NetBSD/sys/netinet6/nd6.c
ozaki-r ecd5b23eef Use lltable/llentry for NDP
lltable and llentry were introduced to replace ARP cache data structure
for further restructuring of the routing table: L2 nexthop cache
separation. This change replaces the NDP cache data structure
(llinfo_nd6) with them as well as ARP.

One noticeable change is for neighbor cache GC mechanism that was
introduced to prevent IPv6 DoS attacks. net.inet6.ip6.neighborgcthresh
was the max number of caches that we store in the system. After
introducing lltable/llentry, the value is changed to be per-interface
basis because lltable/llentry stores neighbor caches in each interface
separately. And the change brings one degradation; the old GC mechanism
dropped exceeded packets based on LRU while the new implementation drops
packets in order from the beginning of lltable (a hash table + linked
lists). It would be improved in the future.

Added functions in in6.c come from FreeBSD (as of r286629) and are
tweaked for NetBSD.

Proposed on tech-kern and tech-net.
2015-11-25 06:21:26 +00:00

2846 lines
71 KiB
C

/* $NetBSD: nd6.c,v 1.181 2015/11/25 06:21:26 ozaki-r Exp $ */
/* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.181 2015/11/25 06:21:26 ozaki-r Exp $");
#ifdef _KERNEL_OPT
#include "opt_net_mpsafe.h"
#endif
#include "bridge.h"
#include "carp.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/protosw.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/queue.h>
#include <sys/cprng.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llatbl.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/if_ether.h>
#include <net/if_fddi.h>
#include <net/if_arc.h>
#include <netinet/in.h>
#include <netinet6/in6_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#include <netinet6/nd6.h>
#include <netinet6/in6_ifattach.h>
#include <netinet/icmp6.h>
#include <netinet6/icmp6_private.h>
#include <net/net_osdep.h>
#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
/* timer values */
int nd6_prune = 1; /* walk list every 1 seconds */
int nd6_delay = 5; /* delay first probe time 5 second */
int nd6_umaxtries = 3; /* maximum unicast query */
int nd6_mmaxtries = 3; /* maximum multicast query */
int nd6_useloopback = 1; /* use loopback interface for local traffic */
int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
/* preventing too many loops in ND option parsing */
int nd6_maxndopt = 10; /* max # of ND options allowed */
int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
#ifdef ND6_DEBUG
int nd6_debug = 1;
#else
int nd6_debug = 0;
#endif
/* for debugging? */
static int nd6_inuse, nd6_allocated;
struct nd_drhead nd_defrouter;
struct nd_prhead nd_prefix = { 0 };
int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
static const struct sockaddr_in6 all1_sa = {
.sin6_family = AF_INET6
, .sin6_len = sizeof(struct sockaddr_in6)
, .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff}}
};
static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
static void nd6_slowtimo(void *);
static int regen_tmpaddr(struct in6_ifaddr *);
static void nd6_free(struct rtentry *, struct llentry *, int);
static void nd6_llinfo_timer(void *);
static void clear_llinfo_pqueue(struct llentry *);
callout_t nd6_slowtimo_ch;
callout_t nd6_timer_ch;
extern callout_t in6_tmpaddrtimer_ch;
static int fill_drlist(void *, size_t *, size_t);
static int fill_prlist(void *, size_t *, size_t);
MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
void
nd6_init(void)
{
static int nd6_init_done = 0;
if (nd6_init_done) {
log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
return;
}
/* initialization of the default router list */
TAILQ_INIT(&nd_defrouter);
nd6_init_done = 1;
callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
/* start timer */
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
nd6_slowtimo, NULL);
}
struct nd_ifinfo *
nd6_ifattach(struct ifnet *ifp)
{
struct nd_ifinfo *nd;
nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
nd->initialized = 1;
nd->chlim = IPV6_DEFHLIM;
nd->basereachable = REACHABLE_TIME;
nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
nd->retrans = RETRANS_TIMER;
nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
* A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
* because one of its members should. */
if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
(ifp->if_flags & IFF_LOOPBACK))
nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
/* A loopback interface does not need to accept RTADV.
* A bridge interface should not accept RTADV
* because one of its members should. */
if (ip6_accept_rtadv &&
!(ifp->if_flags & IFF_LOOPBACK) &&
!(ifp->if_type != IFT_BRIDGE))
nd->flags |= ND6_IFF_ACCEPT_RTADV;
/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
nd6_setmtu0(ifp, nd);
return nd;
}
void
nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
{
nd6_purge(ifp, ext);
free(ext->nd_ifinfo, M_IP6NDP);
}
void
nd6_setmtu(struct ifnet *ifp)
{
nd6_setmtu0(ifp, ND_IFINFO(ifp));
}
void
nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
{
u_int32_t omaxmtu;
omaxmtu = ndi->maxmtu;
switch (ifp->if_type) {
case IFT_ARCNET:
ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
break;
case IFT_FDDI:
ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
break;
default:
ndi->maxmtu = ifp->if_mtu;
break;
}
/*
* Decreasing the interface MTU under IPV6 minimum MTU may cause
* undesirable situation. We thus notify the operator of the change
* explicitly. The check for omaxmtu is necessary to restrict the
* log to the case of changing the MTU, not initializing it.
*/
if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
" small for IPv6 which needs %lu\n",
if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
IPV6_MMTU);
}
if (ndi->maxmtu > in6_maxmtu)
in6_setmaxmtu(); /* check all interfaces just in case */
}
void
nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
{
memset(ndopts, 0, sizeof(*ndopts));
ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
ndopts->nd_opts_last
= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
if (icmp6len == 0) {
ndopts->nd_opts_done = 1;
ndopts->nd_opts_search = NULL;
}
}
/*
* Take one ND option.
*/
struct nd_opt_hdr *
nd6_option(union nd_opts *ndopts)
{
struct nd_opt_hdr *nd_opt;
int olen;
KASSERT(ndopts != NULL);
KASSERT(ndopts->nd_opts_last != NULL);
if (ndopts->nd_opts_search == NULL)
return NULL;
if (ndopts->nd_opts_done)
return NULL;
nd_opt = ndopts->nd_opts_search;
/* make sure nd_opt_len is inside the buffer */
if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
memset(ndopts, 0, sizeof(*ndopts));
return NULL;
}
olen = nd_opt->nd_opt_len << 3;
if (olen == 0) {
/*
* Message validation requires that all included
* options have a length that is greater than zero.
*/
memset(ndopts, 0, sizeof(*ndopts));
return NULL;
}
ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
/* option overruns the end of buffer, invalid */
memset(ndopts, 0, sizeof(*ndopts));
return NULL;
} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
/* reached the end of options chain */
ndopts->nd_opts_done = 1;
ndopts->nd_opts_search = NULL;
}
return nd_opt;
}
/*
* Parse multiple ND options.
* This function is much easier to use, for ND routines that do not need
* multiple options of the same type.
*/
int
nd6_options(union nd_opts *ndopts)
{
struct nd_opt_hdr *nd_opt;
int i = 0;
KASSERT(ndopts != NULL);
KASSERT(ndopts->nd_opts_last != NULL);
if (ndopts->nd_opts_search == NULL)
return 0;
while (1) {
nd_opt = nd6_option(ndopts);
if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
/*
* Message validation requires that all included
* options have a length that is greater than zero.
*/
ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
memset(ndopts, 0, sizeof(*ndopts));
return -1;
}
if (nd_opt == NULL)
goto skip1;
switch (nd_opt->nd_opt_type) {
case ND_OPT_SOURCE_LINKADDR:
case ND_OPT_TARGET_LINKADDR:
case ND_OPT_MTU:
case ND_OPT_REDIRECTED_HEADER:
if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
nd6log((LOG_INFO,
"duplicated ND6 option found (type=%d)\n",
nd_opt->nd_opt_type));
/* XXX bark? */
} else {
ndopts->nd_opt_array[nd_opt->nd_opt_type]
= nd_opt;
}
break;
case ND_OPT_PREFIX_INFORMATION:
if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
ndopts->nd_opt_array[nd_opt->nd_opt_type]
= nd_opt;
}
ndopts->nd_opts_pi_end =
(struct nd_opt_prefix_info *)nd_opt;
break;
default:
/*
* Unknown options must be silently ignored,
* to accommodate future extension to the protocol.
