8727da130b
renamed AUDIO_ENCODING_SLINEAR and AUDIO_ENCODING_LINEAR reverts to the NetBSD 1.2 sematics. A kernel with COMPAT_12 defined will accept AUDIO_ENCODING_LINEAR and treat it as before, without COMPAT_12 it will be rejected.
1909 lines
42 KiB
C
1909 lines
42 KiB
C
/* $NetBSD: audio.c,v 1.51 1997/07/15 07:46:11 augustss Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1991-1993 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the Computer Systems
|
|
* Engineering Group at Lawrence Berkeley Laboratory.
|
|
* 4. Neither the name of the University nor of the Laboratory may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This is a (partially) SunOS-compatible /dev/audio driver for NetBSD.
|
|
*
|
|
* This code tries to do something half-way sensible with
|
|
* half-duplex hardware, such as with the SoundBlaster hardware. With
|
|
* half-duplex hardware allowing O_RDWR access doesn't really make
|
|
* sense. However, closing and opening the device to "turn around the
|
|
* line" is relatively expensive and costs a card reset (which can
|
|
* take some time, at least for the SoundBlaster hardware). Instead
|
|
* we allow O_RDWR access, and provide an ioctl to set the "mode",
|
|
* i.e. playing or recording.
|
|
*
|
|
* If you write to a half-duplex device in record mode, the data is
|
|
* tossed. If you read from the device in play mode, you get silence
|
|
* filled buffers at the rate at which samples are naturally
|
|
* generated.
|
|
*
|
|
* If you try to set both play and record mode on a half-duplex
|
|
* device, playing takes precedence.
|
|
*/
|
|
|
|
/*
|
|
* Todo:
|
|
* - Add softaudio() isr processing for wakeup, poll and signals.
|
|
* - Allow opens for READ and WRITE (one open each)
|
|
* - Setup for single isr for full-duplex
|
|
* - Add SIGIO generation for changes in the mixer device
|
|
* - Fixup SunOS compat for mixer device changes in ioctl.
|
|
*/
|
|
|
|
#include "audio.h"
|
|
#if NAUDIO > 0
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/select.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/audioio.h>
|
|
|
|
#include <dev/audio_if.h>
|
|
#include <dev/audiovar.h>
|
|
|
|
#include <machine/endian.h>
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
#include <machine/stdarg.h>
|
|
|
|
void Dprintf __P((const char *, ...));
|
|
|
|
void
|
|
#ifdef __STDC__
|
|
Dprintf(const char *fmt, ...)
|
|
#else
|
|
Dprintf(fmt, va_alist)
|
|
char *fmt;
|
|
#endif
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
log(LOG_DEBUG, "%:", fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
#define DPRINTF(x) if (audiodebug) Dprintf x
|
|
int audiodebug = 0;
|
|
#else
|
|
#define DPRINTF(x)
|
|
#endif
|
|
|
|
|
|
int audio_blk_ms = AUDIO_BLK_MS;
|
|
int audio_backlog = AUDIO_BACKLOG;
|
|
|
|
struct audio_softc **audio_softc;
|
|
int naudio = 0; /* Current size of audio_softc */
|
|
|
|
int audiosetinfo __P((struct audio_softc *, struct audio_info *));
|
|
int audiogetinfo __P((struct audio_softc *, struct audio_info *));
|
|
|
|
int audio_open __P((dev_t, int, int, struct proc *));
|
|
int audio_close __P((dev_t, int, int, struct proc *));
|
|
int audio_read __P((dev_t, struct uio *, int));
|
|
int audio_write __P((dev_t, struct uio *, int));
|
|
int audio_ioctl __P((dev_t, int, caddr_t, int, struct proc *));
|
|
int audio_poll __P((dev_t, int, struct proc *));
|
|
int audio_mmap __P((dev_t, int, int));
|
|
|
|
int mixer_open __P((dev_t, int, int, struct proc *));
|
|
int mixer_close __P((dev_t, int, int, struct proc *));
|
|
int mixer_ioctl __P((dev_t, int, caddr_t, int, struct proc *));
|
|
|
|
void audio_init_record __P((struct audio_softc *));
|
|
void audio_init_play __P((struct audio_softc *));
|
|
void audiostartr __P((struct audio_softc *));
|
|
void audiostartp __P((struct audio_softc *));
|
|
void audio_rint __P((void *));
|
|
void audio_pint __P((void *));
|
|
void audio_rpint __P((void *));
|
|
int audio_check_params __P((struct audio_params *));
|
|
|
|
int audio_calc_blksize __P((struct audio_softc *));
|
|
void audio_fill_silence __P((struct audio_params *, u_char *, int));
|
|
int audio_silence_copyout __P((struct audio_softc *, int, struct uio *));
|
|
void audio_alloc_auzero __P((struct audio_softc *, int));
|
|
|
|
void audio_printsc __P((struct audio_softc *));
|
|
void audioattach __P((int));
|
|
int audio_hardware_attach __P((struct audio_hw_if *, void *));
|
|
void audio_init_ring __P((struct audio_buffer *, int));
|
|
void audio_initbufs __P((struct audio_softc *));
|
|
static __inline int audio_sleep_timo __P((int *, char *, int));
|
|
static __inline int audio_sleep __P((int *, char *));
|
|
static __inline void audio_wakeup __P((int *));
|
|
int audio_drain __P((struct audio_softc *));
|
|
void audio_clear __P((struct audio_softc *));
|
|
|
|
/* The default audio mode: 8 kHz mono ulaw */
|
|
struct audio_params audio_default =
|
|
{ 8000, AUDIO_ENCODING_ULAW, 8, 1, 0 };
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
void
|
|
audio_printsc(sc)
|
|
struct audio_softc *sc;
|
|
{
|
|
printf("hwhandle %p hw_if %p ", sc->hw_hdl, sc->hw_if);
|
|
printf("open %x mode %x\n", sc->sc_open, sc->sc_mode);
|
|
printf("rchan %x wchan %x ", sc->sc_rchan, sc->sc_wchan);
|
|
printf("rring blk %x pring nblk %x\n", sc->rr.nblk, sc->pr.nblk);
|
|
printf("rbus %x pbus %x ", sc->sc_rbus, sc->sc_pbus);
|
|
printf("blksz %d sib %d ", sc->sc_blksize, sc->sc_smpl_in_blk);
|
|
printf("sp50ms %d backlog %d\n", sc->sc_50ms, sc->sc_backlog);
|
|
printf("hiwat %d lowat %d rblks %d\n", sc->sc_hiwat, sc->sc_lowat,
|
|
sc->sc_rblks);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
audioattach(num)
|
|
int num;
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Called from hardware driver.
