NetBSD/sys/dev/ic/hme.c

1659 lines
40 KiB
C

/* $NetBSD: hme.c,v 1.68 2008/12/16 22:35:31 christos Exp $ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* HME Ethernet module driver.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.68 2008/12/16 22:35:31 christos Exp $");
/* #define HMEDEBUG */
#include "opt_inet.h"
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <sys/bus.h>
#include <dev/ic/hmereg.h>
#include <dev/ic/hmevar.h>
void hme_start(struct ifnet *);
void hme_stop(struct hme_softc *,bool);
int hme_ioctl(struct ifnet *, u_long, void *);
void hme_tick(void *);
void hme_watchdog(struct ifnet *);
void hme_shutdown(void *);
int hme_init(struct hme_softc *);
void hme_meminit(struct hme_softc *);
void hme_mifinit(struct hme_softc *);
void hme_reset(struct hme_softc *);
void hme_setladrf(struct hme_softc *);
/* MII methods & callbacks */
static int hme_mii_readreg(struct device *, int, int);
static void hme_mii_writereg(struct device *, int, int, int);
static void hme_mii_statchg(struct device *);
int hme_mediachange(struct ifnet *);
struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
int hme_put(struct hme_softc *, int, struct mbuf *);
void hme_read(struct hme_softc *, int, uint32_t);
int hme_eint(struct hme_softc *, u_int);
int hme_rint(struct hme_softc *);
int hme_tint(struct hme_softc *);
static int ether_cmp(u_char *, u_char *);
/* Default buffer copy routines */
void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
void hme_zerobuf_contig(struct hme_softc *, int, int);
void
hme_config(sc)
struct hme_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mii_data *mii = &sc->sc_mii;
struct mii_softc *child;
bus_dma_tag_t dmatag = sc->sc_dmatag;
bus_dma_segment_t seg;
bus_size_t size;
int rseg, error;
/*
* HME common initialization.
*
* hme_softc fields that must be initialized by the front-end:
*
* the bus tag:
* sc_bustag
*
* the DMA bus tag:
* sc_dmatag
*
* the bus handles:
* sc_seb (Shared Ethernet Block registers)
* sc_erx (Receiver Unit registers)
* sc_etx (Transmitter Unit registers)
* sc_mac (MAC registers)
* sc_mif (Management Interface registers)
*
* the maximum bus burst size:
* sc_burst
*
* (notyet:DMA capable memory for the ring descriptors & packet buffers:
* rb_membase, rb_dmabase)
*
* the local Ethernet address:
* sc_enaddr
*
*/
/* Make sure the chip is stopped. */
hme_stop(sc, true);
/*
* Allocate descriptors and buffers
* XXX - do all this differently.. and more configurably,
* eg. use things as `dma_load_mbuf()' on transmit,
* and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
* all the time) on the receiver side.
*
* Note: receive buffers must be 64-byte aligned.
* Also, apparently, the buffers must extend to a DMA burst
* boundary beyond the maximum packet size.
*/
#define _HME_NDESC 128
#define _HME_BUFSZ 1600
/* Note: the # of descriptors must be a multiple of 16 */
sc->sc_rb.rb_ntbuf = _HME_NDESC;
sc->sc_rb.rb_nrbuf = _HME_NDESC;
/*
* Allocate DMA capable memory
* Buffer descriptors must be aligned on a 2048 byte boundary;
* take this into account when calculating the size. Note that
* the maximum number of descriptors (256) occupies 2048 bytes,
* so we allocate that much regardless of _HME_NDESC.