*/
nd6log((LOG_DEBUG,
"nd6_options: unsupported option %d - "
"option ignored\n", nd_opt->nd_opt_type));
}
skip1:
i++;
if (i > nd6_maxndopt) {
ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
nd6log((LOG_INFO, "too many loop in nd opt\n"));
break;
}
if (ndopts->nd_opts_done)
break;
}
return 0;
}
/*
* ND6 timer routine to handle ND6 entries
*/
void
nd6_llinfo_settimer_locked(struct llentry *ln, long xtick)
{
LLE_WLOCK_ASSERT(ln);
if (xtick < 0) {
ln->ln_expire = 0;
ln->ln_ntick = 0;
callout_halt(&ln->ln_timer_ch, &ln->lle_lock);
} else {
ln->ln_expire = time_uptime + xtick / hz;
LLE_ADDREF(ln);
if (xtick > INT_MAX) {
ln->ln_ntick = xtick - INT_MAX;
callout_reset(&ln->ln_timer_ch, INT_MAX,
nd6_llinfo_timer, ln);
} else {
ln->ln_ntick = 0;
callout_reset(&ln->ln_timer_ch, xtick,
nd6_llinfo_timer, ln);
}
}
}
void
nd6_llinfo_settimer(struct llentry *ln, long xtick)
{
LLE_WLOCK(ln);
nd6_llinfo_settimer_locked(ln, xtick);
LLE_WUNLOCK(ln);
}
/*
* Gets source address of the first packet in hold queue
* and stores it in @src.
* Returns pointer to @src (if hold queue is not empty) or NULL.
*/
static struct in6_addr *
nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
{
struct ip6_hdr *hip6;
if (ln == NULL || ln->ln_hold == NULL)
return NULL;
/*
* assuming every packet in ln_hold has the same IP header
*/
hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
/* XXX pullup? */
if (sizeof(*hip6) < ln->ln_hold->m_len)
*src = hip6->ip6_src;
else
src = NULL;
return src;
}
static void
nd6_llinfo_timer(void *arg)
{
struct llentry *ln = arg;
struct rtentry *rt;
const struct sockaddr_in6 *dst;
struct ifnet *ifp;
struct nd_ifinfo *ndi = NULL;
bool send_ns = false;
const struct in6_addr *daddr6 = NULL;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
LLE_WLOCK(ln);
if (ln->ln_ntick > 0) {
nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
goto out;
}
if (callout_pending(&ln->la_timer)) {
/*
* Here we are a bit odd here in the treatment of
* active/pending. If the pending bit is set, it got
* rescheduled before I ran. The active
* bit we ignore, since if it was stopped
* in ll_tablefree() and was currently running
* it would have return 0 so the code would
* not have deleted it since the callout could
* not be stopped so we want to go through
* with the delete here now. If the callout
* was restarted, the pending bit will be back on and
* we just want to bail since the callout_reset would
* return 1 and our reference would have been removed
* by nd6_llinfo_settimer_locked above since canceled
* would have been 1.
*/
goto out;
}
ifp = ln->lle_tbl->llt_ifp;
rt = ln->ln_rt;
KASSERT(rt != NULL);
KASSERT(ifp != NULL);
ndi = ND_IFINFO(ifp);
dst = satocsin6(rt_getkey(rt));
/* sanity check */
if (rt->rt_llinfo && (struct llentry *)rt->rt_llinfo != ln)
panic("rt_llinfo(%p) is not equal to ln(%p)",
rt->rt_llinfo, ln);
if (!dst)
panic("dst=0 in nd6_timer(ln=%p)", ln);
switch (ln->ln_state) {
case ND6_LLINFO_INCOMPLETE:
if (ln->ln_asked < nd6_mmaxtries) {
ln->ln_asked++;
send_ns = true;
} else {
struct mbuf *m = ln->ln_hold;
if (m) {
struct mbuf *m0;
/*
* assuming every packet in ln_hold has
* the same IP header
*/
m0 = m->m_nextpkt;
m->m_nextpkt = NULL;
ln->ln_hold = m0;
clear_llinfo_pqueue(ln);
}
nd6_free(rt, ln, 0);
ln = NULL;
if (m != NULL)
icmp6_error2(m, ICMP6_DST_UNREACH,
ICMP6_DST_UNREACH_ADDR, 0, ifp);
}
break;
case ND6_LLINFO_REACHABLE:
if (!ND6_LLINFO_PERMANENT(ln)) {
ln->ln_state = ND6_LLINFO_STALE;
nd6_llinfo_settimer_locked(ln, (long)nd6_gctimer * hz);
}
break;
case ND6_LLINFO_PURGE:
case ND6_LLINFO_STALE:
/* Garbage Collection(RFC 2461 5.3) */
if (!ND6_LLINFO_PERMANENT(ln)) {
nd6_free(rt, ln, 1);
ln = NULL;
}
break;
case ND6_LLINFO_DELAY:
if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
/* We need NUD */
ln->ln_asked = 1;
ln->ln_state = ND6_LLINFO_PROBE;
daddr6 = &dst->sin6_addr;
send_ns = true;
} else {
ln->ln_state = ND6_LLINFO_STALE; /* XXX */
nd6_llinfo_settimer_locked(ln, (long)nd6_gctimer * hz);
}
break;
case ND6_LLINFO_PROBE:
if (ln->ln_asked < nd6_umaxtries) {
ln->ln_asked++;
daddr6 = &dst->sin6_addr;
send_ns = true;
} else {
nd6_free(rt, ln, 0);
ln = NULL;
}
break;
}
if (send_ns) {
struct in6_addr src, *psrc;
nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
psrc = nd6_llinfo_get_holdsrc(ln, &src);
LLE_FREE_LOCKED(ln);
ln = NULL;
nd6_ns_output(ifp, daddr6, &dst->sin6_addr, psrc, 0);
}
out:
if (ln != NULL)
LLE_FREE_LOCKED(ln);
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/*
* ND6 timer routine to expire default route list and prefix list
*/
void
nd6_timer(void *ignored_arg)
{
struct nd_defrouter *next_dr, *dr;
struct nd_prefix *next_pr, *pr;
struct in6_ifaddr *ia6, *nia6;
callout_reset(&nd6_timer_ch, nd6_prune * hz,
nd6_timer, NULL);
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
/* expire default router list */
TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
if (dr->expire && dr->expire < time_uptime) {
defrtrlist_del(dr, NULL);
}
}
/*
* expire interface addresses.
* in the past the loop was inside prefix expiry processing.
* However, from a stricter speci-confrmance standpoint, we should
* rather separate address lifetimes and prefix lifetimes.
*/
addrloop:
for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
nia6 = ia6->ia_next;
/* check address lifetime */
if (IFA6_IS_INVALID(ia6)) {
int regen = 0;
/*
* If the expiring address is temporary, try
* regenerating a new one. This would be useful when
* we suspended a laptop PC, then turned it on after a
* period that could invalidate all temporary
* addresses. Although we may have to restart the
* loop (see below), it must be after purging the
* address. Otherwise, we'd see an infinite loop of
* regeneration.
*/
if (ip6_use_tempaddr &&
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
if (regen_tmpaddr(ia6) == 0)
regen = 1;
}
in6_purgeaddr(&ia6->ia_ifa);
if (regen)
goto addrloop; /* XXX: see below */
} else if (IFA6_IS_DEPRECATED(ia6)) {
int oldflags = ia6->ia6_flags;
if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
ia6->ia6_flags |= IN6_IFF_DEPRECATED;
rt_newaddrmsg(RTM_NEWADDR,
(struct ifaddr *)ia6, 0, NULL);
}
/*
* If a temporary address has just become deprecated,
* regenerate a new one if possible.
*/
if (ip6_use_tempaddr &&
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
(oldflags & IN6_IFF_DEPRECATED) == 0) {
if (regen_tmpaddr(ia6) == 0) {
/*
* A new temporary address is
* generated.
* XXX: this means the address chain
* has changed while we are still in
* the loop. Although the change
* would not cause disaster (because
* it's not a deletion, but an
* addition,) we'd rather restart the
* loop just for safety. Or does this
* significantly reduce performance??
*/
goto addrloop;
}
}
} else {
/*
* A new RA might have made a deprecated address
* preferred.
*/
if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
rt_newaddrmsg(RTM_NEWADDR,
(struct ifaddr *)ia6, 0, NULL);
}
}
}
/* expire prefix list */
LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
/*
* check prefix lifetime.
* since pltime is just for autoconf, pltime processing for
* prefix is not necessary.
*/
if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
/*
* address expiration and prefix expiration are
* separate. NEVER perform in6_purgeaddr here.
*/
prelist_remove(pr);
}
}
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/* ia6: deprecated/invalidated temporary address */
static int
regen_tmpaddr(struct in6_ifaddr *ia6)
{
struct ifaddr *ifa;
struct ifnet *ifp;
struct in6_ifaddr *public_ifa6 = NULL;
ifp = ia6->ia_ifa.ifa_ifp;
IFADDR_FOREACH(ifa, ifp) {
struct in6_ifaddr *it6;
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
it6 = (struct in6_ifaddr *)ifa;
/* ignore no autoconf addresses. */
if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
continue;
/* ignore autoconf addresses with different prefixes. */
if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
continue;
/*
* Now we are looking at an autoconf address with the same
* prefix as ours. If the address is temporary and is still
* preferred, do not create another one. It would be rare, but
* could happen, for example, when we resume a laptop PC after
* a long period.