|
|
*/
|
|
int
|
|
audio_hardware_attach(hwp, hdlp)
|
|
struct audio_hw_if *hwp;
|
|
void *hdlp;
|
|
{
|
|
struct audio_softc *sc;
|
|
int n;
|
|
|
|
/* Find a free slot. */
|
|
for(n = 0; n < naudio && audio_softc[n]; n++)
|
|
;
|
|
if (n >= naudio) {
|
|
/* No free slots, allocate one */
|
|
struct audio_softc **new;
|
|
|
|
naudio++;
|
|
new = malloc(naudio * sizeof(struct audio_softc *),
|
|
M_DEVBUF, M_WAITOK);
|
|
bcopy(audio_softc, new,
|
|
n * sizeof(struct audio_softc *));
|
|
if (audio_softc)
|
|
free(audio_softc, M_DEVBUF);
|
|
audio_softc = new;
|
|
audio_softc[n] = 0;
|
|
}
|
|
|
|
/* Malloc a softc for the device. */
|
|
sc = malloc(sizeof(struct audio_softc), M_DEVBUF, M_WAITOK);
|
|
bzero(sc, sizeof(struct audio_softc));
|
|
|
|
/* XXX too paranoid? */
|
|
if (hwp->open == 0 ||
|
|
hwp->close == 0 ||
|
|
hwp->query_encoding == 0 ||
|
|
hwp->set_params == 0 ||
|
|
hwp->round_blocksize == 0 ||
|
|
hwp->set_out_port == 0 ||
|
|
hwp->get_out_port == 0 ||
|
|
hwp->set_in_port == 0 ||
|
|
hwp->get_in_port == 0 ||
|
|
hwp->commit_settings == 0 ||
|
|
hwp->start_output == 0 ||
|
|
hwp->start_input == 0 ||
|
|
hwp->halt_output == 0 ||
|
|
hwp->halt_input == 0 ||
|
|
hwp->cont_output == 0 ||
|
|
hwp->cont_input == 0 ||
|
|
hwp->getdev == 0 ||
|
|
hwp->set_port == 0 ||
|
|
hwp->get_port == 0 ||
|
|
hwp->query_devinfo == 0) {
|
|
free(sc, M_DEVBUF);
|
|
return(EINVAL);
|
|
}
|
|
|
|
sc->hw_if = hwp;
|
|
sc->hw_hdl = hdlp;
|
|
|
|
/*
|
|
* Alloc DMA play and record buffers
|
|
*/
|
|
sc->rr.bp = malloc(AU_RING_SIZE, M_DEVBUF, M_WAITOK);
|
|
if (sc->rr.bp == 0) {
|
|
free(sc, M_DEVBUF);
|
|
return (ENOMEM);
|
|
}
|
|
sc->pr.bp = malloc(AU_RING_SIZE, M_DEVBUF, M_WAITOK);
|
|
if (sc->pr.bp == 0) {
|
|
free(sc->rr.bp, M_DEVBUF);
|
|
free(sc, M_DEVBUF);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
audio_softc[n] = sc;
|
|
|
|
/*
|
|
* Set default softc params
|
|
*/
|
|
sc->sc_pparams = audio_default;
|
|
sc->sc_rparams = audio_default;
|
|
|
|
/*
|
|
* Return the audio unit number
|
|
*/
|
|
hwp->audio_unit = n;
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
printf("audio: unit %d attached\n", hwp->audio_unit);
|
|
#endif
|
|
|
|
return(0);
|
|
}
|
|
|
|
int
|
|
audio_hardware_detach(hwp)
|
|
struct audio_hw_if *hwp;
|
|
{
|
|
struct audio_softc *sc;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (!hwp)
|
|
panic("audio_hardware_detach: null hwp");
|
|
|
|
if (hwp->audio_unit > naudio)
|
|
panic("audio_hardware_detach: invalid audio unit");
|
|
#endif
|
|
|
|
sc = audio_softc[hwp->audio_unit];
|
|
|
|
if (hwp != sc->hw_if)
|
|
return(EINVAL);
|
|
|
|
if (sc->sc_open != 0)
|
|
return(EBUSY);
|
|
|
|
sc->hw_if = 0;
|
|
|
|
/* Free audio buffers */
|
|
free(sc->rr.bp, M_DEVBUF);
|
|
free(sc->pr.bp, M_DEVBUF);
|
|
|
|
free(sc, M_DEVBUF);
|
|
audio_softc[hwp->audio_unit] = NULL;
|
|
|
|
return(0);
|
|
}
|
|
|
|
int
|
|
audioopen(dev, flags, ifmt, p)
|
|
dev_t dev;
|
|
int flags, ifmt;
|
|
struct proc *p;
|
|
{
|
|
|
|
switch (AUDIODEV(dev)) {
|
|
case SOUND_DEVICE:
|
|
case AUDIO_DEVICE:
|
|
return (audio_open(dev, flags, ifmt, p));
|
|
case MIXER_DEVICE:
|
|
return (mixer_open(dev, flags, ifmt, p));
|
|
default:
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
int
|
|
audioclose(dev, flags, ifmt, p)
|
|
dev_t dev;
|
|
int flags, ifmt;
|
|
struct proc *p;
|
|
{
|
|
|
|
switch (AUDIODEV(dev)) {
|
|
case SOUND_DEVICE:
|
|
case AUDIO_DEVICE:
|
|
return (audio_close(dev, flags, ifmt, p));
|
|
case MIXER_DEVICE:
|
|
return (mixer_close(dev, flags, ifmt, p));
|
|
default:
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
int
|
|
audioread(dev, uio, ioflag)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int ioflag;
|
|
{
|
|
|
|
switch (AUDIODEV(dev)) {
|
|
case SOUND_DEVICE:
|
|
case AUDIO_DEVICE:
|
|
return (audio_read(dev, uio, ioflag));
|
|
case MIXER_DEVICE:
|
|
return (ENODEV);
|
|
default:
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
int
|
|
audiowrite(dev, uio, ioflag)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int ioflag;
|
|
{
|
|
|
|
switch (AUDIODEV(dev)) {
|
|
case SOUND_DEVICE:
|
|
case AUDIO_DEVICE:
|
|
return (audio_write(dev, uio, ioflag));
|
|
case MIXER_DEVICE:
|
|
return (ENODEV);
|
|
default:
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
int
|
|
audioioctl(dev, cmd, addr, flag, p)
|
|
dev_t dev;
|
|
u_long cmd;
|
|
caddr_t addr;
|
|
int flag;
|
|
struct proc *p;
|
|
{
|
|
|
|
switch (AUDIODEV(dev)) {
|
|
case SOUND_DEVICE:
|
|
case AUDIO_DEVICE:
|
|
return (audio_ioctl(dev, cmd, addr, flag, p));
|
|
case MIXER_DEVICE:
|
|
return (mixer_ioctl(dev, cmd, addr, flag, p));
|
|
default:
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
int
|
|
audiopoll(dev, events, p)
|
|
dev_t dev;
|
|
int events;
|
|
struct proc *p;
|
|
{
|
|
|
|
switch (AUDIODEV(dev)) {
|
|
case SOUND_DEVICE:
|
|
case AUDIO_DEVICE:
|
|
return (audio_poll(dev, events, p));
|
|
case MIXER_DEVICE:
|
|
return (0);
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
int
|
|
audiommap(dev, off, prot)
|
|
dev_t dev;
|
|
int off, prot;
|
|
{
|
|
|
|
switch (AUDIODEV(dev)) {
|
|
case SOUND_DEVICE:
|
|
case AUDIO_DEVICE:
|
|
return (audio_mmap(dev, off, prot));
|
|
case MIXER_DEVICE:
|
|
return (ENODEV);
|
|
default:
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Audio driver
|
|
*/
|
|
void
|
|
audio_init_ring(rp, blksize)
|
|
struct audio_buffer *rp;
|
|
int blksize;
|
|
{
|
|
int nblk = AU_RING_SIZE / blksize;
|
|
|
|
rp->ep = rp->bp + nblk * blksize;
|
|
rp->hp = rp->tp = rp->bp;
|
|
rp->maxblk = nblk;
|
|
rp->nblk = 0;
|
|
rp->cb_drops = 0;
|
|
rp->cb_pdrops = 0;
|
|
}
|
|
|
|
void
|
|
audio_initbufs(sc)
|
|
struct audio_softc *sc;
|
|
{
|
|
int nblk = AU_RING_SIZE / sc->sc_blksize;
|
|
|
|
audio_init_ring(&sc->rr, sc->sc_blksize);
|
|
audio_init_ring(&sc->pr, sc->sc_blksize);
|
|
sc->sc_lowat = nblk * 3 / 4;
|
|
sc->sc_hiwat = nblk;
|
|
}
|
|
|
|
static __inline int
|
|
audio_sleep_timo(chan, label, timo)
|
|
int *chan;
|
|
char *label;
|
|
int timo;
|
|
{
|
|
int st;
|
|
|
|
if (!label)
|
|
label = "audio";
|
|
|
|
*chan = 1;
|
|
st = (tsleep(chan, PWAIT | PCATCH, label, timo));
|
|
*chan = 0;
|
|
if (st != 0) {
|
|
DPRINTF(("audio_sleep: %d\n", st));
|
|
}
|
|
return (st);
|
|
}
|
|
|
|
static __inline int
|
|
audio_sleep(chan, label)
|
|
int *chan;
|
|
char *label;
|
|
{
|
|
return audio_sleep_timo(chan, label, 0);
|
|
}
|
|
|
|
static __inline void
|
|
audio_wakeup(chan)
|
|
int *chan;
|
|
{
|
|
if (*chan) {
|
|
wakeup(chan);
|
|
*chan = 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
audio_open(dev, flags, ifmt, p)
|
|
dev_t dev;
|
|
int flags, ifmt;
|
|
struct proc *p;
|
|
{
|
|
int unit = AUDIOUNIT(dev);
|
|
struct audio_softc *sc;
|
|
int s, error;
|
|
struct audio_hw_if *hw;
|
|
|
|
if (unit >= naudio || !audio_softc[unit]) {
|
|
DPRINTF(("audio_open: invalid device unit - %d\n", unit));
|
|
return (ENODEV);
|
|
}
|
|
|
|
sc = audio_softc[unit];
|
|
hw = sc->hw_if;
|
|
|
|
DPRINTF(("audio_open: dev=0x%x flags=0x%x sc=0x%x hdl=0x%x\n", dev, flags, sc, sc->hw_hdl));
|
|
if (hw == 0) /* Hardware has not attached to us... */
|
|
return (ENXIO);
|
|
|
|
if ((sc->sc_open & (AUOPEN_READ|AUOPEN_WRITE)) != 0) /* XXX use flags */
|
|
return (EBUSY);
|
|
|
|
if ((error = hw->open(dev, flags)) != 0)
|
|
return (error);
|
|
|
|
if (flags&FREAD)
|
|
sc->sc_open |= AUOPEN_READ;
|
|
if (flags&FWRITE)
|
|
sc->sc_open |= AUOPEN_WRITE;
|
|
|
|
/*
|
|
* Multiplex device: /dev/audio (MU-Law) and /dev/sound (linear)
|
|
* The /dev/audio is always (re)set to 8-bit MU-Law mono
|
|
* For the other devices, you get what they were last set to.
