index;
|
|
};
|
|
|
|
static int pci_link_interrupt_weights[NUM_ACPI_INTERRUPTS];
|
|
static int pci_link_bios_isa_irqs;
|
|
|
|
static ACPI_STATUS acpi_count_irq_resources(ACPI_RESOURCE *, void *);
|
|
static ACPI_STATUS link_add_crs(ACPI_RESOURCE *, void *);
|
|
static ACPI_STATUS link_add_prs(ACPI_RESOURCE *, void *);
|
|
static int link_valid_irq(struct link *, int);
|
|
static void acpi_pci_link_dump(struct acpi_pci_link_softc *);
|
|
static int acpi_pci_link_attach(struct acpi_pci_link_softc *);
|
|
static uint8_t acpi_pci_link_search_irq(struct acpi_pci_link_softc *,
|
|
pci_chipset_tag_t, int, int, int);
|
|
static struct link *acpi_pci_link_lookup(struct acpi_pci_link_softc *, int);
|
|
static ACPI_STATUS acpi_pci_link_srs(struct acpi_pci_link_softc *,
|
|
ACPI_BUFFER *);
|
|
static ACPI_STATUS acpi_AppendBufferResource(ACPI_BUFFER *, ACPI_RESOURCE *);
|
|
|
|
static ACPI_STATUS
|
|
acpi_count_irq_resources(ACPI_RESOURCE *res, void *context)
|
|
{
|
|
struct link_count_request *req;
|
|
|
|
req = (struct link_count_request *)context;
|
|
switch (res->Type) {
|
|
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
|
|
switch (req->in_dpf) {
|
|
case DPF_OUTSIDE:
|
|
/* We've started the first DPF. */
|
|
req->in_dpf = DPF_FIRST;
|
|
break;
|
|
case DPF_FIRST:
|
|
/* We've started the second DPF. */
|
|
req->in_dpf = DPF_IGNORE;
|
|
break;
|
|
}
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
|
|
/* We are finished with DPF parsing. */
|
|
KASSERT(req->in_dpf != DPF_OUTSIDE);
|
|
req->in_dpf = DPF_OUTSIDE;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
/*
|
|
* Don't count resources if we are in a DPF set that we are
|
|
* ignoring.
|
|
*/
|
|
if (req->in_dpf != DPF_IGNORE)
|
|
req->count++;
|
|
}
|
|
return (AE_OK);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
link_add_crs(ACPI_RESOURCE *res, void *context)
|
|
{
|
|
struct link_res_request *req;
|
|
struct link *link;
|
|
|
|
req = (struct link_res_request *)context;
|
|
switch (res->Type) {
|
|
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
|
|
switch (req->in_dpf) {
|
|
case DPF_OUTSIDE:
|
|
/* We've started the first DPF. */
|
|
req->in_dpf = DPF_FIRST;
|
|
break;
|
|
case DPF_FIRST:
|
|
/* We've started the second DPF. */
|
|
panic(
|
|
"%s: Multiple dependent functions within a current resource",
|
|
__func__);
|
|
break;
|
|
}
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
|
|
/* We are finished with DPF parsing. */
|
|
KASSERT(req->in_dpf != DPF_OUTSIDE);
|
|
req->in_dpf = DPF_OUTSIDE;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
KASSERT(req->link_index < req->sc->pl_num_links);
|
|
link = &req->sc->pl_links[req->link_index];
|
|
link->l_res_index = req->res_index;
|
|
req->link_index++;
|
|
req->res_index++;
|
|
|
|
/*
|
|
* Only use the current value if there's one IRQ. Some
|
|
* systems return multiple IRQs (which is nonsense for _CRS)
|
|
* when the link hasn't been programmed.
|
|
*/
|
|
if (res->Type == ACPI_RESOURCE_TYPE_IRQ) {
|
|
if (res->Data.Irq.InterruptCount == 1) {
|
|
link->l_irq = res->Data.Irq.Interrupts[0];
|
|
link->l_trig = res->Data.Irq.Triggering;
|
|
link->l_pol = res->Data.Irq.Polarity;
|
|
}
|
|
} else if (res->Data.ExtendedIrq.InterruptCount == 1) {
|
|
link->l_irq = res->Data.ExtendedIrq.Interrupts[0];
|
|
link->l_trig = res->Data.ExtendedIrq.Triggering;
|
|
link->l_pol = res->Data.ExtendedIrq.Polarity;
|
|
}
|
|
|
|
/*
|
|
* An IRQ of zero means that the link isn't routed.
|
|
*/
|
|
if (link->l_irq == 0)
|
|
link->l_irq = PCI_INVALID_IRQ;
|
|
break;
|
|
default:
|
|
req->res_index++;
|
|
}
|
|
return (AE_OK);
|
|
}
|
|
|
|
/*
|
|
* Populate the set of possible IRQs for each device.
|
|
*/
|
|
static ACPI_STATUS
|
|
link_add_prs(ACPI_RESOURCE *res, void *context)
|
|
{
|
|
ACPI_RESOURCE *tmp;
|
|
struct link_res_request *req;
|
|
struct link *link;
|
|
uint8_t *irqs = NULL;
|
|
uint32_t *ext_irqs = NULL;
|
|
int i, is_ext_irq = 1;
|
|
|
|
req = (struct link_res_request *)context;
|
|
switch (res->Type) {
|
|
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
|
|
switch (req->in_dpf) {
|
|
case DPF_OUTSIDE:
|
|
/* We've started the first DPF. */
|
|
req->in_dpf = DPF_FIRST;
|
|
break;
|
|
case DPF_FIRST:
|
|
/* We've started the second DPF. */
|
|
req->in_dpf = DPF_IGNORE;
|
|
break;
|
|
}
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
|
|
/* We are finished with DPF parsing. */
|
|
KASSERT(req->in_dpf != DPF_OUTSIDE);
|
|
req->in_dpf = DPF_OUTSIDE;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
is_ext_irq = 0;
|
|
/* fall through */
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
/*
|
|
* Don't parse resources if we are in a DPF set that we are
|
|
* ignoring.