*/
if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
!IFA6_IS_DEPRECATED(it6)) {
public_ifa6 = NULL;
break;
}
/*
* This is a public autoconf address that has the same prefix
* as ours. If it is preferred, keep it. We can't break the
* loop here, because there may be a still-preferred temporary
* address with the prefix.
*/
if (!IFA6_IS_DEPRECATED(it6))
public_ifa6 = it6;
}
if (public_ifa6 != NULL) {
int e;
/*
* Random factor is introduced in the preferred lifetime, so
* we do not need additional delay (3rd arg to in6_tmpifadd).
*/
if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
" tmp addr, errno=%d\n", e);
return -1;
}
return 0;
}
return -1;
}
bool
nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
{
switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
return true;
case ND6_IFF_ACCEPT_RTADV:
return ip6_accept_rtadv != 0;
case ND6_IFF_OVERRIDE_RTADV:
case 0:
default:
return false;
}
}
/*
* Nuke neighbor cache/prefix/default router management table, right before
* ifp goes away.
*/
void
nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
{
struct nd_defrouter *dr, *ndr;
struct nd_prefix *pr, *npr;
/*
* During detach, the ND info might be already removed, but
* then is explitly passed as argument.
* Otherwise get it from ifp->if_afdata.
*/
if (ext == NULL)
ext = ifp->if_afdata[AF_INET6];
if (ext == NULL)
return;
/*
* Nuke default router list entries toward ifp.
* We defer removal of default router list entries that is installed
* in the routing table, in order to keep additional side effects as
* small as possible.
*/
TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
if (dr->installed)
continue;
if (dr->ifp == ifp) {
KASSERT(ext != NULL);
defrtrlist_del(dr, ext);
}
}
TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
if (!dr->installed)
continue;
if (dr->ifp == ifp) {
KASSERT(ext != NULL);
defrtrlist_del(dr, ext);
}
}
/* Nuke prefix list entries toward ifp */
LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
if (pr->ndpr_ifp == ifp) {
/*
* Because if_detach() does *not* release prefixes
* while purging addresses the reference count will
* still be above zero. We therefore reset it to
* make sure that the prefix really gets purged.
*/
pr->ndpr_refcnt = 0;
/*
* Previously, pr->ndpr_addr is removed as well,
* but I strongly believe we don't have to do it.
* nd6_purge() is only called from in6_ifdetach(),
* which removes all the associated interface addresses
* by itself.
* (jinmei@kame.net 20010129)
*/
prelist_remove(pr);
}
}
/* cancel default outgoing interface setting */
if (nd6_defifindex == ifp->if_index)
nd6_setdefaultiface(0);
/* XXX: too restrictive? */
if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
if (ndi && nd6_accepts_rtadv(ndi)) {
/* refresh default router list */
defrouter_select();
}
}
/*
* We may not need to nuke the neighbor cache entries here
* because the neighbor cache is kept in if_afdata[AF_INET6].
* nd6_purge() is invoked by in6_ifdetach() which is called
* from if_detach() where everything gets purged. However
* in6_ifdetach is directly called from vlan(4), so we still
* need to purge entries here.
*/
if (ext->lltable != NULL)
lltable_purge_entries(ext->lltable);
}
static struct rtentry *
nd6_lookup1(const struct in6_addr *addr6, int create, struct ifnet *ifp,
int cloning)
{
struct rtentry *rt;
struct sockaddr_in6 sin6;
sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
rt = rtalloc1((struct sockaddr *)&sin6, create);
if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
/*
* This is the case for the default route.
* If we want to create a neighbor cache for the address, we
* should free the route for the destination and allocate an
* interface route.
*/
if (create) {
rtfree(rt);
rt = NULL;
}
}
if (rt != NULL)
;
else if (create && ifp) {
int e;
/*
* If no route is available and create is set,
* we allocate a host route for the destination
* and treat it like an interface route.
* This hack is necessary for a neighbor which can't
* be covered by our own prefix.
*/
struct ifaddr *ifa =
ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
if (ifa == NULL)
return NULL;
/*
* Create a new route. RTF_LLINFO is necessary
* to create a Neighbor Cache entry for the
* destination in nd6_rtrequest which will be
* called in rtrequest via ifa->ifa_rtrequest.
*/
if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
(ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
~RTF_CLONING, &rt)) != 0) {
#if 0
log(LOG_ERR,
"nd6_lookup: failed to add route for a "
"neighbor(%s), errno=%d\n",
ip6_sprintf(addr6), e);
#endif
return NULL;
}
if (rt == NULL)
return NULL;
if (rt->rt_llinfo) {
struct llentry *ln = rt->rt_llinfo;
ln->ln_state = ND6_LLINFO_NOSTATE;
}
} else
return NULL;
/*
* Check for a cloning route to match the address.
* This should only be set from in6_is_addr_neighbor so we avoid
* a potentially expensive second call to rtalloc1.
*/
if (cloning &&
rt->rt_flags & (RTF_CLONING | RTF_CLONED) &&
(rt->rt_ifp == ifp
#if NBRIDGE > 0
|| rt->rt_ifp->if_bridge == ifp->if_bridge
#endif
#if NCARP > 0
|| (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
(rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
(ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
rt->rt_ifp->if_carpdev == ifp->if_carpdev)
#endif
))
return rt;
/*
* Validation for the entry.
* Note that the check for rt_llinfo is necessary because a cloned
* route from a parent route that has the L flag (e.g. the default
* route to a p2p interface) may have the flag, too, while the
* destination is not actually a neighbor.
* XXX: we can't use rt->rt_ifp to check for the interface, since
* it might be the loopback interface if the entry is for our
* own address on a non-loopback interface. Instead, we should
* use rt->rt_ifa->ifa_ifp, which would specify the REAL
* interface.
* Note also that ifa_ifp and ifp may differ when we connect two
* interfaces to a same link, install a link prefix to an interface,
* and try to install a neighbor cache on an interface that does not
* have a route to the prefix.
*/
if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
(ifp && rt->rt_ifa->ifa_ifp != ifp)) {
if (create) {
nd6log((LOG_DEBUG,
"nd6_lookup: failed to lookup %s (if = %s)\n",
ip6_sprintf(addr6),
ifp ? if_name(ifp) : "unspec"));
}
rtfree(rt);
return NULL;
}
return rt;
}
struct rtentry *
nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
{
return nd6_lookup1(addr6, create, ifp, 0);
}
/*
* Detect if a given IPv6 address identifies a neighbor on a given link.
* XXX: should take care of the destination of a p2p link?
*/
int
nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
{
struct nd_prefix *pr;
struct rtentry *rt;
/*
* A link-local address is always a neighbor.
* XXX: a link does not necessarily specify a single interface.
*/
if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
struct sockaddr_in6 sin6_copy;
u_int32_t zone;
/*
* We need sin6_copy since sa6_recoverscope() may modify the
* content (XXX).
*/
sin6_copy = *addr;
if (sa6_recoverscope(&sin6_copy))
return 0; /* XXX: should be impossible */
if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
return 0;
if (sin6_copy.sin6_scope_id == zone)
return 1;
else
return 0;
}
/*
* If the address matches one of our on-link prefixes, it should be a
* neighbor.
*/
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
if (pr->ndpr_ifp != ifp)
continue;
if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
continue;
if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
&addr->sin6_addr, &pr->ndpr_mask))
return 1;
}
/*
* If the default router list is empty, all addresses are regarded
* as on-link, and thus, as a neighbor.
* XXX: we restrict the condition to hosts, because routers usually do
* not have the "default router list".
*/
if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
nd6_defifindex == ifp->if_index) {
return 1;
}
/*
* Even if the address matches none of our addresses, it might match
* a cloning route or be in the neighbor cache.
*/
rt = nd6_lookup1(&addr->sin6_addr, 0, ifp, 1);
if (rt != NULL) {
rtfree(rt);
return 1;
}
return 0;
}
/*
* Free an nd6 llinfo entry.
* Since the function would cause significant changes in the kernel, DO NOT
* make it global, unless you have a strong reason for the change, and are sure
* that the change is safe.
*/
static void
nd6_free(struct rtentry *rt, struct llentry *ln, int gc)
{
struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
struct nd_defrouter *dr;
int error;
KASSERT(ln != NULL);
KASSERT(ln == rt->rt_llinfo);
LLE_WLOCK_ASSERT(ln);
/*
* we used to have pfctlinput(PRC_HOSTDEAD) here.
* even though it is not harmful, it was not really necessary.
*/
/* cancel timer */
nd6_llinfo_settimer_locked(ln, -1);
if (!ip6_forwarding) {
int s;
s = splsoftnet();
dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
rt->rt_ifp);
if (dr != NULL && dr->expire &&
ln->ln_state == ND6_LLINFO_STALE && gc) {
/*
* If the reason for the deletion is just garbage
* collection, and the neighbor is an active default
* router, do not delete it. Instead, reset the GC
* timer using the router's lifetime.
* Simply deleting the entry would affect default
* router selection, which is not necessarily a good
* thing, especially when we're using router preference
* values.