|
|
*/
|
|
if (ISDEVAUDIO(dev)) {
|
|
/* /dev/audio */
|
|
sc->sc_rparams = audio_default;
|
|
sc->sc_pparams = audio_default;
|
|
/** XXX should we abort on error? */
|
|
error = hw->set_params(sc->hw_hdl, AUMODE_RECORD,
|
|
&sc->sc_rparams, &sc->sc_pparams);
|
|
if (error)
|
|
return (error);
|
|
error = hw->set_params(sc->hw_hdl, AUMODE_PLAY,
|
|
&sc->sc_pparams, &sc->sc_rparams);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Sample rate and precision are supposed to be set to proper
|
|
* default values by the hardware driver, so that it may give
|
|
* us these values.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if (sc->sc_rparams.precision == 0 || sc->sc_pparams.precision == 0) {
|
|
printf("audio_open: 0 precision\n");
|
|
return EINVAL;
|
|
}
|
|
#endif
|
|
|
|
sc->sc_blksize = audio_calc_blksize(sc);
|
|
audio_alloc_auzero(sc, sc->sc_blksize);
|
|
sc->sc_smpl_in_blk = sc->sc_blksize / (sc->sc_pparams.precision / NBBY);
|
|
sc->sc_50ms = 50 * sc->sc_pparams.sample_rate / 1000;
|
|
audio_initbufs(sc);
|
|
|
|
sc->sc_backlog = audio_backlog;
|
|
|
|
DPRINTF(("audio_open: rr.bp=%x-%x pr.bp=%x-%x\n",
|
|
sc->rr.bp, sc->rr.ep, sc->pr.bp, sc->pr.ep));
|
|
|
|
hw->commit_settings(sc->hw_hdl);
|
|
|
|
s = splaudio();
|
|
|
|
/* nothing read or written yet */
|
|
sc->sc_rseek = 0;
|
|
sc->sc_wseek = 0;
|
|
|
|
sc->sc_rchan = 0;
|
|
sc->sc_wchan = 0;
|
|
|
|
sc->sc_rbus = 0;
|
|
sc->sc_pbus = 0;
|
|
|
|
if ((flags & FWRITE) != 0) {
|
|
audio_init_play(sc);
|
|
/* audio_pint(sc); ??? */
|
|
}
|
|
if ((flags & FREAD) != 0) {
|
|
/* Play takes precedence if HW is half-duplex */
|
|
if (hw->full_duplex || ((flags & FWRITE) == 0)) {
|
|
audio_init_record(sc);
|
|
/* audiostartr(sc); don't start recording until read */
|
|
}
|
|
}
|
|
if (ISDEVAUDIO(dev)) {
|
|
/* if open only for read or only for write, then set specific mode */
|
|
if ((flags & (FWRITE|FREAD)) == FWRITE) {
|
|
sc->sc_mode = AUMODE_PLAY;
|
|
sc->pr.cb_pause = 0;
|
|
sc->rr.cb_pause = 1;
|
|
audiostartp(sc);
|
|
} else if ((flags & (FWRITE|FREAD)) == FREAD) {
|
|
sc->sc_mode = AUMODE_RECORD;
|
|
sc->rr.cb_pause = 0;
|
|
sc->pr.cb_pause = 1;
|
|
audiostartr(sc);
|
|
}
|
|
}
|
|
/* Play all sample, and don't pad short writes by default */
|
|
sc->sc_mode |= AUMODE_PLAY_ALL;
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Must be called from task context.
|
|
*/
|
|
void
|
|
audio_init_record(sc)
|
|
struct audio_softc *sc;
|
|
{
|
|
int s = splaudio();
|
|
|
|
sc->sc_mode |= AUMODE_RECORD;
|
|
if (sc->hw_if->speaker_ctl &&
|
|
(!sc->hw_if->full_duplex || (sc->sc_mode & AUMODE_PLAY) == 0))
|
|
sc->hw_if->speaker_ctl(sc->hw_hdl, SPKR_OFF);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Must be called from task context.
|
|
*/
|
|
void
|
|
audio_init_play(sc)
|
|
struct audio_softc *sc;
|
|
{
|
|
int s = splaudio();
|
|
|
|
sc->sc_mode |= AUMODE_PLAY;
|
|
sc->sc_rblks = sc->sc_wblks = 0;
|
|
if (sc->hw_if->speaker_ctl)
|
|
sc->hw_if->speaker_ctl(sc->hw_hdl, SPKR_ON);
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
audio_drain(sc)
|
|
struct audio_softc *sc;
|
|
{
|
|
int error;
|
|
|
|
while (sc->pr.nblk > 0) {
|
|
DPRINTF(("audio_drain: nblk=%d\n", sc->pr.nblk));
|
|
/*
|
|
* XXX
|
|
* When the process is exiting, it ignores all signals and
|
|
* we can't interrupt this sleep, so we set a 1-minute
|
|
* timeout.
|
|
*/
|
|
error = audio_sleep_timo(&sc->sc_wchan, "aud dr", 60*hz);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Close an audio chip.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
audio_close(dev, flags, ifmt, p)
|
|
dev_t dev;
|
|
int flags, ifmt;
|
|
struct proc *p;
|
|
{
|
|
int unit = AUDIOUNIT(dev);
|
|
struct audio_softc *sc = audio_softc[unit];
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
int s;
|
|
|
|
DPRINTF(("audio_close: unit=%d\n", unit));
|
|
|
|
/*
|
|
* Block until output drains, but allow ^C interrupt.
|
|
*/
|
|
sc->sc_lowat = 0; /* avoid excessive wakeups */
|
|
s = splaudio();
|
|
/*
|
|
* If there is pending output, let it drain (unless
|
|
* the output is paused).
|
|
*/
|
|
if (sc->sc_pbus && sc->pr.nblk > 0 && !sc->pr.cb_pause) {
|
|
if (!audio_drain(sc) && hw->drain)
|
|
(void)hw->drain(sc->hw_hdl);
|
|
}
|
|
|
|
hw->close(sc->hw_hdl);
|
|
|
|
if (flags&FREAD)
|
|
sc->sc_open &= ~AUOPEN_READ;
|
|
if (flags&FWRITE)
|
|
sc->sc_open &= ~AUOPEN_WRITE;
|
|
|
|
sc->sc_async = 0;
|
|
splx(s);
|
|
DPRINTF(("audio_close: done\n"));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
audio_read(dev, uio, ioflag)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int ioflag;
|
|
{
|
|
int unit = AUDIOUNIT(dev);
|
|
struct audio_softc *sc = audio_softc[unit];
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
struct audio_buffer *cb = &sc->rr;
|
|
u_char *hp;
|
|
int blocksize = sc->sc_blksize;
|
|
int error, s;
|
|
|
|
DPRINTF(("audio_read: cc=%d mode=%d rblks=%d\n",
|
|
uio->uio_resid, sc->sc_mode, sc->sc_rblks));
|
|
|
|
if (uio->uio_resid == 0)
|
|
return (0);
|
|
|
|
if (uio->uio_resid < blocksize)
|
|
return (EINVAL);
|
|
|
|
/* First sample we'll read in sample space */
|
|
sc->sc_rseek = cb->au_stamp - AU_RING_LEN(cb);
|
|
|
|
/*
|
|
* If hardware is half-duplex and currently playing, return
|
|
* silence blocks based on the number of blocks we have output.