|
|
*/
|
|
if (req->in_dpf == DPF_IGNORE)
|
|
break;
|
|
|
|
KASSERT(req->link_index < req->sc->pl_num_links);
|
|
link = &req->sc->pl_links[req->link_index];
|
|
if (link->l_res_index == -1) {
|
|
KASSERT(req->sc->pl_crs_bad);
|
|
link->l_res_index = req->res_index;
|
|
}
|
|
req->link_index++;
|
|
req->res_index++;
|
|
|
|
/*
|
|
* Stash a copy of the resource for later use when doing
|
|
* _SRS.
|
|
*/
|
|
tmp = &link->l_prs_template;
|
|
if (is_ext_irq) {
|
|
memcpy(tmp, res, ACPI_RS_SIZE(tmp->Data.ExtendedIrq));
|
|
|
|
/*
|
|
* XXX acpi_AppendBufferResource() cannot handle
|
|
* optional data.
|
|
*/
|
|
memset(&tmp->Data.ExtendedIrq.ResourceSource, 0,
|
|
sizeof(tmp->Data.ExtendedIrq.ResourceSource));
|
|
tmp->Length = ACPI_RS_SIZE(tmp->Data.ExtendedIrq);
|
|
|
|
link->l_num_irqs =
|
|
res->Data.ExtendedIrq.InterruptCount;
|
|
link->l_trig = res->Data.ExtendedIrq.Triggering;
|
|
link->l_pol = res->Data.ExtendedIrq.Polarity;
|
|
ext_irqs = res->Data.ExtendedIrq.Interrupts;
|
|
} else {
|
|
memcpy(tmp, res, ACPI_RS_SIZE(tmp->Data.Irq));
|
|
link->l_num_irqs = res->Data.Irq.InterruptCount;
|
|
link->l_trig = res->Data.Irq.Triggering;
|
|
link->l_pol = res->Data.Irq.Polarity;
|
|
irqs = res->Data.Irq.Interrupts;
|
|
}
|
|
if (link->l_num_irqs == 0)
|
|
break;
|
|
|
|
/*
|
|
* Save a list of the valid IRQs. Also, if all of the
|
|
* valid IRQs are ISA IRQs, then mark this link as
|
|
* routed via an ISA interrupt.
|
|
*/
|
|
link->l_isa_irq = TRUE;
|
|
link->l_irqs = malloc(sizeof(int) * link->l_num_irqs,
|
|
M_ACPI, M_WAITOK | M_ZERO);
|
|
for (i = 0; i < link->l_num_irqs; i++) {
|
|
if (is_ext_irq) {
|
|
link->l_irqs[i] = ext_irqs[i];
|
|
if (ext_irqs[i] >= NUM_ISA_INTERRUPTS)
|
|
link->l_isa_irq = FALSE;
|
|
} else {
|
|
link->l_irqs[i] = irqs[i];
|
|
if (irqs[i] >= NUM_ISA_INTERRUPTS)
|
|
link->l_isa_irq = FALSE;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
if (req->in_dpf == DPF_IGNORE)
|
|
break;
|
|
if (req->sc->pl_crs_bad)
|
|
aprint_normal("%s: Warning: possible resource %d "
|
|
"will be lost during _SRS\n", req->sc->pl_name,
|
|
req->res_index);
|
|
req->res_index++;
|
|
}
|
|
return (AE_OK);
|
|
}
|
|
|
|
static int
|
|
link_valid_irq(struct link *link, int irq)
|
|
{
|
|
int i;
|
|
|
|
/* Invalid interrupts are never valid. */
|
|
if (!PCI_INTERRUPT_VALID(irq))
|
|
return (FALSE);
|
|
|
|
/* Any interrupt in the list of possible interrupts is valid. */
|
|
for (i = 0; i < link->l_num_irqs; i++)
|
|
if (link->l_irqs[i] == irq)
|
|
return (TRUE);
|
|
|
|
/*
|
|
* For links routed via an ISA interrupt, if the SCI is routed via
|
|
* an ISA interrupt, the SCI is always treated as a valid IRQ.
|
|
*/
|
|
if (link->l_isa_irq && AcpiGbl_FADT.SciInterrupt == irq &&
|
|
irq < NUM_ISA_INTERRUPTS)
|
|
return (TRUE);
|
|
|
|
/* If the interrupt wasn't found in the list it is not valid. */
|
|
return (FALSE);
|
|
}
|
|
|
|
void
|
|
acpi_pci_link_state(void)
|
|
{
|
|
struct acpi_pci_link_softc *sc;
|
|
|
|
TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) {
|
|
acpi_pci_link_dump(sc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
acpi_pci_link_dump(struct acpi_pci_link_softc *sc)
|
|
{
|
|
struct link *link;
|
|
int i, j;
|
|
|
|
printf("Link Device %s:\n", sc->pl_name);
|
|
printf("Index IRQ Rtd Ref IRQs\n");
|
|
for (i = 0; i < sc->pl_num_links; i++) {
|
|
link = &sc->pl_links[i];
|
|
printf("%5d %3d %c %3d ", i, link->l_irq,
|
|
link->l_routed ? 'Y' : 'N', link->l_references);
|
|
if (link->l_num_irqs == 0)
|
|
printf(" none");
|
|
else for (j = 0; j < link->l_num_irqs; j++)
|
|
printf(" %d", link->l_irqs[j]);
|
|
printf(" polarity %u trigger %u\n", link->l_pol, link->l_trig);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static int
|
|
acpi_pci_link_attach(struct acpi_pci_link_softc *sc)
|
|
{
|
|
struct link_count_request creq;
|
|
struct link_res_request rreq;
|
|
ACPI_STATUS status;
|
|
int i;
|
|
|
|
ACPI_SERIAL_BEGIN(pci_link);
|
|
|
|
/*
|
|
* Count the number of current resources so we know how big of
|
|
* a link array to allocate. On some systems, _CRS is broken,
|
|
* so for those systems try to derive the count from _PRS instead.
