NetBSD/sys/arch/arm/arm32/cpu.c

464 lines
13 KiB
C

/* $NetBSD: cpu.c,v 1.1 2001/04/20 18:08:48 matt Exp $ */
/*
* Copyright (c) 1995 Mark Brinicombe.
* Copyright (c) 1995 Brini.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* cpu.c
*
* Probing and configuration for the master cpu
*
* Created : 10/10/95
*/
#include "opt_armfpe.h"
#include "opt_cputypes.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <uvm/uvm_extern.h>
#include <machine/conf.h>
#include <machine/cpu.h>
#include <machine/cpus.h>
#include <machine/undefined.h>
#ifdef ARMFPE
#include <machine/bootconfig.h> /* For boot args */
#include <arm32/fpe-arm/armfpe.h>
#endif /* ARMFPE */
cpu_t cpus[MAX_CPUS];
char cpu_model[64];
volatile int undefined_test; /* Used for FPA test */
extern int cpuctrl; /* cpu control register value */
/* Prototypes */
void identify_master_cpu __P((struct device *dv, int cpu_number));
void identify_arm_cpu __P((struct device *dv, int cpu_number));
void identify_arm_fpu __P((struct device *dv, int cpu_number));
/*
* void cpusattach(struct device *parent, struct device *dev, void *aux)
*
* Attach the main cpu
*/
void
cpu_attach(dv)
struct device *dv;
{
identify_master_cpu(dv, CPU_MASTER);
}
/*
* Used to test for an FPA. The following function is installed as a coproc1
* handler on the undefined instruction vector and then we issue a FPA
* instruction. If undefined_test is non zero then the FPA did not handle
* the instruction so must be absent.
*/
int
fpa_test(address, instruction, frame)
u_int address;
u_int instruction;
trapframe_t *frame;
{
frame->tf_pc += INSN_SIZE;
++undefined_test;
return(0);
}
/*
* If an FPA was found then this function is installed as the coproc1 handler
* on the undefined instruction vector. Currently we don't support FPA's
* so this just triggers an exception.
*/
int
fpa_handler(address, instruction, frame, fault_code)
u_int address;
u_int instruction;
trapframe_t *frame;
int fault_code;
{
u_int fpsr;
__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
printf("FPA exception: fpsr = %08x\n", fpsr);
return(1);
}
/*
* Identify the master (boot) CPU
* This also probes for an FPU and will install an FPE if necessary
*/
void
identify_master_cpu(dv, cpu_number)
struct device *dv;
int cpu_number;
{
u_int fpsr;
void *uh;
cpus[cpu_number].cpu_ctrl = cpuctrl;
/* Get the cpu ID from coprocessor 15 */
cpus[cpu_number].cpu_id = cpu_id();
identify_arm_cpu(dv, cpu_number);
strcpy(cpu_model, cpus[cpu_number].cpu_model);
if (cpus[CPU_MASTER].cpu_class == CPU_CLASS_SA1
&& (cpus[CPU_MASTER].cpu_id & CPU_ID_REVISION_MASK) < 3) {
printf("%s: SA-110 with bugged STM^ instruction\n",
dv->dv_xname);
}
#ifdef CPU_ARM8
if ((cpus[CPU_MASTER].cpu_id & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
int clock = arm8_clock_config(0, 0);
char *fclk;
printf("%s: ARM810 cp15=%02x", dv->dv_xname, clock);
printf(" clock:%s", (clock & 1) ? " dynamic" : "");
printf("%s", (clock & 2) ? " sync" : "");
switch ((clock >> 2) & 3) {
case 0 :
fclk = "bus clock";
break;
case 1 :
fclk = "ref clock";
break;
case 3 :
fclk = "pll";
break;
default :
fclk = "illegal";
break;
}
printf(" fclk source=%s\n", fclk);
}
#endif
/*
* Ok now we test for an FPA
* At this point no floating point emulator has been installed.
* This means any FP instruction will cause undefined exception.
* We install a temporay coproc 1 handler which will modify
* undefined_test if it is called.
* We then try to read the FP status register. If undefined_test
* has been decremented then the instruction was not handled by
* an FPA so we know the FPA is missing. If undefined_test is
* still 1 then we know the instruction was handled by an FPA.
* We then remove our test handler and look at the
* FP status register for identification.