|
|
*/
|
|
if ((!hw->full_duplex) &&
|
|
(sc->sc_mode & AUMODE_PLAY)) {
|
|
do {
|
|
s = splaudio();
|
|
while (sc->sc_rblks <= 0) {
|
|
DPRINTF(("audio_read: sc_rblks=%d\n", sc->sc_rblks));
|
|
if (ioflag & IO_NDELAY) {
|
|
splx(s);
|
|
return (EWOULDBLOCK);
|
|
}
|
|
error = audio_sleep(&sc->sc_rchan, "aud hr");
|
|
if (error) {
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
}
|
|
splx(s);
|
|
error = audio_silence_copyout(sc, blocksize, uio);
|
|
if (error)
|
|
break;
|
|
s = splaudio();
|
|
--sc->sc_rblks;
|
|
splx(s);
|
|
} while (uio->uio_resid >= blocksize);
|
|
return (error);
|
|
}
|
|
error = 0;
|
|
do {
|
|
while (cb->nblk <= 0) {
|
|
if (ioflag & IO_NDELAY) {
|
|
error = EWOULDBLOCK;
|
|
return (error);
|
|
}
|
|
s = splaudio();
|
|
if (!sc->sc_rbus)
|
|
audiostartr(sc);
|
|
error = audio_sleep(&sc->sc_rchan, "aud rd");
|
|
splx(s);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
hp = cb->hp;
|
|
if (sc->sc_rparams.sw_code)
|
|
sc->sc_rparams.sw_code(sc->hw_hdl, hp, blocksize);
|
|
error = uiomove(hp, blocksize, uio);
|
|
if (error)
|
|
break;
|
|
hp += blocksize;
|
|
if (hp >= cb->ep)
|
|
hp = cb->bp;
|
|
cb->hp = hp;
|
|
--cb->nblk;
|
|
} while (uio->uio_resid >= blocksize);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
audio_clear(sc)
|
|
struct audio_softc *sc;
|
|
{
|
|
int s = splaudio();
|
|
|
|
if (sc->sc_rbus || sc->sc_pbus) {
|
|
sc->hw_if->halt_output(sc->hw_hdl);
|
|
sc->hw_if->halt_input(sc->hw_hdl);
|
|
sc->sc_rbus = 0;
|
|
sc->sc_pbus = 0;
|
|
}
|
|
AU_RING_INIT(&sc->rr);
|
|
AU_RING_INIT(&sc->pr);
|
|
sc->sc_rblks = sc->sc_wblks = 0;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
audio_calc_blksize(sc)
|
|
struct audio_softc *sc;
|
|
{
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
int bs;
|
|
|
|
bs = sc->sc_pparams.sample_rate * audio_blk_ms / 1000;
|
|
if (bs == 0)
|
|
bs = 1;
|
|
bs *= sc->sc_pparams.channels;
|
|
bs *= sc->sc_pparams.precision / NBBY;
|
|
if (bs > AU_RING_SIZE/2)
|
|
bs = AU_RING_SIZE/2;
|
|
bs = hw->round_blocksize(sc->hw_hdl, bs);
|
|
if (bs > AU_RING_SIZE)
|
|
bs = AU_RING_SIZE;
|
|
|
|
return(bs);
|
|
}
|
|
|
|
void
|
|
audio_fill_silence(params, p, n)
|
|
struct audio_params *params;
|
|
u_char *p;
|
|
int n;
|
|
{
|
|
u_char auzero[2];
|
|
int nfill = 1;
|
|
|
|
switch (params->encoding) {
|
|
case AUDIO_ENCODING_ULAW:
|
|
auzero[0] = 0x7f;
|
|
break;
|
|
case AUDIO_ENCODING_ALAW:
|
|
auzero[0] = 0x55;
|
|
break;
|
|
case AUDIO_ENCODING_ADPCM: /* is this right XXX */
|
|
case AUDIO_ENCODING_SLINEAR_LE:
|
|
case AUDIO_ENCODING_SLINEAR_BE:
|
|
auzero[0] = 0; /* fortunately this works for both 8 and 16 bits */
|
|
break;
|
|
case AUDIO_ENCODING_ULINEAR_LE:
|
|
case AUDIO_ENCODING_ULINEAR_BE:
|
|
if (params->precision == 16) {
|
|
nfill = 2;
|
|
if (params->encoding == AUDIO_ENCODING_ULINEAR_LE) {
|
|
auzero[0] = 0;
|
|
auzero[1] = 0x80;
|
|
} else {
|
|
auzero[0] = 0x80;
|
|
auzero[1] = 0;
|
|
}
|
|
} else
|
|
auzero[0] = 0x80;
|
|
break;
|
|
default:
|
|
printf("audio: bad encoding %d\n", params->encoding);
|
|
auzero[0] = 0;
|
|
break;
|
|
}
|
|
if (nfill == 1) {
|
|
while (--n >= 0)
|
|
*p++ = auzero[0]; /* XXX memset */
|
|
} else /* must be 2 */ {
|
|
while (n > 1) {
|
|
*p++ = auzero[0];
|
|
*p++ = auzero[1];
|
|
n -= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
audio_silence_copyout(sc, n, uio)
|
|
struct audio_softc *sc;
|
|
int n;
|
|
struct uio *uio;
|
|
{
|
|
int error;
|
|
int k;
|
|
u_char zerobuf[128];
|
|
|
|
audio_fill_silence(&sc->sc_rparams, zerobuf, sizeof zerobuf);
|
|
|
|
error = 0;
|
|
while (n > 0 && uio->uio_resid > 0 && !error) {
|
|
k = min(n, min(uio->uio_resid, sizeof zerobuf));
|
|
error = uiomove(zerobuf, k, uio);
|
|
n -= k;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
audio_alloc_auzero(sc, bs)
|
|
struct audio_softc *sc;
|
|
int bs;
|
|
{
|
|
if (sc->auzero_block)
|
|
free(sc->auzero_block, M_DEVBUF);
|
|
|
|
sc->auzero_block = malloc(bs, M_DEVBUF, M_WAITOK);
|
|
#ifdef DIAGNOSTIC
|
|
if (sc->auzero_block == 0) {
|
|
panic("audio_alloc_auzero: malloc auzero_block failed");
|
|
}
|
|
#endif
|
|
audio_fill_silence(&sc->sc_pparams, sc->auzero_block, bs);
|
|
if (sc->sc_pparams.sw_code)
|
|
sc->sc_pparams.sw_code(sc->hw_hdl, sc->auzero_block, bs);
|
|
}
|
|
|
|
|
|
int
|
|
audio_write(dev, uio, ioflag)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int ioflag;
|
|
{
|
|
int unit = AUDIOUNIT(dev);
|
|
struct audio_softc *sc = audio_softc[unit];
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
struct audio_buffer *cb = &sc->pr;
|
|
u_char *tp;
|
|
int error, s, cc;
|
|
int blocksize = sc->sc_blksize;
|
|
|
|
DPRINTF(("audio_write: cc=%d hiwat=%d\n", uio->uio_resid, sc->sc_hiwat));
|
|
/*
|
|
* If half-duplex and currently recording, throw away data.