*/
size = 2048 + /* TX descriptors */
2048 + /* RX descriptors */
sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
/* Allocate DMA buffer */
if ((error = bus_dmamem_alloc(dmatag, size,
2048, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
error);
return;
}
/* Map DMA memory in CPU addressable space */
if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
&sc->sc_rb.rb_membase,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
error);
bus_dmamap_unload(dmatag, sc->sc_dmamap);
bus_dmamem_free(dmatag, &seg, rseg);
return;
}
if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
error);
return;
}
/* Load the buffer */
if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
sc->sc_rb.rb_membase, size, NULL,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
error);
bus_dmamem_free(dmatag, &seg, rseg);
return;
}
sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
ether_sprintf(sc->sc_enaddr));
/* Initialize ifnet structure. */
strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = hme_start;
ifp->if_ioctl = hme_ioctl;
ifp->if_watchdog = hme_watchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
sc->sc_if_flags = ifp->if_flags;
ifp->if_capabilities |=
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
IFQ_SET_READY(&ifp->if_snd);
/* Initialize ifmedia structures and MII info */
mii->mii_ifp = ifp;
mii->mii_readreg = hme_mii_readreg;
mii->mii_writereg = hme_mii_writereg;
mii->mii_statchg = hme_mii_statchg;
sc->sc_ethercom.ec_mii = mii;
ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
hme_mifinit(sc);
mii_attach(&sc->sc_dev, mii, 0xffffffff,
MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
child = LIST_FIRST(&mii->mii_phys);
if (child == NULL) {
/* No PHY attached */
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
} else {
/*
* Walk along the list of attached MII devices and
* establish an `MII instance' to `phy number'
* mapping. We'll use this mapping in media change
* requests to determine which phy to use to program
* the MIF configuration register.
*/
for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
/*
* Note: we support just two PHYs: the built-in
* internal device and an external on the MII
* connector.
*/
if (child->mii_phy > 1 || child->mii_inst > 1) {
aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
" at phy %d, instance %d\n",
device_xname(child->mii_dev),
child->mii_phy, child->mii_inst);
continue;
}
sc->sc_phys[child->mii_inst] = child->mii_phy;
}
/*
* XXX - we can really do the following ONLY if the
* phy indeed has the auto negotiation capability!!
*/
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
/* claim 802.1q capability */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
if (sc->sc_sh == NULL)
panic("hme_config: can't establish shutdownhook");
#if NRND > 0
rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
RND_TYPE_NET, 0);
#endif
callout_init(&sc->sc_tick_ch, 0);
}
void
hme_tick(arg)
void *arg;
{
struct hme_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
}
void
hme_reset(sc)
struct hme_softc *sc;
{
int s;
s = splnet();
(void)hme_init(sc);
splx(s);
}
void
hme_stop(struct hme_softc *sc, bool chip_only)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t seb = sc->sc_seb;
int n;
if (!chip_only) {
callout_stop(&sc->sc_tick_ch);
mii_down(&sc->sc_mii);
}
/* Mask all interrupts */
bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
/* Reset transmitter and receiver */
bus_space_write_4(t, seb, HME_SEBI_RESET,
(HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
for (n = 0; n < 20; n++) {
u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
return;
DELAY(20);
}
printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
}
void
hme_meminit(sc)
struct hme_softc *sc;
{
bus_addr_t txbufdma, rxbufdma;
bus_addr_t dma;
char *p;
unsigned int ntbuf, nrbuf, i;
struct hme_ring *hr = &sc->sc_rb;
p = hr->rb_membase;
dma = hr->rb_dmabase;
ntbuf = hr->rb_ntbuf;
nrbuf = hr->rb_nrbuf;
/*
* Allocate transmit descriptors
*/
hr->rb_txd = p;
hr->rb_txddma = dma;
p += ntbuf * HME_XD_SIZE;
dma += ntbuf * HME_XD_SIZE;
/* We have reserved descriptor space until the next 2048 byte boundary.*/
dma = (bus_addr_t)roundup((u_long)dma, 2048);
p = (void *)roundup((u_long)p, 2048);
/*
* Allocate receive descriptors
*/
hr->rb_rxd = p;
hr->rb_rxddma = dma;
p += nrbuf * HME_XD_SIZE;
dma += nrbuf * HME_XD_SIZE;
/* Again move forward to the next 2048 byte boundary.*/
dma = (bus_addr_t)roundup((u_long)dma, 2048);