*/
uh = install_coproc_handler(FP_COPROC, fpa_test);
undefined_test = 0;
__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
remove_coproc_handler(uh);
if (undefined_test == 0) {
cpus[cpu_number].fpu_type = (fpsr >> 24);
switch (fpsr >> 24) {
case 0x81 :
cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
break;
default :
cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
break;
}
cpus[cpu_number].fpu_flags = 0;
install_coproc_handler(FP_COPROC, fpa_handler);
} else {
cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
cpus[cpu_number].fpu_flags = 0;
/*
* Ok if ARMFPE is defined and the boot options request the
* ARM FPE then it will be installed as the FPE.
* This is just while I work on integrating the new FPE.
* It means the new FPE gets installed if compiled int (ARMFPE
* defined) and also gives me a on/off option when I boot in
* case the new FPE is causing panics.
*/
#ifdef ARMFPE
if (boot_args) {
char *ptr;
ptr = strstr(boot_args, "noarmfpe");
if (!ptr) {
if (initialise_arm_fpe(&cpus[cpu_number]) != 0)
identify_arm_fpu(dv, cpu_number);
}
}
#endif
}
identify_arm_fpu(dv, cpu_number);
}
struct cpuidtab {
u_int32_t cpuid;
enum cpu_class cpu_class;
char * cpu_name;
};
const struct cpuidtab cpuids[] = {
{ CPU_ID_ARM2, CPU_CLASS_ARM2, "ARM2" },
{ CPU_ID_ARM250, CPU_CLASS_ARM2AS, "ARM250" },
{ CPU_ID_ARM3, CPU_CLASS_ARM3, "ARM3" },
{ CPU_ID_ARM600, CPU_CLASS_ARM6, "ARM600" },
{ CPU_ID_ARM610, CPU_CLASS_ARM6, "ARM610" },
{ CPU_ID_ARM620, CPU_CLASS_ARM6, "ARM620" },
{ CPU_ID_ARM700, CPU_CLASS_ARM7, "ARM700" },
{ CPU_ID_ARM710, CPU_CLASS_ARM7, "ARM710" },
{ CPU_ID_ARM7500, CPU_CLASS_ARM7, "ARM7500" },
{ CPU_ID_ARM710A, CPU_CLASS_ARM7, "ARM710a" },
{ CPU_ID_ARM7500FE, CPU_CLASS_ARM7, "ARM7500FE" },
{ CPU_ID_ARM710T, CPU_CLASS_ARM7TDMI, "ARM710T" },
{ CPU_ID_ARM720T, CPU_CLASS_ARM7TDMI, "ARM720T" },
{ CPU_ID_ARM740T8K, CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)" },
{ CPU_ID_ARM740T4K, CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)" },
{ CPU_ID_ARM810, CPU_CLASS_ARM8, "ARM810" },
{ CPU_ID_ARM920T, CPU_CLASS_ARM9TDMI, "ARM920T" },
{ CPU_ID_ARM922T, CPU_CLASS_ARM9TDMI, "ARM922T" },
{ CPU_ID_ARM940T, CPU_CLASS_ARM9TDMI, "ARM940T" },
{ CPU_ID_ARM946ES, CPU_CLASS_ARM9ES, "ARM946E-S" },
{ CPU_ID_ARM966ES, CPU_CLASS_ARM9ES, "ARM966E-S" },
{ CPU_ID_ARM966ESR1, CPU_CLASS_ARM9ES, "ARM966E-S (Rev 1)" },
{ CPU_ID_SA110, CPU_CLASS_SA1, "SA-110" },
{ CPU_ID_SA1100, CPU_CLASS_SA1, "SA-1100" },
{ CPU_ID_SA1110, CPU_CLASS_SA1, "SA-1110" },
{ CPU_ID_I80200, CPU_CLASS_XSCALE, "80200" },
{ 0, CPU_CLASS_NONE, NULL }
};
struct cpu_classtab {
char *class_name;
char *class_option;
};
const struct cpu_classtab cpu_classes[] = {
{ "unknown", NULL }, /* CPU_CLASS_NONE */
{ "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
{ "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
{ "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
{ "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
{ "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
{ "ARM7TDMI", NULL }, /* CPU_CLASS_ARM7TDMI */
{ "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
{ "ARM9TDMI", NULL }, /* CPU_CLASS_ARM9TDMI */
{ "ARM9E-S", NULL }, /* CPU_CLASS_ARM9ES */
{ "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
{ "Xscale", NULL }, /* CPU_CLASS_XSCALE */
};
/*
* Report the type of the specifed arm processor. This uses the generic and
* arm specific information in the cpu structure to identify the processor.
* The remaining fields in the cpu structure are filled in appropriately.