|
|
*/
|
|
if (!hw->full_duplex &&
|
|
(sc->sc_mode & AUMODE_RECORD)) {
|
|
uio->uio_offset += uio->uio_resid;
|
|
uio->uio_resid = 0;
|
|
DPRINTF(("audio_write: half-dpx read busy\n"));
|
|
return (0);
|
|
}
|
|
error = 0;
|
|
|
|
while (uio->uio_resid > 0) {
|
|
if (cb->fill > 0) {
|
|
if (sc->sc_pbus == 0) {
|
|
/* playing has stopped, ignore fill */
|
|
cb->fill = 0;
|
|
} else {
|
|
/* Write samples in the silence fill space.
|
|
* We don't know where the DMA is
|
|
* happening in the buffer, but if we
|
|
* are lucky we will fill the buffer before
|
|
* playing has reached the point we move to.
|
|
* If we are unlucky some sample will
|
|
* not be played.
|
|
*/
|
|
cc = min(cb->fill, uio->uio_resid);
|
|
error = uiomove(cb->otp, cc, uio);
|
|
if (error == 0) {
|
|
if (sc->sc_pparams.sw_code)
|
|
sc->sc_pparams.sw_code(sc->hw_hdl,
|
|
cb->otp, cc);
|
|
cb->fill -= cc;
|
|
cb->otp += cc;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
if (cb->nblk >= sc->sc_hiwat) {
|
|
do {
|
|
DPRINTF(("audio_write: nblk=%d hiwat=%d lowat=%d\n", cb->nblk, sc->sc_hiwat, sc->sc_lowat));
|
|
if (ioflag & IO_NDELAY)
|
|
return (EWOULDBLOCK);
|
|
error = audio_sleep(&sc->sc_wchan, "aud wr");
|
|
if (error)
|
|
return (error);
|
|
} while (cb->nblk >= sc->sc_lowat);
|
|
}
|
|
#if 0
|
|
if (cb->nblk == 0 &&
|
|
cb->maxblk > sc->sc_backlog &&
|
|
uio->uio_resid <= blocksize &&
|
|
(cb->au_stamp - sc->sc_wseek) > sc->sc_50ms) {
|
|
/*
|
|
* the write is 'small', the buffer is empty
|
|
* and we have been silent for at least 50ms
|
|
* so we might be dealing with an application
|
|
* that writes frames synchronously with
|
|
* reading them. If so, we need an output
|
|
* backlog to cover scheduling delays or
|
|
* there will be gaps in the sound output.
|
|
* Also take this opportunity to reset the
|
|
* buffer pointers in case we ended up on
|
|
* a bad boundary (odd byte, blksize bytes
|
|
* from end, etc.).
|
|
*/
|
|
DPRINTF(("audiowrite: set backlog %d\n", sc->sc_backlog));
|
|
s = splaudio();
|
|
cb->hp = cb->bp;
|
|
cb->nblk = sc->sc_backlog;
|
|
cb->tp = cb->hp + sc->sc_backlog * blocksize;
|
|
splx(s);
|
|
audio_fill_silence(&sc->sc_pparams, cb->hp, sc->sc_backlog * blocksize);
|
|
}
|
|
#endif
|
|
/* Calculate sample number of first sample in block we write */
|
|
s = splaudio();
|
|
sc->sc_wseek = AU_RING_LEN(cb) + cb->au_stamp;
|
|
splx(s);
|
|
|
|
tp = cb->tp;
|
|
cc = uio->uio_resid;
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
if (audiodebug > 1) {
|
|
int left = cb->ep - tp;
|
|
Dprintf("audio_write: cc=%d tp=%p bs=%d nblk=%d left=%d\n", cc, tp, blocksize, cb->nblk, left);
|
|
}
|
|
#endif
|
|
#ifdef DIAGNOSTIC
|
|
{
|
|
int towrite = (cc < blocksize)?cc:blocksize;
|
|
|
|
/* check for an overwrite. Should never happen */
|
|
if ((tp + towrite) > cb->ep) {
|
|
DPRINTF(("audio_write: overwrite tp=%p towrite=%d ep=0x%x bs=%d\n",
|
|
tp, towrite, cb->ep, blocksize));
|
|
printf("audio_write: overwrite tp=%p towrite=%d ep=%p\n",
|
|
tp, towrite, cb->ep);
|
|
tp = cb->bp;
|
|
}
|
|
}
|
|
#endif
|
|
if (cc < blocksize) {
|
|
error = uiomove(tp, cc, uio);
|
|
if (error == 0) {
|
|
/* fill with audio silence */
|
|
tp += cc;
|
|
cc = blocksize - cc;
|
|
cb->fill = cc;
|
|
cb->otp = tp;
|
|
audio_fill_silence(&sc->sc_pparams, tp, cc);
|
|
DPRINTF(("audio_write: auzero 0x%x %d 0x%x\n",
|
|
tp, cc, *tp));
|
|
tp += cc;
|
|
}
|
|
} else {
|
|
error = uiomove(tp, blocksize, uio);
|
|
if (error == 0) {
|
|
tp += blocksize;
|
|
}
|
|
}
|
|
if (error) {
|
|
#ifdef AUDIO_DEBUG
|
|
printf("audio_write:(1) uiomove failed %d; cc=%d tp=%p bs=%d\n", error, cc, tp, blocksize);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
if (sc->sc_pparams.sw_code)
|
|
sc->sc_pparams.sw_code(sc->hw_hdl, cb->tp, blocksize);
|
|
|
|
/* wrap the ring buffer if at end */
|
|
s = splaudio();
|
|
if ((sc->sc_mode & AUMODE_PLAY_ALL) == 0 && sc->sc_wblks)
|
|
/*
|
|
* discard the block if we sent out a silence
|
|
* packet that hasn't yet been countered
|
|
* by user data. (They must supply enough
|
|
* data to catch up to "real time").
|
|
*/
|
|
sc->sc_wblks--;
|
|
else {
|
|
if (tp >= cb->ep)
|
|
tp = cb->bp;
|
|
cb->tp = tp;
|
|
++cb->nblk; /* account for buffer filled */
|
|
|
|
/*
|
|
* If output isn't active, start it up.
|
|
*/
|
|
if (sc->sc_pbus == 0)
|
|
audiostartp(sc);
|
|
}
|
|
splx(s);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
audio_ioctl(dev, cmd, addr, flag, p)
|
|
dev_t dev;
|
|
int cmd;
|
|
caddr_t addr;
|
|
int flag;
|
|
struct proc *p;
|
|
{
|
|
int unit = AUDIOUNIT(dev);
|
|
struct audio_softc *sc = audio_softc[unit];
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
int error = 0, s;
|
|
|
|
DPRINTF(("audio_ioctl(%d,'%c',%d)\n",
|
|
IOCPARM_LEN(cmd), IOCGROUP(cmd), cmd&0xff));
|
|
switch (cmd) {
|
|
|
|
case FIOASYNC:
|
|
if (*(int *)addr) {
|
|
if (sc->sc_async)
|
|
return (EBUSY);
|
|
sc->sc_async = p;
|
|
} else
|
|
sc->sc_async = 0;
|
|
break;
|
|
|
|
case FIONBIO: /* to be removed? */
|
|
break;
|
|
|
|
case AUDIO_FLUSH:
|
|
DPRINTF(("AUDIO_FLUSH\n"));
|
|
audio_clear(sc);
|
|
s = splaudio();
|
|
if ((sc->sc_mode & AUMODE_PLAY) && (sc->sc_pbus == 0))
|
|
audiostartp(sc);
|
|
/* Again, play takes precedence on half-duplex hardware */
|
|
if ((sc->sc_mode & AUMODE_RECORD) &&
|
|
(hw->full_duplex ||
|
|
((sc->sc_mode & AUMODE_PLAY) == 0)))
|
|
audiostartr(sc);
|
|
splx(s);
|
|
break;
|
|
|
|
/*
|
|
* Number of read (write) samples dropped. We don't know where or
|
|
* when they were dropped.
|
|
*/
|
|
case AUDIO_RERROR:
|
|
*(int *)addr = sc->rr.cb_drops;
|
|
break;
|
|
|
|
case AUDIO_PERROR:
|
|
*(int *)addr = sc->pr.cb_drops;
|
|
break;
|
|
|
|
/*
|
|
* How many samples will elapse until mike hears the first
|
|
* sample of what we last wrote?