|
|
*/
|
|
creq.in_dpf = DPF_OUTSIDE;
|
|
creq.count = 0;
|
|
status = AcpiWalkResources(sc->pl_handle, "_CRS",
|
|
acpi_count_irq_resources, &creq);
|
|
sc->pl_crs_bad = ACPI_FAILURE(status);
|
|
if (sc->pl_crs_bad) {
|
|
creq.in_dpf = DPF_OUTSIDE;
|
|
creq.count = 0;
|
|
status = AcpiWalkResources(sc->pl_handle, "_PRS",
|
|
acpi_count_irq_resources, &creq);
|
|
if (ACPI_FAILURE(status)) {
|
|
aprint_error("%s: Unable to parse _CRS or _PRS: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
ACPI_SERIAL_END(pci_link);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
sc->pl_num_links = creq.count;
|
|
if (creq.count == 0) {
|
|
ACPI_SERIAL_END(pci_link);
|
|
return (0);
|
|
}
|
|
sc->pl_links = malloc(sizeof(struct link) * sc->pl_num_links,
|
|
M_ACPI, M_WAITOK | M_ZERO);
|
|
|
|
/* Initialize the child links. */
|
|
for (i = 0; i < sc->pl_num_links; i++) {
|
|
sc->pl_links[i].l_irq = PCI_INVALID_IRQ;
|
|
sc->pl_links[i].l_bios_irq = PCI_INVALID_IRQ;
|
|
sc->pl_links[i].l_sc = sc;
|
|
sc->pl_links[i].l_isa_irq = FALSE;
|
|
sc->pl_links[i].l_res_index = -1;
|
|
sc->pl_links[i].l_dev_count = 0;
|
|
sc->pl_links[i].l_devices = NULL;
|
|
}
|
|
|
|
/* Try to read the current settings from _CRS if it is valid. */
|
|
if (!sc->pl_crs_bad) {
|
|
rreq.in_dpf = DPF_OUTSIDE;
|
|
rreq.link_index = 0;
|
|
rreq.res_index = 0;
|
|
rreq.sc = sc;
|
|
status = AcpiWalkResources(sc->pl_handle, "_CRS",
|
|
link_add_crs, &rreq);
|
|
if (ACPI_FAILURE(status)) {
|
|
aprint_error("%s: Unable to parse _CRS: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to read the possible settings from _PRS. Note that if the
|
|
* _CRS is toast, we depend on having a working _PRS. However, if
|
|
* _CRS works, then it is ok for _PRS to be missing.
|
|
*/
|
|
rreq.in_dpf = DPF_OUTSIDE;
|
|
rreq.link_index = 0;
|
|
rreq.res_index = 0;
|
|
rreq.sc = sc;
|
|
status = AcpiWalkResources(sc->pl_handle, "_PRS",
|
|
link_add_prs, &rreq);
|
|
if (ACPI_FAILURE(status) &&
|
|
(status != AE_NOT_FOUND || sc->pl_crs_bad)) {
|
|
aprint_error("%s: Unable to parse _PRS: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
goto fail;
|
|
}
|
|
if (boothowto & AB_VERBOSE) {
|
|
aprint_normal("%s: Links after initial probe:\n", sc->pl_name);
|
|
acpi_pci_link_dump(sc);
|
|
}
|
|
|
|
/* Verify initial IRQs if we have _PRS. */
|
|
if (status != AE_NOT_FOUND)
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
if (!link_valid_irq(&sc->pl_links[i],
|
|
sc->pl_links[i].l_irq))
|
|
sc->pl_links[i].l_irq = PCI_INVALID_IRQ;
|
|
if (boothowto & AB_VERBOSE) {
|
|
printf("%s: Links after initial validation:\n", sc->pl_name);
|
|
acpi_pci_link_dump(sc);
|
|
}
|
|
|
|
/* Save initial IRQs. */
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
sc->pl_links[i].l_initial_irq = sc->pl_links[i].l_irq;
|
|
|
|
/*
|
|
* Try to disable this link. If successful, set the current IRQ to
|
|
* zero and flags to indicate this link is not routed. If we can't
|
|
* run _DIS (i.e., the method doesn't exist), assume the initial
|
|
* IRQ was routed by the BIOS.