* XXX: the check for ln_state would be redundant,
* but we intentionally keep it just in case.
*/
if (dr->expire > time_uptime)
nd6_llinfo_settimer_locked(ln,
(dr->expire - time_uptime) * hz);
else
nd6_llinfo_settimer_locked(ln,
(long)nd6_gctimer * hz);
splx(s);
return;
}
if (ln->ln_router || dr) {
/*
* rt6_flush must be called whether or not the neighbor
* is in the Default Router List.
* See a corresponding comment in nd6_na_input().
*/
rt6_flush(&in6, rt->rt_ifp);
}
if (dr) {
/*
* Unreachablity of a router might affect the default
* router selection and on-link detection of advertised
* prefixes.
*/
/*
* Temporarily fake the state to choose a new default
* router and to perform on-link determination of
* prefixes correctly.
* Below the state will be set correctly,
* or the entry itself will be deleted.
*/
ln->ln_state = ND6_LLINFO_INCOMPLETE;
/*
* Since defrouter_select() does not affect the
* on-link determination and MIP6 needs the check
* before the default router selection, we perform
* the check now.
*/
pfxlist_onlink_check();
/*
* refresh default router list
*/
defrouter_select();
}
splx(s);
}
LLE_WUNLOCK(ln);
/*
* Detach the route from the routing tree and the list of neighbor
* caches, and disable the route entry not to be used in already
* cached routes.
*/
error = rtrequest_newmsg(RTM_DELETE, rt_getkey(rt), NULL,
rt_mask(rt), 0);
if (error != 0) {
/* XXX need error message? */;
}
}
/*
* Upper-layer reachability hint for Neighbor Unreachability Detection.
*
* XXX cost-effective methods?
*/
void
nd6_nud_hint(struct rtentry *rt)
{
struct llentry *ln;
if (rt == NULL)
return;
if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
(rt->rt_flags & RTF_LLINFO) == 0 ||
!rt->rt_llinfo || !rt->rt_gateway ||
rt->rt_gateway->sa_family != AF_LINK) {
/* This is not a host route. */
return;
}
ln = rt->rt_llinfo;
if (ln->ln_state < ND6_LLINFO_REACHABLE)
return;
/*
* if we get upper-layer reachability confirmation many times,
* it is possible we have false information.
*/
ln->ln_byhint++;
if (ln->ln_byhint > nd6_maxnudhint)
return;
ln->ln_state = ND6_LLINFO_REACHABLE;
if (!ND6_LLINFO_PERMANENT(ln)) {
nd6_llinfo_settimer(ln,
(long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
}
return;
}
static int
nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
{
int *n = farg;
if (*n <= 0)
return 0;
if (ND6_LLINFO_PERMANENT(ln))
return 0;
LLE_WLOCK(ln);
if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
ln->ln_state = ND6_LLINFO_STALE;
else
ln->ln_state = ND6_LLINFO_PURGE;
nd6_llinfo_settimer_locked(ln, 0);
LLE_WUNLOCK(ln);
(*n)--;
return 0;
}
static void
nd6_gc_neighbors(struct lltable *llt)
{
int max_gc_entries = 10;
if (ip6_neighborgcthresh >= 0 &&
lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
/*
* XXX entries that are "less recently used" should be
* freed first.
*/
lltable_foreach_lle(llt, nd6_purge_entry, &max_gc_entries);
}
}
void
nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
{
struct sockaddr *gate = rt->rt_gateway;
struct llentry *ln;
struct ifnet *ifp = rt->rt_ifp;
uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
struct ifaddr *ifa;
int flags = 0;
bool use_lo0ifp = false;
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
if (req == RTM_LLINFO_UPD) {
int rc;
struct in6_addr *in6;
struct in6_addr in6_all;
int anycast;
if ((ifa = info->rti_ifa) == NULL)
return;
in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
in6_all = in6addr_linklocal_allnodes;
if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
log(LOG_ERR, "%s: failed to set scope %s "
"(errno=%d)\n", __func__, if_name(ifp), rc);
return;
}
/* XXX don't set Override for proxy addresses */
nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
(anycast ? 0 : ND_NA_FLAG_OVERRIDE)
#if 0
| (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
#endif
, 1, NULL);
return;
}
if ((rt->rt_flags & RTF_GATEWAY) != 0)
return;
if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* This is probably an interface direct route for a link
* which does not need neighbor caches (e.g. fe80::%lo0/64).
* We do not need special treatment below for such a route.
* Moreover, the RTF_LLINFO flag which would be set below
* would annoy the ndp(8) command.
*/
return;
}
IF_AFDATA_RLOCK(ifp);
ln = lla_lookup(LLTABLE6(ifp), flags, rt_getkey(rt));
IF_AFDATA_RUNLOCK(ifp);
if (req == RTM_RESOLVE &&
(nd6_need_cache(ifp) == 0 || /* stf case */
!nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* FreeBSD and BSD/OS often make a cloned host route based
* on a less-specific route (e.g. the default route).
* If the less specific route does not have a "gateway"
* (this is the case when the route just goes to a p2p or an
* stf interface), we'll mistakenly make a neighbor cache for
* the host route, and will see strange neighbor solicitation
* for the corresponding destination. In order to avoid the
* confusion, we check if the destination of the route is
* a neighbor in terms of neighbor discovery, and stop the
* process if not. Additionally, we remove the LLINFO flag
* so that ndp(8) will not try to get the neighbor information
* of the destination.
*/
rt->rt_flags &= ~RTF_LLINFO;
return;
}
switch (req) {
case RTM_ADD:
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* There is no backward compatibility :)
*
* if ((rt->rt_flags & RTF_HOST) == 0 &&
* SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
* rt->rt_flags |= RTF_CLONING;
*/
if ((rt->rt_flags & RTF_CLONING) ||
((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
union {
struct sockaddr sa;
struct sockaddr_dl sdl;
struct sockaddr_storage ss;
} u;
/*
* Case 1: This route should come from a route to
* interface (RTF_CLONING case) or the route should be
* treated as on-link but is currently not
* (RTF_LLINFO && ln == NULL case).
*/
if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
ifp->if_index, ifp->if_type,
NULL, namelen, NULL, addrlen) == NULL) {
printf("%s.%d: sockaddr_dl_init(, %zu, ) "
"failed on %s\n", __func__, __LINE__,
sizeof(u.ss), if_name(ifp));
}
rt_setgate(rt, &u.sa);
gate = rt->rt_gateway;
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
if (ln != NULL)
nd6_llinfo_settimer_locked(ln, 0);
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
if ((rt->rt_flags & RTF_CLONING) != 0)
break;
}
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
* We don't do that here since llinfo is not ready yet.
*
* There are also couple of other things to be discussed:
* - unsolicited NA code needs improvement beforehand
* - RFC2461 says we MAY send multicast unsolicited NA
* (7.2.6 paragraph 4), however, it also says that we
* SHOULD provide a mechanism to prevent multicast NA storm.
* we don't have anything like it right now.
* note that the mechanism needs a mutual agreement
* between proxies, which means that we need to implement
* a new protocol, or a new kludge.
* - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
* we need to check ip6forwarding before sending it.
* (or should we allow proxy ND configuration only for
* routers? there's no mention about proxy ND from hosts)
*/
#if 0
/* XXX it does not work */
if (rt->rt_flags & RTF_ANNOUNCE)
nd6_na_output(ifp,
&satocsin6(rt_getkey(rt))->sin6_addr,
&satocsin6(rt_getkey(rt))->sin6_addr,
ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1, NULL);
#endif
/* FALLTHROUGH */
case RTM_RESOLVE:
if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* Address resolution isn't necessary for a point to
* point link, so we can skip this test for a p2p link.
*/
if (gate->sa_family != AF_LINK ||
gate->sa_len <
sockaddr_dl_measure(namelen, addrlen)) {
log(LOG_DEBUG,
"nd6_rtrequest: bad gateway value: %s\n",
if_name(ifp));
break;
}
satosdl(gate)->sdl_type = ifp->if_type;
satosdl(gate)->sdl_index = ifp->if_index;
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
}
if (ln != NULL)
break; /* This happens on a route change */
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/* Determine to use lo0ifp or not before lla_create */
ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
&satocsin6(rt_getkey(rt))->sin6_addr);
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
if (ifa != NULL && nd6_useloopback)
use_lo0ifp = true;
/*
* Case 2: This route may come from cloning, or a manual route
* add with a LL address.