|
|
*/
|
|
case AUDIO_WSEEK:
|
|
s = splaudio();
|
|
*(u_long *)addr = sc->sc_wseek - sc->pr.au_stamp
|
|
+ AU_RING_LEN(&sc->rr);
|
|
splx(s);
|
|
break;
|
|
case AUDIO_SETINFO:
|
|
DPRINTF(("AUDIO_SETINFO\n"));
|
|
error = audiosetinfo(sc, (struct audio_info *)addr);
|
|
break;
|
|
|
|
case AUDIO_GETINFO:
|
|
DPRINTF(("AUDIO_GETINFO\n"));
|
|
error = audiogetinfo(sc, (struct audio_info *)addr);
|
|
break;
|
|
|
|
case AUDIO_DRAIN:
|
|
DPRINTF(("AUDIO_DRAIN\n"));
|
|
error = audio_drain(sc);
|
|
if (!error && hw->drain)
|
|
error = hw->drain(sc->hw_hdl);
|
|
break;
|
|
|
|
case AUDIO_GETDEV:
|
|
DPRINTF(("AUDIO_GETDEV\n"));
|
|
error = hw->getdev(sc->hw_hdl, (audio_device_t *)addr);
|
|
break;
|
|
|
|
case AUDIO_GETENC:
|
|
DPRINTF(("AUDIO_GETENC\n"));
|
|
error = hw->query_encoding(sc->hw_hdl, (struct audio_encoding *)addr);
|
|
break;
|
|
|
|
case AUDIO_GETFD:
|
|
DPRINTF(("AUDIO_GETFD\n"));
|
|
*(int *)addr = hw->full_duplex;
|
|
break;
|
|
|
|
case AUDIO_SETFD:
|
|
DPRINTF(("AUDIO_SETFD\n"));
|
|
error = hw->setfd(sc->hw_hdl, *(int *)addr);
|
|
break;
|
|
|
|
default:
|
|
DPRINTF(("audio_ioctl: unknown ioctl\n"));
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
DPRINTF(("audio_ioctl(%d,'%c',%d) result %d\n",
|
|
IOCPARM_LEN(cmd), IOCGROUP(cmd), cmd&0xff, error));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
audio_poll(dev, events, p)
|
|
dev_t dev;
|
|
int events;
|
|
struct proc *p;
|
|
{
|
|
int unit = AUDIOUNIT(dev);
|
|
struct audio_softc *sc = audio_softc[unit];
|
|
int revents = 0;
|
|
int s = splaudio();
|
|
|
|
#if 0
|
|
DPRINTF(("audio_poll: events=%d mode=%d rblks=%d rr.nblk=%d\n",
|
|
events, sc->sc_mode, sc->sc_rblks, sc->rr.nblk));
|
|
#endif
|
|
|
|
if (events & (POLLIN | POLLRDNORM))
|
|
if ((sc->sc_mode & AUMODE_PLAY) ?
|
|
(sc->sc_rblks > 0) : (sc->rr.nblk > 0))
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
|
|
if (events & (POLLOUT | POLLWRNORM))
|
|
if ((sc->sc_mode & AUMODE_RECORD) ?
|
|
1 : (sc->pr.nblk <= sc->sc_lowat))
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
|
|
if (revents == 0) {
|
|
if (events & (POLLIN | POLLRDNORM))
|
|
selrecord(p, &sc->sc_rsel);
|
|
|
|
if (events & (POLLOUT | POLLWRNORM))
|
|
selrecord(p, &sc->sc_wsel);
|
|
}
|
|
|
|
splx(s);
|
|
return (revents);
|
|
}
|
|
|
|
int
|
|
audio_mmap(dev, off, prot)
|
|
dev_t dev;
|
|
int off, prot;
|
|
{
|
|
|
|
/* XXX placeholder */
|
|
return (-1);
|
|
}
|
|
|
|
void
|
|
audiostartr(sc)
|
|
struct audio_softc *sc;
|
|
{
|
|
int error;
|
|
|
|
DPRINTF(("audiostartr: tp=%p\n", sc->rr.tp));
|
|
|
|
error = sc->hw_if->start_input(sc->hw_hdl, sc->rr.tp, sc->sc_blksize,
|
|
audio_rint, (void *)sc);
|
|
if (error) {
|
|
DPRINTF(("audiostartr failed: %d\n", error));
|
|
audio_clear(sc);
|
|
}
|
|
else
|
|
sc->sc_rbus = 1;
|
|
}
|
|
|
|
void
|
|
audiostartp(sc)
|
|
struct audio_softc *sc;
|
|
{
|
|
int error;
|
|
|
|
DPRINTF(("audiostartp: hp=0x%x nblk=%d\n", sc->pr.hp, sc->pr.nblk));
|
|
|
|
if (sc->pr.nblk > 0) {
|
|
u_char *hp = sc->pr.hp;
|
|
error = sc->hw_if->start_output(sc->hw_hdl, hp, sc->sc_blksize,
|
|
audio_rpint, (void *)sc);
|
|
if (error) {
|
|
DPRINTF(("audiostartp: failed: %d\n", error));
|
|
}
|
|
else {
|
|
sc->sc_pbus = 1;
|
|
hp += sc->sc_blksize;
|
|
if (hp >= sc->pr.ep)
|
|
hp = sc->pr.bp;
|
|
sc->pr.hp = hp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use this routine as DMA callback if we played user data. We need to
|
|
* account for user data and silence separately.
|
|
*/
|
|
void
|
|
audio_rpint(v)
|
|
void *v;
|
|
{
|
|
struct audio_softc *sc = v;
|
|
sc->pr.nblk--;
|
|
audio_pint(v); /* 'twas a real audio block */
|
|
}
|
|
|
|
/*
|
|
* Called from HW driver module on completion of dma output.
|
|
* Start output of new block, wrap in ring buffer if needed.
|
|
* If no more buffers to play, output zero instead.
|
|
* Do a wakeup if necessary.
|
|
*/
|
|
void
|
|
audio_pint(v)
|
|
void *v;
|
|
{
|
|
struct audio_softc *sc = v;
|
|
u_char *hp;
|
|
int cc = sc->sc_blksize;
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
struct audio_buffer *cb = &sc->pr;
|
|
int error;
|
|
|
|
/*
|
|
* XXX
|
|
* if there is only one buffer in the ring, this test
|
|
* always fails and the output is always silence after the
|
|
* first block.
|
|
*/
|
|
if (cb->nblk > 0) {
|
|
hp = cb->hp;
|
|
if (cb->cb_pause) {
|
|
cb->cb_pdrops++;
|
|
#ifdef AUDIO_DEBUG
|
|
if (audiodebug > 2)
|
|
Dprintf("audio_pint: paused %d\n", cb->cb_pdrops);
|
|
#endif
|
|
goto psilence;
|
|
}
|
|
else {
|
|
#ifdef AUDIO_DEBUG
|
|
if (audiodebug > 2)
|
|
Dprintf("audio_pint: hp=0x%x cc=%d\n", hp, cc);
|
|
#endif
|
|
error = hw->start_output(sc->hw_hdl, hp, cc,
|
|
audio_rpint, (void *)sc);
|
|
if (error) {
|
|
DPRINTF(("audio_pint restart failed: %d\n", error));
|
|
audio_clear(sc);
|
|
}
|
|
else {
|
|
hp += cc;
|
|
if (hp >= cb->ep)
|
|
hp = cb->bp;
|
|
cb->hp = hp;
|
|
cb->au_stamp += sc->sc_smpl_in_blk;
|
|
|
|
++sc->sc_rblks;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
cb->cb_drops++;
|
|
#ifdef AUDIO_DEBUG
|
|
if (audiodebug > 2)
|
|
Dprintf("audio_pint: drops=%d auzero %d 0x%x\n", cb->cb_drops, cc, *(int *)sc->auzero_block);
|
|
#endif
|
|
psilence:
|
|
error = hw->start_output(sc->hw_hdl,
|
|
sc->auzero_block, cc,
|
|
audio_pint, (void *)sc);
|
|
if (error) {
|
|
DPRINTF(("audio_pint zero failed: %d\n", error));
|
|
audio_clear(sc);
|
|
} else
|
|
++sc->sc_wblks;
|
|
}
|
|
|
|
#ifdef AUDIO_DEBUG
|
|
if (audiodebug > 1)
|
|
Dprintf("audio_pint: mode=%d pause=%d nblk=%d lowat=%d\n",
|
|
sc->sc_mode, cb->cb_pause, cb->nblk, sc->sc_lowat);
|
|
#endif
|
|
if ((sc->sc_mode & AUMODE_PLAY) && !cb->cb_pause) {
|
|
if (cb->nblk <= sc->sc_lowat) {
|
|
audio_wakeup(&sc->sc_wchan);
|
|
selwakeup(&sc->sc_wsel);
|
|
if (sc->sc_async)
|
|
psignal(sc->sc_async, SIGIO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX
|
|
* possible to return one or more "phantom blocks" now.