|
|
*/
|
|
#ifndef ACPI__DIS_IS_BROKEN
|
|
if (ACPI_SUCCESS(AcpiEvaluateObject(sc->pl_handle, "_DIS", NULL,
|
|
NULL)))
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
sc->pl_links[i].l_irq = PCI_INVALID_IRQ;
|
|
else
|
|
#endif
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
if (PCI_INTERRUPT_VALID(sc->pl_links[i].l_irq))
|
|
sc->pl_links[i].l_routed = TRUE;
|
|
if (boothowto & AB_VERBOSE) {
|
|
printf("%s: Links after disable:\n", sc->pl_name);
|
|
acpi_pci_link_dump(sc);
|
|
}
|
|
ACPI_SERIAL_END(pci_link);
|
|
return (0);
|
|
fail:
|
|
ACPI_SERIAL_END(pci_link);
|
|
for (i = 0; i < sc->pl_num_links; i++) {
|
|
if (sc->pl_links[i].l_irqs != NULL)
|
|
free(sc->pl_links[i].l_irqs, M_ACPI);
|
|
if (sc->pl_links[i].l_devices != NULL)
|
|
free(sc->pl_links[i].l_devices, M_ACPI);
|
|
}
|
|
free(sc->pl_links, M_ACPI);
|
|
return (ENXIO);
|
|
}
|
|
|
|
static void
|
|
acpi_pci_link_add_functions(struct acpi_pci_link_softc *sc, struct link *link,
|
|
pci_chipset_tag_t pc, int bus, int device, int pin)
|
|
{
|
|
uint32_t value;
|
|
uint8_t func, maxfunc, ipin;
|
|
pcitag_t tag;
|
|
|
|
tag = pci_make_tag(pc, bus, device, 0);
|
|
/* See if we have a valid device at function 0. */
|
|
value = pci_conf_read(pc, tag, PCI_BHLC_REG);
|
|
if (PCI_HDRTYPE_TYPE(value) > PCI_HDRTYPE_PCB)
|
|
return;
|
|
if (PCI_HDRTYPE_MULTIFN(value))
|
|
maxfunc = 7;
|
|
else
|
|
maxfunc = 0;
|
|
|
|
/* Scan all possible functions at this device. */
|
|
for (func = 0; func <= maxfunc; func++) {
|
|
tag = pci_make_tag(pc, bus, device, func);
|
|
value = pci_conf_read(pc, tag, PCI_ID_REG);
|
|
if (PCI_VENDOR(value) == 0xffff)
|
|
continue;
|
|
value = pci_conf_read(pc, tag,
|
|
PCI_INTERRUPT_REG);
|
|
ipin = PCI_INTERRUPT_PIN(value);
|
|
/*
|
|
* See if it uses the pin in question. Note that the passed
|
|
* in pin uses 0 for A, .. 3 for D whereas the intpin
|
|
* register uses 0 for no interrupt, 1 for A, .. 4 for D.
|
|
*/
|
|
if (ipin != pin + 1)
|
|
continue;
|
|
|
|
link->l_devices = realloc(link->l_devices,
|
|
sizeof(pcitag_t) * (link->l_dev_count + 1),
|
|
M_ACPI, M_WAITOK);
|
|
link->l_devices[link->l_dev_count] = tag;
|
|
++link->l_dev_count;
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
acpi_pci_link_search_irq(struct acpi_pci_link_softc *sc, pci_chipset_tag_t pc,
|
|
int bus, int device, int pin)
|
|
{
|
|
uint32_t value;
|
|
uint8_t func, maxfunc, ipin, iline;
|
|
pcitag_t tag;
|
|
|
|
tag = pci_make_tag(pc, bus, device, 0);
|
|
/* See if we have a valid device at function 0. */
|
|
value = pci_conf_read(pc, tag, PCI_BHLC_REG);
|
|
if (PCI_HDRTYPE_TYPE(value) > PCI_HDRTYPE_PCB)
|
|
return (PCI_INVALID_IRQ);
|
|
if (PCI_HDRTYPE_MULTIFN(value))
|
|
maxfunc = 7;
|
|
else
|
|
maxfunc = 0;
|
|
|
|
/* Scan all possible functions at this device. */
|
|
for (func = 0; func <= maxfunc; func++) {
|
|
tag = pci_make_tag(pc, bus, device, func);
|
|
value = pci_conf_read(pc, tag, PCI_ID_REG);
|
|
if (PCI_VENDOR(value) == 0xffff)
|
|
continue;
|
|
value = pci_conf_read(pc, tag,
|
|
PCI_INTERRUPT_REG);
|
|
ipin = PCI_INTERRUPT_PIN(value);
|
|
iline = PCI_INTERRUPT_LINE(value);
|
|
|
|
/*
|
|
* See if it uses the pin in question. Note that the passed
|
|
* in pin uses 0 for A, .. 3 for D whereas the intpin
|
|
* register uses 0 for no interrupt, 1 for A, .. 4 for D.
|
|
*/
|
|
if (ipin != pin + 1)
|
|
continue;
|
|
aprint_verbose(
|
|
"%s: ACPI: Found matching pin for %d.%d.INT%c"
|
|
" at func %d: %d\n",
|
|
sc->pl_name, bus, device, pin + 'A', func, iline);
|
|
if (PCI_INTERRUPT_VALID(iline))
|
|
return (iline);
|
|
}
|
|
return (PCI_INVALID_IRQ);
|
|
}
|
|
|
|
/*
|
|
* Find the link structure that corresponds to the resource index passed in
|
|
* via 'source_index'.
|
|
*/
|
|
static struct link *
|
|
acpi_pci_link_lookup(struct acpi_pci_link_softc *sc, int source_index)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sc->pl_num_links; i++)
|
|
if (sc->pl_links[i].l_res_index == source_index)
|
|
return (&sc->pl_links[i]);
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
acpi_pci_link_add_reference(void *v, pci_chipset_tag_t pc, int index,
|
|
int bus, int slot, int pin)
|
|
{
|
|
struct acpi_pci_link_softc *sc = v;
|
|
struct link *link;
|
|
uint8_t bios_irq;
|
|
|
|
/* Bump the reference count. */
|
|
ACPI_SERIAL_BEGIN(pci_link);
|
|
link = acpi_pci_link_lookup(sc, index);
|
|
if (link == NULL) {
|
|
printf("%s: apparently invalid index %d\n", sc->pl_name, index);
|
|
ACPI_SERIAL_END(pci_link);
|
|
return;
|
|
}
|
|
link->l_references++;
|
|
acpi_pci_link_add_functions(sc, link, pc, bus, slot, pin);
|
|
if (link->l_routed)
|
|
pci_link_interrupt_weights[link->l_irq]++;
|
|
|
|
/*
|
|
* The BIOS only routes interrupts via ISA IRQs using the ATPICs
|
|
* (8259As). Thus, if this link is routed via an ISA IRQ, go
|
|
* look to see if the BIOS routed an IRQ for this link at the
|
|
* indicated (bus, slot, pin). If so, we prefer that IRQ for
|
|
* this link and add that IRQ to our list of known-good IRQs.