p = (void *)roundup((u_long)p, 2048);
/*
* Allocate transmit buffers
*/
hr->rb_txbuf = p;
txbufdma = dma;
p += ntbuf * _HME_BUFSZ;
dma += ntbuf * _HME_BUFSZ;
/*
* Allocate receive buffers
*/
hr->rb_rxbuf = p;
rxbufdma = dma;
p += nrbuf * _HME_BUFSZ;
dma += nrbuf * _HME_BUFSZ;
/*
* Initialize transmit buffer descriptors
*/
for (i = 0; i < ntbuf; i++) {
HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
}
/*
* Initialize receive buffer descriptors
*/
for (i = 0; i < nrbuf; i++) {
HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
}
hr->rb_tdhead = hr->rb_tdtail = 0;
hr->rb_td_nbusy = 0;
hr->rb_rdtail = 0;
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
int
hme_init(sc)
struct hme_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t seb = sc->sc_seb;
bus_space_handle_t etx = sc->sc_etx;
bus_space_handle_t erx = sc->sc_erx;
bus_space_handle_t mac = sc->sc_mac;
u_int8_t *ea;
u_int32_t v;
int rc;
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel */
hme_stop(sc, false);
/* Re-initialize the MIF */
hme_mifinit(sc);
/* Call MI reset function if any */
if (sc->sc_hwreset)
(*sc->sc_hwreset)(sc);
#if 0
/* Mask all MIF interrupts, just in case */
bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
#endif
/* step 3. Setup data structures in host memory */
hme_meminit(sc);
/* step 4. TX MAC registers & counters */
bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
bus_space_write_4(t, mac, HME_MACI_TXSIZE,
(sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
/* Load station MAC address */
ea = sc->sc_enaddr;
bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
/*
* Init seed for backoff
* (source suggested by manual: low 10 bits of MAC address)
*/
v = ((ea[4] << 8) | ea[5]) & 0x3fff;
bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
/* Note: Accepting power-on default for other MAC registers here.. */
/* step 5. RX MAC registers & counters */
hme_setladrf(sc);
/* step 6 & 7. Program Descriptor Ring Base Addresses */
bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
bus_space_write_4(t, mac, HME_MACI_RXSIZE,
(sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
/* step 8. Global Configuration & Interrupt Mask */
bus_space_write_4(t, seb, HME_SEBI_IMASK,
~(
/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
HME_SEB_STAT_HOSTTOTX |
HME_SEB_STAT_RXTOHOST |
HME_SEB_STAT_TXALL |
HME_SEB_STAT_TXPERR |
HME_SEB_STAT_RCNTEXP |
/*HME_SEB_STAT_MIFIRQ |*/
HME_SEB_STAT_ALL_ERRORS ));
switch (sc->sc_burst) {
default:
v = 0;
break;
case 16:
v = HME_SEB_CFG_BURST16;
break;
case 32:
v = HME_SEB_CFG_BURST32;
break;
case 64:
v = HME_SEB_CFG_BURST64;
break;
}
bus_space_write_4(t, seb, HME_SEBI_CFG, v);
/* step 9. ETX Configuration: use mostly default values */
/* Enable DMA */
v = bus_space_read_4(t, etx, HME_ETXI_CFG);
v |= HME_ETX_CFG_DMAENABLE;
bus_space_write_4(t, etx, HME_ETXI_CFG, v);
/* Transmit Descriptor ring size: in increments of 16 */
bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
/* step 10. ERX Configuration */
v = bus_space_read_4(t, erx, HME_ERXI_CFG);
/* Encode Receive Descriptor ring size: four possible values */
switch (_HME_NDESC /*XXX*/) {
case 32:
v |= HME_ERX_CFG_RINGSIZE32;
break;
case 64:
v |= HME_ERX_CFG_RINGSIZE64;
break;
case 128:
v |= HME_ERX_CFG_RINGSIZE128;
break;
case 256:
v |= HME_ERX_CFG_RINGSIZE256;
break;
default:
printf("hme: invalid Receive Descriptor ring size\n");
break;
}
/* Enable DMA */
v |= HME_ERX_CFG_DMAENABLE;
/* set h/w rx checksum start offset (# of half-words) */
#ifdef INET
v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
HME_ERX_CFG_CSUMSTART;
#endif
bus_space_write_4(t, erx, HME_ERXI_CFG, v);
/* step 11. XIF Configuration */
v = bus_space_read_4(t, mac, HME_MACI_XIF);
v |= HME_MAC_XIF_OE;
bus_space_write_4(t, mac, HME_MACI_XIF, v);
/* step 12. RX_MAC Configuration Register */
v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
/* step 13. TX_MAC Configuration Register */
v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
/* step 14. Issue Transmit Pending command */
/* Call MI initialization function if any */
if (sc->sc_hwinit)
(*sc->sc_hwinit)(sc);
/* Set the current media. */
if ((rc = hme_mediachange(ifp)) != 0)
return rc;
/* Start the one second timer. */
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->sc_if_flags = ifp->if_flags;
ifp->if_timer = 0;
hme_start(ifp);
return 0;
}
/*
* Compare two Ether/802 addresses for equality, inlined and unrolled for
* speed.