|
|
* Only in half duplex?
|
|
*/
|
|
if (hw->full_duplex) {
|
|
audio_wakeup(&sc->sc_rchan);
|
|
selwakeup(&sc->sc_rsel);
|
|
if (sc->sc_async)
|
|
psignal(sc->sc_async, SIGIO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called from HW driver module on completion of dma input.
|
|
* Mark it as input in the ring buffer (fiddle pointers).
|
|
* Do a wakeup if necessary.
|
|
*/
|
|
void
|
|
audio_rint(v)
|
|
void *v;
|
|
{
|
|
struct audio_softc *sc = v;
|
|
u_char *tp;
|
|
int cc = sc->sc_blksize;
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
struct audio_buffer *cb = &sc->rr;
|
|
int error;
|
|
|
|
tp = cb->tp;
|
|
if (cb->cb_pause) {
|
|
cb->cb_pdrops++;
|
|
DPRINTF(("audio_rint: pdrops %d\n", cb->cb_pdrops));
|
|
}
|
|
else {
|
|
tp += cc;
|
|
if (tp >= cb->ep)
|
|
tp = cb->bp;
|
|
if (++cb->nblk < cb->maxblk) {
|
|
#ifdef AUDIO_DEBUG
|
|
if (audiodebug > 2)
|
|
Dprintf("audio_rint: tp=%p cc=%d\n", tp, cc);
|
|
#endif
|
|
error = hw->start_input(sc->hw_hdl, tp, cc,
|
|
audio_rint, (void *)sc);
|
|
if (error) {
|
|
DPRINTF(("audio_rint: start failed: %d\n",
|
|
error));
|
|
audio_clear(sc);
|
|
}
|
|
cb->au_stamp += sc->sc_smpl_in_blk;
|
|
} else {
|
|
/*
|
|
* XXX
|
|
* How do we count dropped input samples due to overrun?
|
|
* Start a "dummy DMA transfer" when the input ring buffer
|
|
* is full and count # of these? Seems pretty lame to
|
|
* me, but how else are we going to do this?
|
|
*/
|
|
cb->cb_drops++;
|
|
sc->sc_rbus = 0;
|
|
DPRINTF(("audio_rint: drops %d\n", cb->cb_drops));
|
|
}
|
|
cb->tp = tp;
|
|
|
|
audio_wakeup(&sc->sc_rchan);
|
|
selwakeup(&sc->sc_rsel);
|
|
if (sc->sc_async)
|
|
psignal(sc->sc_async, SIGIO);
|
|
}
|
|
}
|
|
|
|
int
|
|
audio_check_params(p)
|
|
struct audio_params *p;
|
|
{
|
|
#if defined(COMPAT_12)
|
|
if (p->encoding == AUDIO_ENCODING_PCM16) {
|
|
if (p->precision == 8)
|
|
p->encoding = AUDIO_ENCODING_ULINEAR;
|
|
else
|
|
p->encoding = AUDIO_ENCODING_SLINEAR;
|
|
} else if (p->encoding == AUDIO_ENCODING_PCM8) {
|
|
if (p->precision == 8)
|
|
p->encoding = AUDIO_ENCODING_ULINEAR;
|
|
else
|
|
return EINVAL;
|
|
}
|
|
#endif
|
|
|
|
if (p->encoding == AUDIO_ENCODING_SLINEAR)
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
p->encoding = AUDIO_ENCODING_SLINEAR_LE;
|
|
#else
|
|
p->encoding = AUDIO_ENCODING_SLINEAR_BE;
|
|
#endif
|
|
if (p->encoding == AUDIO_ENCODING_ULINEAR)
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
p->encoding = AUDIO_ENCODING_ULINEAR_LE;
|
|
#else
|
|
p->encoding = AUDIO_ENCODING_ULINEAR_BE;
|
|
#endif
|
|
|
|
switch (p->encoding) {
|
|
case AUDIO_ENCODING_ULAW:
|
|
case AUDIO_ENCODING_ALAW:
|
|
case AUDIO_ENCODING_ADPCM:
|
|
if (p->precision != 8)
|
|
return (EINVAL);
|
|
break;
|
|
case AUDIO_ENCODING_SLINEAR_LE:
|
|
case AUDIO_ENCODING_SLINEAR_BE:
|
|
case AUDIO_ENCODING_ULINEAR_LE:
|
|
case AUDIO_ENCODING_ULINEAR_BE:
|
|
if (p->precision != 8 && p->precision != 16)
|
|
return (EINVAL);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
audiosetinfo(sc, ai)
|
|
struct audio_softc *sc;
|
|
struct audio_info *ai;
|
|
{
|
|
struct audio_prinfo *r = &ai->record, *p = &ai->play;
|
|
int cleared = 0;
|
|
int s, bsize, error = 0;
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
mixer_ctrl_t ct;
|
|
struct audio_params pp, rp;
|
|
int np, nr;
|
|
|
|
if (hw == 0) /* HW has not attached */
|
|
return(ENXIO);
|
|
|
|
pp = sc->sc_pparams;
|
|
rp = sc->sc_rparams;
|
|
nr = np = 0;
|
|
if (p->sample_rate != ~0) {
|
|
pp.sample_rate = p->sample_rate;
|
|
np++;
|
|
}
|
|
if (r->sample_rate != ~0) {
|
|
rp.sample_rate = r->sample_rate;
|
|
nr++;
|
|
}
|
|
if (p->encoding != ~0) {
|
|
pp.encoding = p->encoding;
|
|
np++;
|
|
}
|
|
if (r->encoding != ~0) {
|
|
rp.encoding = r->encoding;
|
|
nr++;
|
|
}
|
|
if (p->precision != ~0) {
|
|
pp.precision = p->precision;
|
|
np++;
|
|
}
|
|
if (r->precision != ~0) {
|
|
rp.precision = r->precision;
|
|
nr++;
|
|
}
|
|
if (p->channels != ~0) {
|
|
pp.channels = p->channels;
|
|
np++;
|
|
}
|
|
if (r->channels != ~0) {
|
|
rp.channels = r->channels;
|
|
nr++;
|
|
}
|
|
if (nr && (error = audio_check_params(&rp)))
|
|
return error;
|
|
if (np && (error = audio_check_params(&pp)))
|
|
return error;
|
|
if (nr) {
|
|
audio_clear(sc);
|
|
error = hw->set_params(sc->hw_hdl, AUMODE_RECORD, &rp, &sc->sc_pparams);
|
|
if (error)
|
|
return (error);
|
|
sc->sc_rparams = rp;
|
|
sc->sc_blksize = audio_calc_blksize(sc);
|
|
}
|
|
if (np) {
|
|
if (!cleared)
|
|
audio_clear(sc);
|
|
cleared = 1;
|
|
error = hw->set_params(sc->hw_hdl, AUMODE_PLAY, &pp, &sc->sc_rparams);
|
|
if (error)
|
|
return (error);
|
|
sc->sc_pparams = pp;
|
|
sc->sc_blksize = audio_calc_blksize(sc);
|
|
}
|
|
|
|
if (p->port != ~0) {
|
|
if (!cleared)
|
|
audio_clear(sc);
|
|
cleared = 1;
|
|
|
|
error = hw->set_out_port(sc->hw_hdl, p->port);
|
|
if (error)
|
|
return(error);
|
|
}
|
|
if (r->port != ~0) {
|
|
if (!cleared)
|
|
audio_clear(sc);
|
|
cleared = 1;
|
|
|
|
error = hw->set_in_port(sc->hw_hdl, r->port);
|
|
if (error)
|
|
return(error);
|
|
}
|
|
if (p->gain != ~0) {
|
|
ct.dev = hw->get_out_port(sc->hw_hdl);
|
|
ct.type = AUDIO_MIXER_VALUE;
|
|
ct.un.value.num_channels = 1;
|
|
ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = p->gain;
|
|
error = hw->set_port(sc->hw_hdl, &ct);