|
|
* This provides a good work-around for link devices whose _CRS
|
|
* method is either broken or bogus. We only use the value
|
|
* returned by _CRS if we can't find a valid IRQ via this method
|
|
* in fact.
|
|
*
|
|
* If this link is not routed via an ISA IRQ (because we are using
|
|
* APIC for example), then don't bother looking up the BIOS IRQ
|
|
* as if we find one it won't be valid anyway.
|
|
*/
|
|
if (!link->l_isa_irq) {
|
|
ACPI_SERIAL_END(pci_link);
|
|
return;
|
|
}
|
|
|
|
/* Try to find a BIOS IRQ setting from any matching devices. */
|
|
bios_irq = acpi_pci_link_search_irq(sc, pc, bus, slot, pin);
|
|
if (!PCI_INTERRUPT_VALID(bios_irq)) {
|
|
ACPI_SERIAL_END(pci_link);
|
|
return;
|
|
}
|
|
|
|
/* Validate the BIOS IRQ. */
|
|
if (!link_valid_irq(link, bios_irq)) {
|
|
printf("%s: BIOS IRQ %u for %d.%d.INT%c is invalid\n",
|
|
sc->pl_name, bios_irq, (int)bus, slot, pin + 'A');
|
|
} else if (!PCI_INTERRUPT_VALID(link->l_bios_irq)) {
|
|
link->l_bios_irq = bios_irq;
|
|
if (bios_irq < NUM_ISA_INTERRUPTS)
|
|
pci_link_bios_isa_irqs |= (1 << bios_irq);
|
|
if (bios_irq != link->l_initial_irq &&
|
|
PCI_INTERRUPT_VALID(link->l_initial_irq))
|
|
printf(
|
|
"%s: BIOS IRQ %u does not match initial IRQ %u\n",
|
|
sc->pl_name, bios_irq, link->l_initial_irq);
|
|
} else if (bios_irq != link->l_bios_irq)
|
|
printf(
|
|
"%s: BIOS IRQ %u for %d.%d.INT%c does not match "
|
|
"previous BIOS IRQ %u\n",
|
|
sc->pl_name, bios_irq, (int)bus, slot, pin + 'A',
|
|
link->l_bios_irq);
|
|
ACPI_SERIAL_END(pci_link);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
acpi_pci_link_srs_from_crs(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf)
|
|
{
|
|
ACPI_RESOURCE *end, *res;
|
|
ACPI_STATUS status;
|
|
struct link *link;
|
|
int i, in_dpf;
|
|
|
|
/* Fetch the _CRS. */
|
|
srsbuf->Pointer = NULL;
|
|
srsbuf->Length = ACPI_ALLOCATE_BUFFER;
|
|
status = AcpiGetCurrentResources(sc->pl_handle, srsbuf);
|
|
if (ACPI_SUCCESS(status) && srsbuf->Pointer == NULL)
|
|
status = AE_NO_MEMORY;
|
|
if (ACPI_FAILURE(status)) {
|
|
aprint_verbose("%s: Unable to fetch current resources: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
return (status);
|
|
}
|
|
|
|
/* Fill in IRQ resources via link structures. */
|
|
link = sc->pl_links;
|
|
i = 0;
|
|
in_dpf = DPF_OUTSIDE;
|
|
res = (ACPI_RESOURCE *)srsbuf->Pointer;
|
|
end = (ACPI_RESOURCE *)((char *)srsbuf->Pointer + srsbuf->Length);
|
|
for (;;) {
|
|
switch (res->Type) {
|
|
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
|
|
switch (in_dpf) {
|
|
case DPF_OUTSIDE:
|
|
/* We've started the first DPF. */
|
|
in_dpf = DPF_FIRST;
|
|
break;
|
|
case DPF_FIRST:
|
|
/* We've started the second DPF. */
|
|
panic(
|
|
"%s: Multiple dependent functions within a current resource",
|
|
__func__);
|
|
break;
|
|
}
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
|
|
/* We are finished with DPF parsing. */
|
|
KASSERT(in_dpf != DPF_OUTSIDE);
|
|
in_dpf = DPF_OUTSIDE;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
res->Data.Irq.InterruptCount = 1;
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
KASSERT(link->l_irq < NUM_ISA_INTERRUPTS);
|
|
res->Data.Irq.Interrupts[0] = link->l_irq;
|
|
res->Data.Irq.Triggering = link->l_trig;
|
|
res->Data.Irq.Polarity = link->l_pol;
|
|
} else
|
|
res->Data.Irq.Interrupts[0] = 0;
|
|
link++;
|
|
i++;
|
|
break;
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
res->Data.ExtendedIrq.InterruptCount = 1;
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
res->Data.ExtendedIrq.Interrupts[0] =
|
|
link->l_irq;
|
|
res->Data.ExtendedIrq.Triggering =
|
|
link->l_trig;
|
|
res->Data.ExtendedIrq.Polarity = link->l_pol;
|
|
} else
|
|
res->Data.ExtendedIrq.Interrupts[0] = 0;
|
|
link++;
|
|
i++;
|
|
break;
|
|
}
|
|
if (res->Type == ACPI_RESOURCE_TYPE_END_TAG)
|
|
break;
|
|
res = ACPI_NEXT_RESOURCE(res);
|
|
if (res >= end)
|
|
break;
|
|
}
|
|
return (AE_OK);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
acpi_pci_link_srs_from_links(struct acpi_pci_link_softc *sc,
|
|
ACPI_BUFFER *srsbuf)