*/
static inline int
ether_cmp(a, b)
u_char *a, *b;
{
if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
return (0);
return (1);
}
/*
* Routine to copy from mbuf chain to transmit buffer in
* network buffer memory.
* Returns the amount of data copied.
*/
int
hme_put(sc, ri, m)
struct hme_softc *sc;
int ri; /* Ring index */
struct mbuf *m;
{
struct mbuf *n;
int len, tlen = 0;
char *bp;
bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
for (; m; m = n) {
len = m->m_len;
if (len == 0) {
MFREE(m, n);
continue;
}
memcpy(bp, mtod(m, void *), len);
bp += len;
tlen += len;
MFREE(m, n);
}
return (tlen);
}
/*
* Pull data off an interface.
* Len is length of data, with local net header stripped.
* We copy the data into mbufs. When full cluster sized units are present
* we copy into clusters.
*/
struct mbuf *
hme_get(sc, ri, flags)
struct hme_softc *sc;
int ri;
u_int32_t flags;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m, *m0, *newm;
char *bp;
int len, totlen;
totlen = HME_XD_DECODE_RSIZE(flags);
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == 0)
return (0);
m0->m_pkthdr.rcvif = ifp;
m0->m_pkthdr.len = totlen;
len = MHLEN;
m = m0;
bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
while (totlen > 0) {
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0)
goto bad;
len = MCLBYTES;
}
if (m == m0) {
char *newdata = (char *)
ALIGN(m->m_data + sizeof(struct ether_header)) -
sizeof(struct ether_header);
len -= newdata - m->m_data;
m->m_data = newdata;
}
m->m_len = len = min(totlen, len);
memcpy(mtod(m, void *), bp, len);
bp += len;
totlen -= len;
if (totlen > 0) {
MGET(newm, M_DONTWAIT, MT_DATA);
if (newm == 0)
goto bad;
len = MLEN;
m = m->m_next = newm;
}
}
#ifdef INET
/* hardware checksum */
if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
struct ether_header *eh;
struct ip *ip;
struct udphdr *uh;
uint16_t *opts;
int32_t hlen, pktlen;
uint32_t temp;
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
ETHER_VLAN_ENCAP_LEN;
eh = (struct ether_header *) mtod(m0, void *) +
ETHER_VLAN_ENCAP_LEN;
} else {
pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
eh = mtod(m0, struct ether_header *);
}
if (ntohs(eh->ether_type) != ETHERTYPE_IP)
goto swcsum;
ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
/* IPv4 only */
if (ip->ip_v != IPVERSION)
goto swcsum;
hlen = ip->ip_hl << 2;
if (hlen < sizeof(struct ip))
goto swcsum;
/*
* bail if too short, has random trailing garbage, truncated,
* fragment, or has ethernet pad.