*/
flags = LLE_EXCLUSIVE;
if ((rt->rt_flags & RTF_CLONED) == 0)
flags |= LLE_IFADDR;
#define _IFP() (use_lo0ifp ? lo0ifp : ifp)
IF_AFDATA_WLOCK(_IFP());
ln = lla_create(LLTABLE6(_IFP()), flags, rt_getkey(rt));
IF_AFDATA_WUNLOCK(_IFP());
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
if (ln == NULL) {
log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
break;
}
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
nd6_inuse++;
nd6_allocated++;
ln->ln_rt = rt;
rt->rt_refcnt++;
rt->rt_llinfo = ln;
LLE_ADDREF(ln);
rt->rt_flags |= RTF_LLINFO;
switch (_IFP()->if_type) {
#if NTOKEN > 0
case IFT_ISO88025:
ln->la_opaque = kmem_alloc(sizeof(struct token_rif),
KM_SLEEP);
break;
#endif /* NTOKEN > 0 */
default:
break;
}
#undef _IFP
/* this is required for "ndp" command. - shin */
if (req == RTM_ADD) {
/*
* gate should have some valid AF_LINK entry,
* and ln->ln_expire should have some lifetime
* which is specified by ndp command.
*/
ln->ln_state = ND6_LLINFO_REACHABLE;
ln->ln_byhint = 0;
} else {
/*
* When req == RTM_RESOLVE, rt is created and
* initialized in rtrequest(), so rt_expire is 0.
*/
ln->ln_state = ND6_LLINFO_NOSTATE;
nd6_llinfo_settimer_locked(ln, 0);
}
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* check if rt_getkey(rt) is an address assigned
* to the interface.
*/
if (ifa != NULL) {
const void *mac;
nd6_llinfo_settimer_locked(ln, -1);
ln->ln_state = ND6_LLINFO_REACHABLE;
ln->ln_byhint = 0;
if ((mac = nd6_ifptomac(ifp)) != NULL) {
/* XXX check for error */
if (sockaddr_dl_setaddr(satosdl(gate),
gate->sa_len, mac,
ifp->if_addrlen) == NULL) {
printf("%s.%d: "
"sockaddr_dl_setaddr(, %d, ) "
"failed on %s\n", __func__,
__LINE__, gate->sa_len,
if_name(ifp));
}
}
if (nd6_useloopback) {
ifp = rt->rt_ifp = lo0ifp; /* XXX */
/*
* Make sure rt_ifa be equal to the ifaddr
* corresponding to the address.
* We need this because when we refer
* rt_ifa->ia6_flags in ip6_input, we assume
* that the rt_ifa points to the address instead
* of the loopback address.
*/
if (ifa != rt->rt_ifa)
rt_replace_ifa(rt, ifa);
rt->rt_rmx.rmx_mtu = 0;
rt->rt_flags &= ~RTF_CLONED;
}
rt->rt_flags |= RTF_LOCAL;
} else if (rt->rt_flags & RTF_ANNOUNCE) {
nd6_llinfo_settimer_locked(ln, -1);
ln->ln_state = ND6_LLINFO_REACHABLE;
ln->ln_byhint = 0;
/* join solicited node multicast for proxy ND */
if (ifp->if_flags & IFF_MULTICAST) {
struct in6_addr llsol;
int error;
llsol = satocsin6(rt_getkey(rt))->sin6_addr;
llsol.s6_addr32[0] = htonl(0xff020000);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr8[12] = 0xff;
if (in6_setscope(&llsol, ifp, NULL))
break;
if (!in6_addmulti(&llsol, ifp, &error, 0)) {
nd6log((LOG_ERR, "%s: failed to join "
"%s (errno=%d)\n", if_name(ifp),
ip6_sprintf(&llsol), error));
}
}
}
LLE_WUNLOCK(ln);
/*
* If we have too many cache entries, initiate immediate
* purging for some entries.
*/
nd6_gc_neighbors(ln->lle_tbl);
ln = NULL;
break;
case RTM_DELETE:
if (ln == NULL)
break;
/* leave from solicited node multicast for proxy ND */
if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
(ifp->if_flags & IFF_MULTICAST) != 0) {
struct in6_addr llsol;
struct in6_multi *in6m;
llsol = satocsin6(rt_getkey(rt))->sin6_addr;
llsol.s6_addr32[0] = htonl(0xff020000);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr8[12] = 0xff;
if (in6_setscope(&llsol, ifp, NULL) == 0) {
IN6_LOOKUP_MULTI(llsol, ifp, in6m);
if (in6m)
in6_delmulti(in6m);
}
}
nd6_inuse--;
rt->rt_llinfo = NULL;
rt->rt_flags &= ~RTF_LLINFO;
/* Have to do before IF_AFDATA_WLOCK to avoid deadlock */
callout_halt(&ln->la_timer, &ln->lle_lock);
/* XXX: LOR avoidance. We still have ref on lle. */
LLE_RUNLOCK(ln);
IF_AFDATA_WLOCK(ifp);
LLE_WLOCK(ln);
clear_llinfo_pqueue(ln);
if (ln->la_opaque != NULL) {
switch (ifp->if_type) {
#if NTOKEN > 0
case IFT_ISO88025:
kmem_free(ln->la_opaque,
sizeof(struct token_rif));
break;
#endif /* NTOKEN > 0 */
default:
break;
}
}
if (ln->la_rt != NULL) {
/*
* Don't rtfree (may actually free objects) here.
* Leave it to rtrequest1.
*/
ln->la_rt->rt_refcnt--;
ln->la_rt = NULL;
}
/* Guard against race with other llentry_free(). */
if (ln->la_flags & LLE_LINKED) {
LLE_REMREF(ln);
llentry_free(ln);
} else {
LLE_FREE_LOCKED(ln);
}
IF_AFDATA_WUNLOCK(ifp);
ln = NULL;
}
if (ln != NULL) {
if (flags & LLE_EXCLUSIVE)
LLE_WUNLOCK(ln);
else
LLE_RUNLOCK(ln);
}
}
int
nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
{
struct in6_drlist *drl = (struct in6_drlist *)data;
struct in6_oprlist *oprl = (struct in6_oprlist *)data;
struct in6_ndireq *ndi = (struct in6_ndireq *)data;
struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
struct nd_defrouter *dr;
struct nd_prefix *pr;
int i = 0, error = 0;
int s;
switch (cmd) {
case SIOCGDRLST_IN6:
/*
* obsolete API, use sysctl under net.inet6.icmp6
*/
memset(drl, 0, sizeof(*drl));
s = splsoftnet();
TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
if (i >= DRLSTSIZ)
break;
drl->defrouter[i].rtaddr = dr->rtaddr;
in6_clearscope(&drl->defrouter[i].rtaddr);
drl->defrouter[i].flags = dr->flags;
drl->defrouter[i].rtlifetime = dr->rtlifetime;
drl->defrouter[i].expire = dr->expire ?
time_mono_to_wall(dr->expire) : 0;
drl->defrouter[i].if_index = dr->ifp->if_index;
i++;
}
splx(s);
break;
case SIOCGPRLST_IN6:
/*
* obsolete API, use sysctl under net.inet6.icmp6
*
* XXX the structure in6_prlist was changed in backward-
* incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
* in6_prlist is used for nd6_sysctl() - fill_prlist().
*/
/*
* XXX meaning of fields, especialy "raflags", is very
* differnet between RA prefix list and RR/static prefix list.
* how about separating ioctls into two?
*/
memset(oprl, 0, sizeof(*oprl));
s = splsoftnet();
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
struct nd_pfxrouter *pfr;
int j;
if (i >= PRLSTSIZ)
break;
oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
oprl->prefix[i].raflags = pr->ndpr_raf;
oprl->prefix[i].prefixlen = pr->ndpr_plen;
oprl->prefix[i].vltime = pr->ndpr_vltime;
oprl->prefix[i].pltime = pr->ndpr_pltime;
oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
oprl->prefix[i].expire = 0;
else {
time_t maxexpire;
/* XXX: we assume time_t is signed. */
maxexpire = (-1) &
~((time_t)1 <<
((sizeof(maxexpire) * 8) - 1));
if (pr->ndpr_vltime <
maxexpire - pr->ndpr_lastupdate) {
time_t expire;
expire = pr->ndpr_lastupdate +
pr->ndpr_vltime;
oprl->prefix[i].expire = expire ?
time_mono_to_wall(expire) : 0;
} else
oprl->prefix[i].expire = maxexpire;
}
j = 0;
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
if (j < DRLSTSIZ) {
#define RTRADDR oprl->prefix[i].advrtr[j]
RTRADDR = pfr->router->rtaddr;
in6_clearscope(&RTRADDR);
#undef RTRADDR
}
j++;
}
oprl->prefix[i].advrtrs = j;
oprl->prefix[i].origin = PR_ORIG_RA;
i++;
}
splx(s);
break;
case OSIOCGIFINFO_IN6:
#define ND ndi->ndi
/* XXX: old ndp(8) assumes a positive value for linkmtu. */
memset(&ND, 0, sizeof(ND));
ND.linkmtu = IN6_LINKMTU(ifp);
ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
ND.basereachable = ND_IFINFO(ifp)->basereachable;
ND.reachable = ND_IFINFO(ifp)->reachable;
ND.retrans = ND_IFINFO(ifp)->retrans;
ND.flags = ND_IFINFO(ifp)->flags;
ND.recalctm = ND_IFINFO(ifp)->recalctm;
ND.chlim = ND_IFINFO(ifp)->chlim;
break;
case SIOCGIFINFO_IN6:
ND = *ND_IFINFO(ifp);
break;
case SIOCSIFINFO_IN6:
/*
* used to change host variables from userland.