*/
void
identify_arm_cpu(dv, cpu_number)
struct device *dv;
int cpu_number;
{
cpu_t *cpu;
u_int cpuid;
int i;
cpu = &cpus[cpu_number];
cpuid = cpu->cpu_id;
if (cpuid == 0) {
printf("Processor failed probe - no CPU ID\n");
return;
}
for (i = 0; cpuids[i].cpuid != 0; i++)
if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
cpu->cpu_class = cpuids[i].cpu_class;
sprintf(cpu->cpu_model, "%s rev %d (%s core)",
cpuids[i].cpu_name, cpuid & CPU_ID_REVISION_MASK,
cpu_classes[cpu->cpu_class].class_name);
break;
}
if (cpuids[i].cpuid == 0)
sprintf(cpu->cpu_model, "unknown CPU (ID = 0x%x)", cpuid);
switch (cpu->cpu_class) {
case CPU_CLASS_ARM6:
case CPU_CLASS_ARM7:
case CPU_CLASS_ARM8:
if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
strcat(cpu->cpu_model, " IDC disabled");
else
strcat(cpu->cpu_model, " IDC enabled");
break;
case CPU_CLASS_SA1:
if ((cpu->cpu_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
strcat(cpu->cpu_model, " DC disabled");
else
strcat(cpu->cpu_model, " DC enabled");
if ((cpu->cpu_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
strcat(cpu->cpu_model, " IC disabled");
else
strcat(cpu->cpu_model, " IC enabled");
break;
}
if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
strcat(cpu->cpu_model, " WB disabled");
else
strcat(cpu->cpu_model, " WB enabled");
if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
strcat(cpu->cpu_model, " LABT");
else
strcat(cpu->cpu_model, " EABT");
if (cpu->cpu_ctrl & CPU_CONTROL_BPRD_ENABLE)
strcat(cpu->cpu_model, " branch prediction enabled");
/* Print the info */
printf(": %s\n", cpu->cpu_model);
switch (cpu->cpu_class) {
#ifdef CPU_ARM2
case CPU_CLASS_ARM2:
#endif
#ifdef CPU_ARM250
case CPU_CLASS_ARM2AS:
#endif
#ifdef CPU_ARM3
case CPU_CLASS_ARM3:
#endif
#ifdef CPU_ARM6
case CPU_CLASS_ARM6:
#endif
#ifdef CPU_ARM7
case CPU_CLASS_ARM7:
#endif
#ifdef CPU_ARM8
case CPU_CLASS_ARM8:
#endif
#ifdef CPU_SA110
case CPU_CLASS_SA1:
#endif
break;
default:
if (cpu_classes[cpu->cpu_class].class_option != NULL)
printf("%s: %s does not fully support this CPU."
"\n", dv->dv_xname, ostype);
else {
printf("%s: This kernel does not fully support "
"this CPU.\n", dv->dv_xname);
printf("%s: Recompile with \"options %s\" to "
"correct this.\n", dv->dv_xname,
cpu_classes[cpu->cpu_class].class_option);
}
break;
}
}
/*
* Report the type of the specifed arm fpu. This uses the generic and arm
* specific information in the cpu structure to identify the fpu. The
* remaining fields in the cpu structure are filled in appropriately.
*/
void
identify_arm_fpu(dv, cpu_number)
struct device *dv;
int cpu_number;
{
cpu_t *cpu;
cpu = &cpus[cpu_number];
/* Now for the FP info */
switch (cpu->fpu_class) {
case FPU_CLASS_NONE :
strcpy(cpu->fpu_model, "None");
break;
case FPU_CLASS_FPE :
printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
printf("%s: no FP hardware found\n", dv->dv_xname);
break;
case FPU_CLASS_FPA :
printf("%s: FPE: %s\n", dv->dv_xname, cpu->fpu_model);
if (cpu->fpu_type == FPU_TYPE_FPA11) {
strcpy(cpu->fpu_model, "FPA11");
printf("%s: FPA11 found\n", dv->dv_xname);
} else {
strcpy(cpu->fpu_model, "FPA");
printf("%s: FPA10 found\n", dv->dv_xname);
}
if ((cpu->fpu_flags & 4) == 0)
strcat(cpu->fpu_model, "");
else
strcat(cpu->fpu_model, " clk/2");
break;
case FPU_CLASS_FPU :
sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n",
cpu->fpu_type);
printf("%s: %s\n", dv->dv_xname, cpu->fpu_model);
break;
}
}
/* End of cpu.c */