*/
if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
|| (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
goto swcsum;
switch (ip->ip_p) {
case IPPROTO_TCP:
if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
goto swcsum;
if (pktlen < (hlen + sizeof(struct tcphdr)))
goto swcsum;
m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
break;
case IPPROTO_UDP:
if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
goto swcsum;
if (pktlen < (hlen + sizeof(struct udphdr)))
goto swcsum;
uh = (struct udphdr *)((char *)ip + hlen);
/* no checksum */
if (uh->uh_sum == 0)
goto swcsum;
m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
break;
default:
goto swcsum;
}
/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
/* if the pkt had ip options, we have to deduct them */
if (hlen > sizeof(struct ip)) {
uint32_t optsum;
optsum = 0;
temp = hlen - sizeof(struct ip);
opts = (uint16_t *)((char *)ip + sizeof(struct ip));
while (temp > 1) {
optsum += ntohs(*opts++);
temp -= 2;
}
while (optsum >> 16)
optsum = (optsum >> 16) + (optsum & 0xffff);
/* Deduct the ip opts sum from the hwsum (rfc 1624). */
m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
~optsum);
while (m0->m_pkthdr.csum_data >> 16)
m0->m_pkthdr.csum_data =
(m0->m_pkthdr.csum_data >> 16) +
(m0->m_pkthdr.csum_data & 0xffff);
}
m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
}
swcsum:
m0->m_pkthdr.csum_flags = 0;
#endif
return (m0);
bad:
m_freem(m0);
return (0);
}
/*
* Pass a packet to the higher levels.
*/
void
hme_read(sc, ix, flags)
struct hme_softc *sc;
int ix;
u_int32_t flags;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m;
int len;
len = HME_XD_DECODE_RSIZE(flags);
if (len <= sizeof(struct ether_header) ||
len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
ETHERMTU + sizeof(struct ether_header))) {
#ifdef HMEDEBUG
printf("%s: invalid packet size %d; dropping\n",
device_xname(&sc->sc_dev), len);
#endif
ifp->if_ierrors++;
return;
}
/* Pull packet off interface. */
m = hme_get(sc, ix, flags);
if (m == 0) {
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/* Pass the packet up. */
(*ifp->if_input)(ifp, m);
}
void
hme_start(ifp)
struct ifnet *ifp;
{
struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
void *txd = sc->sc_rb.rb_txd;
struct mbuf *m;
unsigned int txflags;
unsigned int ri, len;
unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
ri = sc->sc_rb.rb_tdhead;
for (;;) {
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == 0)
break;
#if NBPFILTER > 0
/*
* If BPF is listening on this interface, let it see the
* packet before we commit it to the wire.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
#ifdef INET
/* collect bits for h/w csum, before hme_put frees the mbuf */
if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
struct ether_header *eh;
uint16_t offset, start;
eh = mtod(m, struct ether_header *);
switch (ntohs(eh->ether_type)) {
case ETHERTYPE_IP:
start = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
default:
/* unsupported, drop it */
m_free(m);
continue;
}
start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
+ start;
txflags = HME_XD_TXCKSUM |
(offset << HME_XD_TXCSSTUFFSHIFT) |
(start << HME_XD_TXCSSTARTSHIFT);
} else
#endif
txflags = 0;
/*
* Copy the mbuf chain into the transmit buffer.
*/
len = hme_put(sc, ri, m);
/*
* Initialize transmit registers and start transmission
*/
HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
HME_XD_ENCODE_TSIZE(len) | txflags);
/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
HME_ETX_TP_DMAWAKEUP);
if (++ri == ntbuf)
ri = 0;
if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
}
sc->sc_rb.rb_tdhead = ri;
}
/*
* Transmit interrupt.
*/
int
hme_tint(sc)
struct hme_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_mac;
unsigned int ri, txflags;
/*
* Unload collision counters
*/
ifp->if_collisions +=
bus_space_read_4(t, mac, HME_MACI_NCCNT) +
bus_space_read_4(t, mac, HME_MACI_FCCNT) +
bus_space_read_4(t, mac, HME_MACI_EXCNT) +
bus_space_read_4(t, mac, HME_MACI_LTCNT);
/*
* then clear the hardware counters.
*/
bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
/* Fetch current position in the transmit ring */
ri = sc->sc_rb.rb_tdtail;
for (;;) {
if (sc->sc_rb.rb_td_nbusy <= 0)
break;
txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
if (txflags & HME_XD_OWN)
break;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_opackets++;
if (++ri == sc->sc_rb.rb_ntbuf)
ri = 0;
--sc->sc_rb.rb_td_nbusy;
}
/* Update ring */
sc->sc_rb.rb_tdtail = ri;
hme_start(ifp);
if (sc->sc_rb.rb_td_nbusy == 0)
ifp->if_timer = 0;
return (1);
}
/*
* Receive interrupt.