* intented for a use on router to reflect RA configurations.
*/
/* 0 means 'unspecified' */
if (ND.linkmtu != 0) {
if (ND.linkmtu < IPV6_MMTU ||
ND.linkmtu > IN6_LINKMTU(ifp)) {
error = EINVAL;
break;
}
ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
}
if (ND.basereachable != 0) {
int obasereachable = ND_IFINFO(ifp)->basereachable;
ND_IFINFO(ifp)->basereachable = ND.basereachable;
if (ND.basereachable != obasereachable)
ND_IFINFO(ifp)->reachable =
ND_COMPUTE_RTIME(ND.basereachable);
}
if (ND.retrans != 0)
ND_IFINFO(ifp)->retrans = ND.retrans;
if (ND.chlim != 0)
ND_IFINFO(ifp)->chlim = ND.chlim;
/* FALLTHROUGH */
case SIOCSIFINFO_FLAGS:
{
struct ifaddr *ifa;
struct in6_ifaddr *ia;
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
!(ND.flags & ND6_IFF_IFDISABLED))
{
/*
* If the interface is marked as ND6_IFF_IFDISABLED and
* has a link-local address with IN6_IFF_DUPLICATED,
* do not clear ND6_IFF_IFDISABLED.
* See RFC 4862, section 5.4.5.
*/
int duplicated_linklocal = 0;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
ia = (struct in6_ifaddr *)ifa;
if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
{
duplicated_linklocal = 1;
break;
}
}
if (duplicated_linklocal) {
ND.flags |= ND6_IFF_IFDISABLED;
log(LOG_ERR, "Cannot enable an interface"
" with a link-local address marked"
" duplicate.\n");
} else {
ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
if (ifp->if_flags & IFF_UP)
in6_if_up(ifp);
}
} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
(ND.flags & ND6_IFF_IFDISABLED))
{
/* Mark all IPv6 addresses as tentative. */
ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
nd6_dad_stop(ifa);
ia = (struct in6_ifaddr *)ifa;
ia->ia6_flags |= IN6_IFF_TENTATIVE;
}
}
if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
/* auto_linklocal 0->1 transition */
ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
in6_ifattach(ifp, NULL);
} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
ifp->if_flags & IFF_UP)
{
/*
* When the IF already has
* ND6_IFF_AUTO_LINKLOCAL, no link-local
* address is assigned, and IFF_UP, try to
* assign one.
*/
int haslinklocal = 0;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family !=AF_INET6)
continue;
ia = (struct in6_ifaddr *)ifa;
if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
haslinklocal = 1;
break;
}
}
if (!haslinklocal)
in6_ifattach(ifp, NULL);
}
}
}
ND_IFINFO(ifp)->flags = ND.flags;
break;
#undef ND
case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
/* sync kernel routing table with the default router list */
defrouter_reset();
defrouter_select();
break;
case SIOCSPFXFLUSH_IN6:
{
/* flush all the prefix advertised by routers */
struct nd_prefix *pfx, *next;
s = splsoftnet();
LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
struct in6_ifaddr *ia, *ia_next;
if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
continue; /* XXX */
/* do we really have to remove addresses as well? */
for (ia = in6_ifaddr; ia; ia = ia_next) {
/* ia might be removed. keep the next ptr. */
ia_next = ia->ia_next;
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
continue;
if (ia->ia6_ndpr == pfx)
in6_purgeaddr(&ia->ia_ifa);
}
prelist_remove(pfx);
}
splx(s);
break;
}
case SIOCSRTRFLUSH_IN6:
{
/* flush all the default routers */
struct nd_defrouter *drtr, *next;
s = splsoftnet();
defrouter_reset();
TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
defrtrlist_del(drtr, NULL);
}
defrouter_select();
splx(s);
break;
}
case SIOCGNBRINFO_IN6:
{
struct llentry *ln;
struct in6_addr nb_addr = nbi->addr; /* make local for safety */
struct rtentry *rt;
if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
return error;
s = splsoftnet();
rt = nd6_lookup(&nb_addr, 0, ifp);
if (rt == NULL) {
error = EINVAL;
splx(s);
break;
}
ln = rt->rt_llinfo;
rtfree(rt);
if (ln == NULL) {
error = EINVAL;
splx(s);
break;
}
nbi->state = ln->ln_state;
nbi->asked = ln->ln_asked;
nbi->isrouter = ln->ln_router;
nbi->expire = ln->ln_expire ?
time_mono_to_wall(ln->ln_expire) : 0;
splx(s);
break;
}
case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
ndif->ifindex = nd6_defifindex;
break;
case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
return nd6_setdefaultiface(ndif->ifindex);
}
return error;
}
void
nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp,
struct rtentry *rt)
{
struct mbuf *m_hold, *m_hold_next;
for (m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
m_hold != NULL;
m_hold = m_hold_next) {
m_hold_next = m_hold->m_nextpkt;
m_hold->m_nextpkt = NULL;
/*
* we assume ifp is not a p2p here, so
* just set the 2nd argument as the
* 1st one.
*/
nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
}
}
/*
* Create neighbor cache entry and cache link-layer address,
* on reception of inbound ND6 packets. (RS/RA/NS/redirect)
*/
void
nd6_cache_lladdr(
struct ifnet *ifp,
struct in6_addr *from,
char *lladdr,
int lladdrlen,
int type, /* ICMP6 type */
int code /* type dependent information */
)
{
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
struct rtentry *rt = NULL;
struct llentry *ln = NULL;
int is_newentry;
struct sockaddr_dl *sdl = NULL;
int do_update;
int olladdr;
int llchange;
int newstate = 0;
KASSERT(ifp != NULL);
KASSERT(from != NULL);
/* nothing must be updated for unspecified address */
if (IN6_IS_ADDR_UNSPECIFIED(from))
return;
/*
* Validation about ifp->if_addrlen and lladdrlen must be done in
* the caller.
*
* XXX If the link does not have link-layer adderss, what should
* we do? (ifp->if_addrlen == 0)
* Spec says nothing in sections for RA, RS and NA. There's small
* description on it in NS section (RFC 2461 7.2.3).
*/
rt = nd6_lookup(from, 0, ifp);
if (rt == NULL) {
#if 0
/* nothing must be done if there's no lladdr */
if (!lladdr || !lladdrlen)
return NULL;
#endif
rt = nd6_lookup(from, 1, ifp);
is_newentry = 1;
} else {
/* do nothing if static ndp is set */
if (rt->rt_flags & RTF_STATIC) {
rtfree(rt);
return;
}
is_newentry = 0;
}
if (rt == NULL)
return;
if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
fail:
if (rt->rt_llinfo != NULL)
LLE_WLOCK((struct llentry *)rt->rt_llinfo);
nd6_free(rt, rt->rt_llinfo, 0);
rtfree(rt);
return;
}
ln = rt->rt_llinfo;
if (ln == NULL)
goto fail;
if (rt->rt_gateway == NULL)
goto fail;
if (rt->rt_gateway->sa_family != AF_LINK)
goto fail;
sdl = satosdl(rt->rt_gateway);
olladdr = (sdl->sdl_alen) ? 1 : 0;
if (olladdr && lladdr) {
if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
llchange = 1;
else
llchange = 0;
} else
llchange = 0;
/*
* newentry olladdr lladdr llchange (*=record)
* 0 n n -- (1)
* 0 y n -- (2)
* 0 n y -- (3) * STALE
* 0 y y n (4) *
* 0 y y y (5) * STALE
* 1 -- n -- (6) NOSTATE(= PASSIVE)
* 1 -- y -- (7) * STALE
*/
if (lladdr) { /* (3-5) and (7) */
/*
* Record source link-layer address
* XXX is it dependent to ifp->if_type?
*/
/* XXX check for error */
if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
ifp->if_addrlen) == NULL) {
printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
"failed on %s\n", __func__, __LINE__,
sdl->sdl_len, if_name(ifp));
}
}
if (!is_newentry) {
if ((!olladdr && lladdr) || /* (3) */
(olladdr && lladdr && llchange)) { /* (5) */
do_update = 1;
newstate = ND6_LLINFO_STALE;
} else /* (1-2,4) */
do_update = 0;
} else {
do_update = 1;
if (lladdr == NULL) /* (6) */
newstate = ND6_LLINFO_NOSTATE;
else /* (7) */
newstate = ND6_LLINFO_STALE;
}
if (do_update) {
/*
* Update the state of the neighbor cache.
*/
ln->ln_state = newstate;
if (ln->ln_state == ND6_LLINFO_STALE) {
/*
* XXX: since nd6_output() below will cause
* state tansition to DELAY and reset the timer,
* we must set the timer now, although it is actually
* meaningless.