|
|
{
|
|
ACPI_RESOURCE newres;
|
|
ACPI_STATUS status;
|
|
struct link *link;
|
|
int i;
|
|
|
|
/* Start off with an empty buffer. */
|
|
srsbuf->Pointer = NULL;
|
|
link = sc->pl_links;
|
|
for (i = 0; i < sc->pl_num_links; i++) {
|
|
|
|
/* Add a new IRQ resource from each link. */
|
|
link = &sc->pl_links[i];
|
|
if (link->l_prs_template.Type == ACPI_RESOURCE_TYPE_IRQ) {
|
|
|
|
/* Build an IRQ resource. */
|
|
bcopy(&link->l_prs_template, &newres,
|
|
ACPI_RS_SIZE(newres.Data.Irq));
|
|
newres.Data.Irq.InterruptCount = 1;
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
KASSERT(link->l_irq < NUM_ISA_INTERRUPTS);
|
|
newres.Data.Irq.Interrupts[0] = link->l_irq;
|
|
newres.Data.Irq.Triggering = link->l_trig;
|
|
newres.Data.Irq.Polarity = link->l_pol;
|
|
} else
|
|
newres.Data.Irq.Interrupts[0] = 0;
|
|
} else {
|
|
|
|
/* Build an ExtIRQ resuorce. */
|
|
bcopy(&link->l_prs_template, &newres,
|
|
ACPI_RS_SIZE(newres.Data.ExtendedIrq));
|
|
newres.Data.ExtendedIrq.InterruptCount = 1;
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
newres.Data.ExtendedIrq.Interrupts[0] =
|
|
link->l_irq;
|
|
newres.Data.ExtendedIrq.Triggering =
|
|
link->l_trig;
|
|
newres.Data.ExtendedIrq.Polarity =
|
|
link->l_pol;
|
|
} else {
|
|
newres.Data.ExtendedIrq.Interrupts[0] = 0;
|
|
}
|
|
}
|
|
|
|
/* Add the new resource to the end of the _SRS buffer. */
|
|
status = acpi_AppendBufferResource(srsbuf, &newres);
|
|
if (ACPI_FAILURE(status)) {
|
|
printf("%s: Unable to build resources: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
if (srsbuf->Pointer != NULL)
|
|
ACPI_FREE(srsbuf->Pointer);
|
|
return (status);
|
|
}
|
|
}
|
|
return (AE_OK);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
acpi_pci_link_srs(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf)
|
|
{
|
|
ACPI_STATUS status;
|
|
|
|
if (sc->pl_crs_bad)
|
|
status = acpi_pci_link_srs_from_links(sc, srsbuf);
|
|
else
|
|
status = acpi_pci_link_srs_from_crs(sc, srsbuf);
|
|
|
|
if (ACPI_FAILURE(status))
|
|
printf("%s: Unable to find link srs : %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
|
|
/* Write out new resources via _SRS. */
|
|
return AcpiSetCurrentResources(sc->pl_handle, srsbuf);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
acpi_pci_link_route_irqs(struct acpi_pci_link_softc *sc, int *irq, int *pol,
|
|
int *trig)
|
|
{
|
|
ACPI_RESOURCE *resource, *end;
|
|
ACPI_BUFFER srsbuf;
|
|
ACPI_STATUS status;
|
|
struct link *link;
|
|
int i, is_ext = 0;
|
|
|
|
status = acpi_pci_link_srs(sc, &srsbuf);
|
|
if (ACPI_FAILURE(status)) {
|
|
printf("%s: _SRS failed: %s\n",
|
|
sc->pl_name, AcpiFormatException(status));
|
|
return (status);
|
|
}
|
|
/*
|
|
* Perform acpi_config_intr() on each IRQ resource if it was just
|
|
* routed for the first time.
|
|
*/
|
|
link = sc->pl_links;
|
|
i = 0;
|
|
resource = (ACPI_RESOURCE *)srsbuf.Pointer;
|
|
end = (ACPI_RESOURCE *)((char *)srsbuf.Pointer + srsbuf.Length);
|
|
for (;;) {
|
|
if (resource->Type == ACPI_RESOURCE_TYPE_END_TAG)
|
|
break;
|
|
switch (resource->Type) {
|
|
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
|
|
is_ext = 1;
|
|
/* FALLTHROUGH */
|
|
case ACPI_RESOURCE_TYPE_IRQ:
|
|
/*
|
|
* Only configure the interrupt and update the
|
|
* weights if this link has a valid IRQ and was
|
|
* previously unrouted.
|
|
*/
|
|
if (!link->l_routed &&
|
|
PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
*trig = is_ext ?
|
|
resource->Data.ExtendedIrq.Triggering :
|
|
resource->Data.Irq.Triggering;
|
|
*pol = is_ext ?
|
|
resource->Data.ExtendedIrq.Polarity :
|
|
resource->Data.Irq.Polarity;
|
|
*irq = is_ext ?
|
|
resource->Data.ExtendedIrq.Interrupts[0] :
|
|
resource->Data.Irq.Interrupts[0];
|
|
link->l_routed = TRUE;
|
|
pci_link_interrupt_weights[link->l_irq] +=
|
|
link->l_references;
|
|
}
|
|
link++;
|
|
i++;
|
|
break;
|
|
}
|
|
resource = ACPI_NEXT_RESOURCE(resource);
|
|
if (resource >= end)
|
|
break;
|
|
}
|
|
ACPI_FREE(srsbuf.Pointer);
|
|
return (AE_OK);
|
|
}
|
|
|
|
/*
|
|
* Pick an IRQ to use for this unrouted link.