*/
int
hme_rint(sc)
struct hme_softc *sc;
{
void *xdr = sc->sc_rb.rb_rxd;
unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
unsigned int ri;
u_int32_t flags;
ri = sc->sc_rb.rb_rdtail;
/*
* Process all buffers with valid data.
*/
for (;;) {
flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
if (flags & HME_XD_OWN)
break;
if (flags & HME_XD_OFL) {
printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
device_xname(&sc->sc_dev), ri, flags);
} else
hme_read(sc, ri, flags);
/* This buffer can be used by the hardware again */
HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
if (++ri == nrbuf)
ri = 0;
}
sc->sc_rb.rb_rdtail = ri;
return (1);
}
int
hme_eint(sc, status)
struct hme_softc *sc;
u_int status;
{
char bits[128];
if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_mif;
u_int32_t cf, st, sm;
cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
st = bus_space_read_4(t, mif, HME_MIFI_STAT);
sm = bus_space_read_4(t, mif, HME_MIFI_SM);
printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
device_xname(&sc->sc_dev), cf, st, sm);
return (1);
}
snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
return (1);
}
int
hme_intr(v)
void *v;
{
struct hme_softc *sc = (struct hme_softc *)v;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t seb = sc->sc_seb;
u_int32_t status;
int r = 0;
status = bus_space_read_4(t, seb, HME_SEBI_STAT);
if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
r |= hme_eint(sc, status);
if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
r |= hme_tint(sc);
if ((status & HME_SEB_STAT_RXTOHOST) != 0)
r |= hme_rint(sc);
#if NRND > 0
rnd_add_uint32(&sc->rnd_source, status);
#endif
return (r);
}
void
hme_watchdog(ifp)
struct ifnet *ifp;
{
struct hme_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
++ifp->if_oerrors;
hme_reset(sc);
}
/*
* Initialize the MII Management Interface
*/
void
hme_mifinit(sc)
struct hme_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_mif;
bus_space_handle_t mac = sc->sc_mac;
int instance, phy;
u_int32_t v;
if (sc->sc_mii.mii_media.ifm_cur != NULL) {
instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
phy = sc->sc_phys[instance];
} else
/* No media set yet, pick phy arbitrarily.. */
phy = HME_PHYAD_EXTERNAL;
/* Configure the MIF in frame mode, no poll, current phy select */
v = 0;
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MIF_CFG_PHY;
bus_space_write_4(t, mif, HME_MIFI_CFG, v);
/* If an external transceiver is selected, enable its MII drivers */
v = bus_space_read_4(t, mac, HME_MACI_XIF);
v &= ~HME_MAC_XIF_MIIENABLE;
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MAC_XIF_MIIENABLE;
bus_space_write_4(t, mac, HME_MACI_XIF, v);
}
/*
* MII interface
*/
static int
hme_mii_readreg(self, phy, reg)
struct device *self;
int phy, reg;
{
struct hme_softc *sc = (void *)self;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_mif;
bus_space_handle_t mac = sc->sc_mac;
u_int32_t v, xif_cfg, mifi_cfg;
int n;
/* We can at most have two PHYs */
if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
return (0);
/* Select the desired PHY in the MIF configuration register */
v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
v &= ~HME_MIF_CFG_PHY;
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MIF_CFG_PHY;
bus_space_write_4(t, mif, HME_MIFI_CFG, v);
/* Enable MII drivers on external transceiver */
v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MAC_XIF_MIIENABLE;
else
v &= ~HME_MAC_XIF_MIIENABLE;
bus_space_write_4(t, mac, HME_MACI_XIF, v);
#if 0
/* This doesn't work reliably; the MDIO_1 bit is off most of the time */
/*
* Check whether a transceiver is connected by testing
* the MIF configuration register's MDI_X bits. Note that
* MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
*/
mif_mdi_bit = 1 << (8 + (1 - phy));
delay(100);
v = bus_space_read_4(t, mif, HME_MIFI_CFG);
if ((v & mif_mdi_bit) == 0)
return (0);
#endif
/* Construct the frame command */
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
HME_MIF_FO_TAMSB |
(MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
(phy << HME_MIF_FO_PHYAD_SHIFT) |
(reg << HME_MIF_FO_REGAD_SHIFT);
bus_space_write_4(t, mif, HME_MIFI_FO, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, HME_MIFI_FO);
if (v & HME_MIF_FO_TALSB) {
v &= HME_MIF_FO_DATA;
goto out;
}
}
v = 0;
printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
out:
/* Restore MIFI_CFG register */
bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
/* Restore XIF register */
bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
return (v);
}
static void
hme_mii_writereg(self, phy, reg, val)
struct device *self;
int phy, reg, val;
{
struct hme_softc *sc = (void *)self;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_mif;
bus_space_handle_t mac = sc->sc_mac;
u_int32_t v, xif_cfg, mifi_cfg;
int n;
/* We can at most have two PHYs */
if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
return;
/* Select the desired PHY in the MIF configuration register */
v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
v &= ~HME_MIF_CFG_PHY;
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MIF_CFG_PHY;
bus_space_write_4(t, mif, HME_MIFI_CFG, v);
/* Enable MII drivers on external transceiver */
v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MAC_XIF_MIIENABLE;
else
v &= ~HME_MAC_XIF_MIIENABLE;
bus_space_write_4(t, mac, HME_MACI_XIF, v);
#if 0
/* This doesn't work reliably; the MDIO_1 bit is off most of the time */
/*
* Check whether a transceiver is connected by testing
* the MIF configuration register's MDI_X bits. Note that
* MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
*/
mif_mdi_bit = 1 << (8 + (1 - phy));
delay(100);
v = bus_space_read_4(t, mif, HME_MIFI_CFG);
if ((v & mif_mdi_bit) == 0)
return;
#endif
/* Construct the frame command */
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
HME_MIF_FO_TAMSB |
(MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
(phy << HME_MIF_FO_PHYAD_SHIFT) |
(reg << HME_MIF_FO_REGAD_SHIFT) |
(val & HME_MIF_FO_DATA);
bus_space_write_4(t, mif, HME_MIFI_FO, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, HME_MIFI_FO);
if (v & HME_MIF_FO_TALSB)
goto out;
}
printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
out:
/* Restore MIFI_CFG register */
bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
/* Restore XIF register */
bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
}
static void
hme_mii_statchg(dev)
struct device *dev;
{
struct hme_softc *sc = (void *)dev;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_mac;
u_int32_t v;
#ifdef HMEDEBUG
if (sc->sc_debug)
printf("hme_mii_statchg: status change\n");
#endif
/* Set the MAC Full Duplex bit appropriately */
/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
but not otherwise. */
v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
v |= HME_MAC_TXCFG_FULLDPLX;
sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
} else {
v &= ~HME_MAC_TXCFG_FULLDPLX;
sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
}
sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
}
int
hme_mediachange(ifp)
struct ifnet *ifp;
{
struct hme_softc *sc = ifp->if_softc;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_mif;
bus_space_handle_t mac = sc->sc_mac;
int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
int phy = sc->sc_phys[instance];
int rc;
u_int32_t v;
#ifdef HMEDEBUG
if (sc->sc_debug)
printf("hme_mediachange: phy = %d\n", phy);
#endif
/* Select the current PHY in the MIF configuration register */
v = bus_space_read_4(t, mif, HME_MIFI_CFG);
v &= ~HME_MIF_CFG_PHY;
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MIF_CFG_PHY;
bus_space_write_4(t, mif, HME_MIFI_CFG, v);
/* If an external transceiver is selected, enable its MII drivers */
v = bus_space_read_4(t, mac, HME_MACI_XIF);
v &= ~HME_MAC_XIF_MIIENABLE;
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MAC_XIF_MIIENABLE;
bus_space_write_4(t, mac, HME_MACI_XIF, v);
if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
return 0;
return rc;
}
/*
* Process an ioctl request.