*/
nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
nd6_llinfo_release_pkts(ln, ifp, rt);
} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
/* probe right away */
nd6_llinfo_settimer((void *)ln, 0);
}
}
/*
* ICMP6 type dependent behavior.
*
* NS: clear IsRouter if new entry
* RS: clear IsRouter
* RA: set IsRouter if there's lladdr
* redir: clear IsRouter if new entry
*
* RA case, (1):
* The spec says that we must set IsRouter in the following cases:
* - If lladdr exist, set IsRouter. This means (1-5).
* - If it is old entry (!newentry), set IsRouter. This means (7).
* So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
* A quetion arises for (1) case. (1) case has no lladdr in the
* neighbor cache, this is similar to (6).
* This case is rare but we figured that we MUST NOT set IsRouter.
*
* newentry olladdr lladdr llchange NS RS RA redir
* D R
* 0 n n -- (1) c ? s
* 0 y n -- (2) c s s
* 0 n y -- (3) c s s
* 0 y y n (4) c s s
* 0 y y y (5) c s s
* 1 -- n -- (6) c c c s
* 1 -- y -- (7) c c s c s
*
* (c=clear s=set)
*/
switch (type & 0xff) {
case ND_NEIGHBOR_SOLICIT:
/*
* New entry must have is_router flag cleared.
*/
if (is_newentry) /* (6-7) */
ln->ln_router = 0;
break;
case ND_REDIRECT:
/*
* If the icmp is a redirect to a better router, always set the
* is_router flag. Otherwise, if the entry is newly created,
* clear the flag. [RFC 2461, sec 8.3]
*/
if (code == ND_REDIRECT_ROUTER)
ln->ln_router = 1;
else if (is_newentry) /* (6-7) */
ln->ln_router = 0;
break;
case ND_ROUTER_SOLICIT:
/*
* is_router flag must always be cleared.
*/
ln->ln_router = 0;
break;
case ND_ROUTER_ADVERT:
/*
* Mark an entry with lladdr as a router.
*/
if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
(is_newentry && lladdr)) { /* (7) */
ln->ln_router = 1;
}
break;
}
if (do_update)
rt_newmsg(RTM_CHANGE, rt); /* tell user process */
/*
* When the link-layer address of a router changes, select the
* best router again. In particular, when the neighbor entry is newly
* created, it might affect the selection policy.
* Question: can we restrict the first condition to the "is_newentry"
* case?
* XXX: when we hear an RA from a new router with the link-layer
* address option, defrouter_select() is called twice, since
* defrtrlist_update called the function as well. However, I believe
* we can compromise the overhead, since it only happens the first
* time.
* XXX: although defrouter_select() should not have a bad effect
* for those are not autoconfigured hosts, we explicitly avoid such
* cases for safety.
*/
if (do_update && ln->ln_router && !ip6_forwarding &&
nd6_accepts_rtadv(ndi))
defrouter_select();
rtfree(rt);
}
static void
nd6_slowtimo(void *ignored_arg)
{
struct nd_ifinfo *nd6if;
struct ifnet *ifp;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
nd6_slowtimo, NULL);
IFNET_FOREACH(ifp) {
nd6if = ND_IFINFO(ifp);
if (nd6if->basereachable && /* already initialized */
(nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
/*
* Since reachable time rarely changes by router
* advertisements, we SHOULD insure that a new random
* value gets recomputed at least once every few hours.
* (RFC 2461, 6.3.4)
*/
nd6if->recalctm = nd6_recalc_reachtm_interval;
nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
}
}
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/*
* Next hop determination. This routine was derived from ether_output.
*/
static int
nd6_determine_nexthop(struct ifnet *ifp, const struct sockaddr_in6 *dst,
struct rtentry *rt00, struct rtentry **ret_rt, bool *sendpkt)
{
struct rtentry *rt, *rt0;
struct rtentry *gwrt;
struct sockaddr_in6 *gw6;
#define RTFREE_IF_NEEDED(_rt) \
if ((_rt) != NULL && (_rt) != rt00) \
rtfree((_rt));
KASSERT(rt00 != NULL);
rt = rt0 = rt00;
if ((rt->rt_flags & RTF_UP) == 0) {
rt0 = rt = rtalloc1(sin6tocsa(dst), 1);
if (rt == NULL)
goto hostunreach;
if (rt->rt_ifp != ifp)
goto hostunreach;
}
if ((rt->rt_flags & RTF_GATEWAY) == 0)
goto out;
gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
/*
* We skip link-layer address resolution and NUD
* if the gateway is not a neighbor from ND point
* of view, regardless of the value of nd_ifinfo.flags.
* The second condition is a bit tricky; we skip
* if the gateway is our own address, which is
* sometimes used to install a route to a p2p link.
*/
if (!nd6_is_addr_neighbor(gw6, ifp) ||
in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
/*
* We allow this kind of tricky route only
* when the outgoing interface is p2p.
* XXX: we may need a more generic rule here.
*/
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
goto hostunreach;
*sendpkt = true;
goto out;
}
/* Try to use a cached nexthop route (gwroute) if exists */
gwrt = rt_get_gwroute(rt);
if (gwrt == NULL)
goto lookup;
RTFREE_IF_NEEDED(rt);
rt = gwrt;
if ((rt->rt_flags & RTF_UP) == 0) {
RTFREE_IF_NEEDED(rt);
rt = rt0;
lookup:
/* Look up a nexthop route */
gwrt = rtalloc1(rt->rt_gateway, 1);
rt_set_gwroute(rt, gwrt);
RTFREE_IF_NEEDED(rt);
rt = gwrt;
if (rt == NULL)
goto hostunreach;
/* the "G" test below also prevents rt == rt0 */
if ((rt->rt_flags & RTF_GATEWAY) ||
(rt->rt_ifp != ifp)) {
if (rt0->rt_gwroute != NULL)
rtfree(rt0->rt_gwroute);
rt0->rt_gwroute = NULL;
goto hostunreach;
}
}
out:
*ret_rt = rt;
return 0;
hostunreach:
RTFREE_IF_NEEDED(rt);
return EHOSTUNREACH;
#undef RTFREE_IF_NEEDED
}
#define senderr(e) { error = (e); goto bad;}
int
nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
const struct sockaddr_in6 *dst, struct rtentry *rt0)
{
struct mbuf *m = m0;
struct rtentry *rt = rt0;
struct llentry *ln = NULL;
int error = 0;
#define RTFREE_IF_NEEDED(_rt) \
if ((_rt) != NULL && (_rt) != rt0) \
rtfree((_rt));
if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
goto sendpkt;
if (nd6_need_cache(ifp) == 0)
goto sendpkt;
if (rt) {
struct rtentry *nexthop = NULL;
bool sendpkt = false;
error = nd6_determine_nexthop(ifp, dst, rt, &nexthop, &sendpkt);
if (error != 0)
senderr(error);
rt = nexthop;
if (sendpkt)
goto sendpkt;
}
/*
* Address resolution or Neighbor Unreachability Detection
* for the next hop.
* At this point, the destination of the packet must be a unicast
* or an anycast address(i.e. not a multicast).
*/
/* Look up the neighbor cache for the nexthop */
if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
ln = rt->rt_llinfo;
else {
/*
* Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
* the condition below is not very efficient. But we believe
* it is tolerable, because this should be a rare case.
*/
if (nd6_is_addr_neighbor(dst, ifp)) {
RTFREE_IF_NEEDED(rt);
rt = nd6_lookup(&dst->sin6_addr, 1, ifp);
if (rt != NULL)
ln = rt->rt_llinfo;
}
}
if (ln == NULL || rt == NULL) {
if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
log(LOG_DEBUG,
"nd6_output: can't allocate llinfo for %s "
"(ln=%p, rt=%p)\n",
ip6_sprintf(&dst->sin6_addr), ln, rt);
senderr(EIO); /* XXX: good error? */
}
goto sendpkt; /* send anyway */
}
/* We don't have to do link-layer address resolution on a p2p link. */
if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
ln->ln_state < ND6_LLINFO_REACHABLE) {
ln->ln_state = ND6_LLINFO_STALE;
nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
}
/*
* The first time we send a packet to a neighbor whose entry is
* STALE, we have to change the state to DELAY and a sets a timer to
* expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
* neighbor unreachability detection on expiration.
* (RFC 2461 7.3.3)
*/
if (ln->ln_state == ND6_LLINFO_STALE) {
ln->ln_asked = 0;
ln->ln_state = ND6_LLINFO_DELAY;
nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
}
/*
* If the neighbor cache entry has a state other than INCOMPLETE
* (i.e. its link-layer address is already resolved), just
* send the packet.
*/
if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
goto sendpkt;
/*
* There is a neighbor cache entry, but no ethernet address
* response yet. Append this latest packet to the end of the
* packet queue in the mbuf, unless the number of the packet
* does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
* the oldest packet in the queue will be removed.