|
|
*/
|
|
static uint8_t
|
|
acpi_pci_link_choose_irq(struct acpi_pci_link_softc *sc, struct link *link)
|
|
{
|
|
u_int8_t best_irq, pos_irq;
|
|
int best_weight, pos_weight, i;
|
|
|
|
KASSERT(!link->l_routed);
|
|
KASSERT(!PCI_INTERRUPT_VALID(link->l_irq));
|
|
|
|
/*
|
|
* If we have a valid BIOS IRQ, use that. We trust what the BIOS
|
|
* says it routed over what _CRS says the link thinks is routed.
|
|
*/
|
|
if (PCI_INTERRUPT_VALID(link->l_bios_irq))
|
|
return (link->l_bios_irq);
|
|
|
|
/*
|
|
* If we don't have a BIOS IRQ but do have a valid IRQ from _CRS,
|
|
* then use that.
|
|
*/
|
|
if (PCI_INTERRUPT_VALID(link->l_initial_irq))
|
|
return (link->l_initial_irq);
|
|
|
|
/*
|
|
* Ok, we have no useful hints, so we have to pick from the
|
|
* possible IRQs. For ISA IRQs we only use interrupts that
|
|
* have already been used by the BIOS.
|
|
*/
|
|
best_irq = PCI_INVALID_IRQ;
|
|
best_weight = INT_MAX;
|
|
for (i = 0; i < link->l_num_irqs; i++) {
|
|
pos_irq = link->l_irqs[i];
|
|
if (pos_irq < NUM_ISA_INTERRUPTS &&
|
|
(pci_link_bios_isa_irqs & 1 << pos_irq) == 0)
|
|
continue;
|
|
pos_weight = pci_link_interrupt_weights[pos_irq];
|
|
if (pos_weight < best_weight) {
|
|
best_weight = pos_weight;
|
|
best_irq = pos_irq;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is an ISA IRQ, try using the SCI if it is also an ISA
|
|
* interrupt as a fallback.
|
|
*/
|
|
if (link->l_isa_irq && !PCI_INTERRUPT_VALID(best_irq)) {
|
|
pos_irq = AcpiGbl_FADT.SciInterrupt;
|
|
pos_weight = pci_link_interrupt_weights[pos_irq];
|
|
if (pos_weight < best_weight) {
|
|
best_weight = pos_weight;
|
|
best_irq = pos_irq;
|
|
}
|
|
}
|
|
|
|
if (PCI_INTERRUPT_VALID(best_irq)) {
|
|
aprint_verbose("%s: Picked IRQ %u with weight %d\n",
|
|
sc->pl_name, best_irq, best_weight);
|
|
} else
|
|
printf("%s: Unable to choose an IRQ\n", sc->pl_name);
|
|
return (best_irq);
|
|
}
|
|
|
|
int
|
|
acpi_pci_link_route_interrupt(void *v, pci_chipset_tag_t pc, int index,
|
|
int *irq, int *pol, int *trig)
|
|
{
|
|
struct acpi_pci_link_softc *sc = v;
|
|
struct link *link;
|
|
int i;
|
|
pcireg_t reg;
|
|
|
|
ACPI_SERIAL_BEGIN(pci_link);
|
|
link = acpi_pci_link_lookup(sc, index);
|
|
if (link == NULL)
|
|
panic("%s: apparently invalid index %d", __func__, index);
|
|
|
|
/*
|
|
* If this link device is already routed to an interrupt, just return
|
|
* the interrupt it is routed to.
|
|
*/
|
|
if (link->l_routed) {
|
|
KASSERT(PCI_INTERRUPT_VALID(link->l_irq));
|
|
ACPI_SERIAL_END(pci_link);
|
|
*irq = link->l_irq;
|
|
*pol = link->l_pol;
|
|
*trig = link->l_trig;
|
|
return (link->l_irq);
|
|
}
|
|
|
|
/* Choose an IRQ if we need one. */
|
|
if (PCI_INTERRUPT_VALID(link->l_irq)) {
|
|
*irq = link->l_irq;
|
|
*pol = link->l_pol;
|
|
*trig = link->l_trig;
|
|
goto done;
|
|
}
|
|
|
|
link->l_irq = acpi_pci_link_choose_irq(sc, link);
|
|
|
|
/*
|
|
* Try to route the interrupt we picked. If it fails, then
|
|
* assume the interrupt is not routed.
|
|
*/
|
|
if (!PCI_INTERRUPT_VALID(link->l_irq))
|
|
goto done;
|
|
|
|
acpi_pci_link_route_irqs(sc, irq, pol, trig);
|
|
if (!link->l_routed) {
|
|
link->l_irq = PCI_INVALID_IRQ;
|
|
goto done;
|
|
}
|
|
|
|
link->l_pol = *pol;
|
|
link->l_trig = *trig;
|
|
for (i = 0; i < link->l_dev_count; ++i) {
|
|
reg = pci_conf_read(pc, link->l_devices[i],
|
|
PCI_INTERRUPT_REG);
|
|
reg &= ~(PCI_INTERRUPT_LINE_MASK << PCI_INTERRUPT_LINE_SHIFT);
|
|
reg |= link->l_irq << PCI_INTERRUPT_LINE_SHIFT;
|
|
pci_conf_write(pc, link->l_devices[i],
|
|
PCI_INTERRUPT_REG, reg);
|
|
}
|
|
|
|
done:
|
|
ACPI_SERIAL_END(pci_link);
|
|
|
|
return (link->l_irq);
|
|
}
|
|
|
|
/*
|
|
* This is gross, but we abuse the identify routine to perform one-time
|
|
* SYSINIT() style initialization for the driver.
|
|
*/
|
|
static void
|
|
acpi_pci_link_init(struct acpi_pci_link_softc *sc)
|
|
{
|
|
ACPI_BUFFER buf;
|
|
|
|
/*
|
|
* If the SCI is an ISA IRQ, add it to the bitmask of known good
|
|
* ISA IRQs.