*/
int
hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
{
struct hme_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCINITIFADDR:
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
if (ifp->if_flags & IFF_UP)
hme_setladrf(sc);
else {
ifp->if_flags |= IFF_UP;
error = hme_init(sc);
}
arp_ifinit(ifp, ifa);
break;
#endif
default:
ifp->if_flags |= IFF_UP;
error = hme_init(sc);
break;
}
break;
case SIOCSIFFLAGS:
#ifdef HMEDEBUG
{
struct ifreq *ifr = data;
sc->sc_debug =
(ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
}
#endif
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
case IFF_RUNNING:
/*
* If interface is marked down and it is running, then
* stop it.
*/
hme_stop(sc, false);
ifp->if_flags &= ~IFF_RUNNING;
break;
case IFF_UP:
/*
* If interface is marked up and it is stopped, then
* start it.
*/
error = hme_init(sc);
break;
case IFF_UP|IFF_RUNNING:
/*
* If setting debug or promiscuous mode, do not reset
* the chip; for everything else, call hme_init()
* which will trigger a reset.
*/
#define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
if (ifp->if_flags != sc->sc_if_flags) {
if ((ifp->if_flags & (~RESETIGN))
== (sc->sc_if_flags & (~RESETIGN)))
hme_setladrf(sc);
else
error = hme_init(sc);
}
#undef RESETIGN
break;
case 0:
break;
}
if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
error = hme_init(sc);
break;
default:
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
break;
error = 0;
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
hme_setladrf(sc);
}
break;
}
sc->sc_if_flags = ifp->if_flags;
splx(s);
return (error);
}
void
hme_shutdown(arg)
void *arg;
{
hme_stop((struct hme_softc *)arg, false);
}
/*
* Set up the logical address filter.
*/
void
hme_setladrf(sc)
struct hme_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
struct ethercom *ec = &sc->sc_ethercom;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_mac;
u_char *cp;
u_int32_t crc;
u_int32_t hash[4];
u_int32_t v;
int len;
/* Clear hash table */
hash[3] = hash[2] = hash[1] = hash[0] = 0;
/* Get current RX configuration */
v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
if ((ifp->if_flags & IFF_PROMISC) != 0) {
/* Turn on promiscuous mode; turn off the hash filter */
v |= HME_MAC_RXCFG_PMISC;
v &= ~HME_MAC_RXCFG_HENABLE;
ifp->if_flags |= IFF_ALLMULTI;
goto chipit;
}
/* Turn off promiscuous mode; turn on the hash filter */
v &= ~HME_MAC_RXCFG_PMISC;
v |= HME_MAC_RXCFG_HENABLE;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
ifp->if_flags |= IFF_ALLMULTI;
goto chipit;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
int octet = *cp++;
int i;
#define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
for (i = 0; i < 8; i++) {
if ((crc & 1) ^ (octet & 1)) {
crc >>= 1;
crc ^= MC_POLY_LE;
} else {
crc >>= 1;
}
octet >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (crc & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
chipit:
/* Now load the hash table into the chip */
bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
}
/*
* Routines for accessing the transmit and receive buffers.
* The various CPU and adapter configurations supported by this
* driver require three different access methods for buffers
* and descriptors:
* (1) contig (contiguous data; no padding),
* (2) gap2 (two bytes of data followed by two bytes of padding),
* (3) gap16 (16 bytes of data followed by 16 bytes of padding).
*/
#if 0
/*
* contig: contiguous data with no padding.
*
* Buffers may have any alignment.
*/
void
hme_copytobuf_contig(sc, from, ri, len)
struct hme_softc *sc;
void *from;
int ri, len;
{
volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
/*
* Just call memcpy() to do the work.
*/
memcpy(buf, from, len);
}
void
hme_copyfrombuf_contig(sc, to, boff, len)
struct hme_softc *sc;
void *to;
int boff, len;
{
volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
/*
* Just call memcpy() to do the work.
*/
memcpy(to, buf, len);
}
#endif