*/
if (ln->ln_state == ND6_LLINFO_NOSTATE)
ln->ln_state = ND6_LLINFO_INCOMPLETE;
if (ln->ln_hold) {
struct mbuf *m_hold;
int i;
i = 0;
for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
i++;
if (m_hold->m_nextpkt == NULL) {
m_hold->m_nextpkt = m;
break;
}
}
while (i >= nd6_maxqueuelen) {
m_hold = ln->ln_hold;
ln->ln_hold = ln->ln_hold->m_nextpkt;
m_freem(m_hold);
i--;
}
} else {
ln->ln_hold = m;
}
/*
* If there has been no NS for the neighbor after entering the
* INCOMPLETE state, send the first solicitation.
*/
if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
struct in6_addr src, *psrc;
ln->ln_asked++;
nd6_llinfo_settimer(ln,
(long)ND_IFINFO(ifp)->retrans * hz / 1000);
psrc = nd6_llinfo_get_holdsrc(ln, &src);
nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
}
error = 0;
goto exit;
sendpkt:
/* discard the packet if IPv6 operation is disabled on the interface */
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
error = ENETDOWN; /* better error? */
goto bad;
}
#ifndef NET_MPSAFE
KERNEL_LOCK(1, NULL);
#endif
if ((ifp->if_flags & IFF_LOOPBACK) != 0)
error = (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
else
error = (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
#ifndef NET_MPSAFE
KERNEL_UNLOCK_ONE(NULL);
#endif
goto exit;
bad:
if (m != NULL)
m_freem(m);
exit:
RTFREE_IF_NEEDED(rt);
return error;
#undef RTFREE_IF_NEEDED
}
#undef senderr
int
nd6_need_cache(struct ifnet *ifp)
{
/*
* XXX: we currently do not make neighbor cache on any interface
* other than ARCnet, Ethernet, FDDI and GIF.
*
* RFC2893 says:
* - unidirectional tunnels needs no ND
*/
switch (ifp->if_type) {
case IFT_ARCNET:
case IFT_ETHER:
case IFT_FDDI:
case IFT_IEEE1394:
case IFT_CARP:
case IFT_GIF: /* XXX need more cases? */
case IFT_PPP:
case IFT_TUNNEL:
return 1;
default:
return 0;
}
}
int
nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
size_t dstsize)
{
const struct sockaddr_dl *sdl;
if (m->m_flags & M_MCAST) {
switch (ifp->if_type) {
case IFT_ETHER:
case IFT_FDDI:
ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
lldst);
return 1;
case IFT_IEEE1394:
memcpy(lldst, ifp->if_broadcastaddr,
MIN(dstsize, ifp->if_addrlen));
return 1;
case IFT_ARCNET:
*lldst = 0;
return 1;
default:
m_freem(m);
return 0;
}
}
if (rt == NULL) {
/* this could happen, if we could not allocate memory */
m_freem(m);
return 0;
}
if (rt->rt_gateway->sa_family != AF_LINK) {
char gbuf[256];
char dbuf[LINK_ADDRSTRLEN];
sockaddr_format(rt->rt_gateway, gbuf, sizeof(gbuf));
printf("%s: bad gateway address type %s for dst %s"
" through interface %s\n", __func__, gbuf,
IN6_PRINT(dbuf, &satocsin6(dst)->sin6_addr),
if_name(ifp));
m_freem(m);
return 0;
}
sdl = satocsdl(rt->rt_gateway);
if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
char sbuf[INET6_ADDRSTRLEN];
char dbuf[LINK_ADDRSTRLEN];
/* this should be impossible, but we bark here for debugging */
printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
__func__, sdl->sdl_alen, if_name(ifp),
IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
DL_PRINT(dbuf, &sdl->sdl_addr));
m_freem(m);
return 0;
}
memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
return 1;
}
static void
clear_llinfo_pqueue(struct llentry *ln)
{
struct mbuf *m_hold, *m_hold_next;
for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
m_hold_next = m_hold->m_nextpkt;
m_hold->m_nextpkt = NULL;
m_freem(m_hold);
}
ln->ln_hold = NULL;
return;
}
int
nd6_sysctl(
int name,
void *oldp, /* syscall arg, need copyout */
size_t *oldlenp,
void *newp, /* syscall arg, need copyin */
size_t newlen
)
{
void *p;
size_t ol;
int error;
error = 0;
if (newp)
return EPERM;
if (oldp && !oldlenp)
return EINVAL;
ol = oldlenp ? *oldlenp : 0;
if (oldp) {
p = malloc(*oldlenp, M_TEMP, M_WAITOK);
if (p == NULL)
return ENOMEM;
} else
p = NULL;
switch (name) {
case ICMPV6CTL_ND6_DRLIST:
error = fill_drlist(p, oldlenp, ol);
if (!error && p != NULL && oldp != NULL)
error = copyout(p, oldp, *oldlenp);
break;
case ICMPV6CTL_ND6_PRLIST:
error = fill_prlist(p, oldlenp, ol);
if (!error && p != NULL && oldp != NULL)
error = copyout(p, oldp, *oldlenp);
break;
case ICMPV6CTL_ND6_MAXQLEN:
break;
default:
error = ENOPROTOOPT;
break;
}
if (p)
free(p, M_TEMP);
return error;
}
static int
fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
{
int error = 0, s;
struct in6_defrouter *d = NULL, *de = NULL;
struct nd_defrouter *dr;
size_t l;
s = splsoftnet();
if (oldp) {
d = (struct in6_defrouter *)oldp;
de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
}
l = 0;
TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
if (oldp && d + 1 <= de) {
memset(d, 0, sizeof(*d));
sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
if (sa6_recoverscope(&d->rtaddr)) {
log(LOG_ERR,
"scope error in router list (%s)\n",
ip6_sprintf(&d->rtaddr.sin6_addr));
/* XXX: press on... */
}
d->flags = dr->flags;
d->rtlifetime = dr->rtlifetime;
d->expire = dr->expire ?
time_mono_to_wall(dr->expire) : 0;
d->if_index = dr->ifp->if_index;
}
l += sizeof(*d);
if (d)
d++;
}
if (oldp) {
if (l > ol)
error = ENOMEM;
}
if (oldlenp)
*oldlenp = l; /* (void *)d - (void *)oldp */
splx(s);
return error;
}
static int
fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
{
int error = 0, s;
struct nd_prefix *pr;
uint8_t *p = NULL, *ps = NULL;
uint8_t *pe = NULL;
size_t l;
s = splsoftnet();
if (oldp) {
ps = p = (uint8_t*)oldp;
pe = (uint8_t*)oldp + *oldlenp;
}
l = 0;
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
u_short advrtrs;
struct sockaddr_in6 sin6;
struct nd_pfxrouter *pfr;
struct in6_prefix pfx;
if (oldp && p + sizeof(struct in6_prefix) <= pe)
{
memset(&pfx, 0, sizeof(pfx));
ps = p;
pfx.prefix = pr->ndpr_prefix;
if (sa6_recoverscope(&pfx.prefix)) {
log(LOG_ERR,
"scope error in prefix list (%s)\n",
ip6_sprintf(&pfx.prefix.sin6_addr));
/* XXX: press on... */
}
pfx.raflags = pr->ndpr_raf;
pfx.prefixlen = pr->ndpr_plen;
pfx.vltime = pr->ndpr_vltime;
pfx.pltime = pr->ndpr_pltime;
pfx.if_index = pr->ndpr_ifp->if_index;
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
pfx.expire = 0;
else {
time_t maxexpire;
/* XXX: we assume time_t is signed. */
maxexpire = (-1) &
~((time_t)1 <<
((sizeof(maxexpire) * 8) - 1));
if (pr->ndpr_vltime <
maxexpire - pr->ndpr_lastupdate) {
pfx.expire = pr->ndpr_lastupdate +
pr->ndpr_vltime;
} else
pfx.expire = maxexpire;
}
pfx.refcnt = pr->ndpr_refcnt;
pfx.flags = pr->ndpr_stateflags;
pfx.origin = PR_ORIG_RA;
p += sizeof(pfx); l += sizeof(pfx);
advrtrs = 0;
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
if (p + sizeof(sin6) > pe) {
advrtrs++;
continue;
}
sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
0, 0, 0);
if (sa6_recoverscope(&sin6)) {
log(LOG_ERR,
"scope error in "
"prefix list (%s)\n",
ip6_sprintf(&pfr->router->rtaddr));
}
advrtrs++;
memcpy(p, &sin6, sizeof(sin6));
p += sizeof(sin6);
l += sizeof(sin6);
}
pfx.advrtrs = advrtrs;
memcpy(ps, &pfx, sizeof(pfx));
}
else {
l += sizeof(pfx);
advrtrs = 0;
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
advrtrs++;
l += sizeof(sin6);
}
}
}
if (oldp) {
*oldlenp = l; /* (void *)d - (void *)oldp */
if (l > ol)
error = ENOMEM;
} else
*oldlenp = l;
splx(s);
return error;
}