|
|
*
|
|
* XXX: If we are using the APIC, the SCI might have been
|
|
* rerouted to an APIC pin in which case this is invalid. However,
|
|
* if we are using the APIC, we also shouldn't be having any PCI
|
|
* interrupts routed via ISA IRQs, so this is probably ok.
|
|
*/
|
|
if (AcpiGbl_FADT.SciInterrupt < NUM_ISA_INTERRUPTS)
|
|
pci_link_bios_isa_irqs |= (1 << AcpiGbl_FADT.SciInterrupt);
|
|
|
|
buf.Length = sizeof (sc->pl_name);
|
|
buf.Pointer = sc->pl_name;
|
|
|
|
if (ACPI_FAILURE(AcpiGetName(sc->pl_handle, ACPI_SINGLE_NAME, &buf)))
|
|
snprintf(sc->pl_name, sizeof (sc->pl_name), "%s",
|
|
"ACPI link device");
|
|
|
|
acpi_pci_link_attach(sc);
|
|
}
|
|
|
|
void *
|
|
acpi_pci_link_devbyhandle(ACPI_HANDLE handle)
|
|
{
|
|
struct acpi_pci_link_softc *sc;
|
|
|
|
TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) {
|
|
if (sc->pl_handle == handle)
|
|
return sc;
|
|
}
|
|
|
|
sc = malloc(sizeof (*sc), M_ACPI, M_WAITOK | M_ZERO);
|
|
sc->pl_handle = handle;
|
|
|
|
acpi_pci_link_init(sc);
|
|
|
|
TAILQ_INSERT_TAIL(&acpi_pci_linkdevs, sc, pl_list);
|
|
|
|
return (void *)sc;
|
|
}
|
|
|
|
void
|
|
acpi_pci_link_resume(void)
|
|
{
|
|
struct acpi_pci_link_softc *sc;
|
|
ACPI_BUFFER srsbuf;
|
|
|
|
TAILQ_FOREACH(sc, &acpi_pci_linkdevs, pl_list) {
|
|
ACPI_SERIAL_BEGIN(pci_link);
|
|
if (ACPI_SUCCESS(acpi_pci_link_srs(sc, &srsbuf)))
|
|
ACPI_FREE(srsbuf.Pointer);
|
|
ACPI_SERIAL_END(pci_link);
|
|
}
|
|
}
|
|
|
|
ACPI_HANDLE
|
|
acpi_pci_link_handle(void *v)
|
|
{
|
|
struct acpi_pci_link_softc *sc = v;
|
|
|
|
return sc->pl_handle;
|
|
}
|
|
|
|
char *
|
|
acpi_pci_link_name(void *v)
|
|
{
|
|
struct acpi_pci_link_softc *sc = v;
|
|
|
|
return sc->pl_name;
|
|
}
|
|
|
|
|
|
/*
|
|
* Append an ACPI_RESOURCE to an ACPI_BUFFER.
|
|
*
|
|
* Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
|
|
* provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible
|
|
* backing block. If the ACPI_RESOURCE is NULL, return an empty set of
|
|
* resources.
|
|
*/
|
|
#define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512
|
|
|
|
static ACPI_STATUS
|
|
acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
|
|
{
|
|
ACPI_RESOURCE *rp;
|
|
void *newp;
|
|
|
|
/* Initialise the buffer if necessary. */
|
|
if (buf->Pointer == NULL) {
|
|
buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
|
|
if ((buf->Pointer = ACPI_ALLOCATE(buf->Length)) == NULL)
|
|
return (AE_NO_MEMORY);
|
|
rp = (ACPI_RESOURCE *)buf->Pointer;
|
|
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
|
|
rp->Length = 0;
|
|
}
|
|
|
|
if (res == NULL)
|
|
return (AE_OK);
|
|
|
|
/*
|
|
* Scan the current buffer looking for the terminator.
|
|
* This will either find the terminator or hit the end
|
|
* of the buffer and return an error.
|
|
*/
|
|
rp = (ACPI_RESOURCE *)buf->Pointer;
|
|
for (;;) {
|
|
/* Range check, don't go outside the buffer */
|
|
if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer +
|
|
buf->Length))
|
|
return (AE_BAD_PARAMETER);
|
|
if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
|
|
break;
|
|
rp = ACPI_NEXT_RESOURCE(rp);
|
|
}
|
|
|
|
/*
|
|
* Check the size of the buffer and expand if required.
|
|
*
|
|
* Required size is:
|
|
* size of existing resources before terminator +
|
|
* size of new resource and header +
|
|
* size of terminator.
|
|
*
|
|
* Note that this loop should really only run once, unless
|
|
* for some reason we are stuffing a *really* huge resource.
|
|
*/
|
|
while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) +
|
|
res->Length + ACPI_RS_SIZE_NO_DATA +
|
|
ACPI_RS_SIZE_MIN) >= buf->Length) {
|
|
if ((newp = ACPI_ALLOCATE(buf->Length * 2)) == NULL)
|
|
return (AE_NO_MEMORY);
|
|
memcpy(newp, buf->Pointer, buf->Length);
|
|
rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
|
|
((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
|
|
ACPI_FREE(buf->Pointer);
|
|
buf->Pointer = newp;
|
|
buf->Length += buf->Length;
|
|
}
|
|
|
|
/* Insert the new resource. */
|
|
memcpy(rp, res, res->Length);
|
|
|
|
/* And add the terminator. */
|
|
rp = ACPI_NEXT_RESOURCE(rp);
|
|
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
|
|
rp->Length = 0;
|
|
|
|
return (AE_OK);
|
|
}
|