|
|
if (error)
|
|
return(error);
|
|
}
|
|
if (r->gain != ~0) {
|
|
ct.dev = hw->get_in_port(sc->hw_hdl);
|
|
ct.type = AUDIO_MIXER_VALUE;
|
|
ct.un.value.num_channels = 1;
|
|
ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = r->gain;
|
|
error = hw->set_port(sc->hw_hdl, &ct);
|
|
if (error)
|
|
return(error);
|
|
}
|
|
|
|
if (p->pause != (u_char)~0) {
|
|
sc->pr.cb_pause = p->pause;
|
|
if (!p->pause) {
|
|
s = splaudio();
|
|
audiostartp(sc);
|
|
splx(s);
|
|
}
|
|
}
|
|
if (r->pause != (u_char)~0) {
|
|
sc->rr.cb_pause = r->pause;
|
|
if (!r->pause) {
|
|
s = splaudio();
|
|
audiostartr(sc);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
if (ai->blocksize != ~0) {
|
|
/* Block size specified explicitly. */
|
|
if (!cleared)
|
|
audio_clear(sc);
|
|
cleared = 1;
|
|
|
|
if (ai->blocksize == 0)
|
|
bsize = sc->sc_blksize;
|
|
else if (ai->blocksize > AU_RING_SIZE/2)
|
|
bsize = AU_RING_SIZE/2;
|
|
else
|
|
bsize = ai->blocksize;
|
|
bsize = hw->round_blocksize(sc->hw_hdl, bsize);
|
|
if (bsize > AU_RING_SIZE)
|
|
bsize = AU_RING_SIZE;
|
|
|
|
sc->sc_blksize = bsize;
|
|
}
|
|
|
|
if (np || nr || ai->blocksize != ~0) {
|
|
audio_alloc_auzero(sc, sc->sc_blksize);
|
|
sc->sc_smpl_in_blk = sc->sc_blksize / (sc->sc_pparams.precision / NBBY);
|
|
sc->sc_50ms = 50 * sc->sc_pparams.sample_rate / 1000;
|
|
audio_initbufs(sc);
|
|
}
|
|
|
|
if (ai->hiwat != ~0) {
|
|
if ((unsigned)ai->hiwat > sc->pr.maxblk)
|
|
ai->hiwat = sc->pr.maxblk;
|
|
if (sc->sc_hiwat != 0)
|
|
sc->sc_hiwat = ai->hiwat;
|
|
}
|
|
if (ai->lowat != ~0) {
|
|
if ((unsigned)ai->lowat > sc->pr.maxblk)
|
|
ai->lowat = sc->pr.maxblk;
|
|
sc->sc_lowat = ai->lowat;
|
|
}
|
|
if (ai->backlog != ~0) {
|
|
if ((unsigned)ai->backlog > (sc->pr.maxblk/2))
|
|
ai->backlog = sc->pr.maxblk/2;
|
|
sc->sc_backlog = ai->backlog;
|
|
}
|
|
if (ai->mode != ~0) {
|
|
if (!cleared)
|
|
audio_clear(sc);
|
|
cleared = 1;
|
|
|
|
sc->sc_mode = ai->mode;
|
|
if (sc->sc_mode & AUMODE_PLAY) {
|
|
audio_init_play(sc);
|
|
if (!hw->full_duplex) /* Play takes precedence */
|
|
sc->sc_mode &= ~(AUMODE_RECORD);
|
|
}
|
|
if (sc->sc_mode & AUMODE_RECORD)
|
|
audio_init_record(sc);
|
|
}
|
|
|
|
error = hw->commit_settings(sc->hw_hdl);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (cleared) {
|
|
s = splaudio();
|
|
if (sc->sc_mode & AUMODE_PLAY)
|
|
audiostartp(sc);
|
|
if (sc->sc_mode & AUMODE_RECORD)
|
|
audiostartr(sc);
|
|
splx(s);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
audiogetinfo(sc, ai)
|
|
struct audio_softc *sc;
|
|
struct audio_info *ai;
|
|
{
|
|
struct audio_prinfo *r = &ai->record, *p = &ai->play;
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
mixer_ctrl_t ct;
|
|
|
|
if (hw == 0) /* HW has not attached */
|
|
return(ENXIO);
|
|
|
|
p->sample_rate = sc->sc_pparams.sample_rate;
|
|
r->sample_rate = sc->sc_rparams.sample_rate;
|
|
p->channels = sc->sc_pparams.channels;
|
|
r->channels = sc->sc_rparams.channels;
|
|
p->precision = sc->sc_pparams.precision;
|
|
r->precision = sc->sc_rparams.precision;
|
|
p->encoding = sc->sc_pparams.encoding;
|
|
r->encoding = sc->sc_rparams.encoding;
|
|
|
|
r->port = hw->get_in_port(sc->hw_hdl);
|
|
p->port = hw->get_out_port(sc->hw_hdl);
|
|
|
|
ct.dev = r->port;
|
|
ct.type = AUDIO_MIXER_VALUE;
|
|
ct.un.value.num_channels = 1;
|
|
if (hw->get_port(sc->hw_hdl, &ct) == 0)
|
|
r->gain = ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
|
|
else
|
|
r->gain = AUDIO_MAX_GAIN/2;
|
|
|
|
ct.dev = p->port;
|
|
ct.un.value.num_channels = 1;
|
|
if (hw->get_port(sc->hw_hdl, &ct) == 0)
|
|
p->gain = ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
|
|
else
|
|
p->gain = AUDIO_MAX_GAIN/2;
|
|
|
|
p->pause = sc->pr.cb_pause;
|
|
r->pause = sc->rr.cb_pause;
|
|
p->error = sc->pr.cb_drops != 0;
|
|
r->error = sc->rr.cb_drops != 0;
|
|
|
|
p->open = ((sc->sc_open & AUOPEN_WRITE) != 0);
|
|
r->open = ((sc->sc_open & AUOPEN_READ) != 0);
|
|
|
|
p->samples = sc->pr.au_stamp - sc->pr.cb_pdrops;
|
|
r->samples = sc->rr.au_stamp - sc->rr.cb_pdrops;
|
|
|
|
p->seek = sc->sc_wseek;
|
|
r->seek = sc->sc_rseek;
|
|
|
|
ai->buffersize = AU_RING_SIZE;
|
|
ai->blocksize = sc->sc_blksize;
|
|
ai->hiwat = sc->sc_hiwat;
|
|
ai->lowat = sc->sc_lowat;
|
|
ai->backlog = sc->sc_backlog;
|
|
ai->mode = sc->sc_mode;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Mixer driver
|
|
*/
|
|
int
|
|
mixer_open(dev, flags, ifmt, p)
|
|
dev_t dev;
|
|
int flags, ifmt;
|
|
struct proc *p;
|
|
{
|
|
int unit = AUDIOUNIT(dev);
|
|
struct audio_softc *sc;
|
|
struct audio_hw_if *hw;
|
|
|
|
if (unit >= naudio || !audio_softc[unit]) {
|
|
DPRINTF(("mixer_open: invalid device unit - %d\n", unit));
|
|
return (ENODEV);
|
|
}
|
|
|
|
sc = audio_softc[unit];
|
|
hw = sc->hw_if;
|
|
|
|
DPRINTF(("mixer_open: dev=%x flags=0x%x sc=0x%x\n", dev, flags, sc));
|
|
if (hw == 0) /* Hardware has not attached to us... */
|
|
return (ENXIO);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Close a mixer device
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
mixer_close(dev, flags, ifmt, p)
|
|
dev_t dev;
|
|
int flags, ifmt;
|
|
struct proc *p;
|
|
{
|
|
DPRINTF(("mixer_close: unit %d\n", AUDIOUNIT(dev)));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
mixer_ioctl(dev, cmd, addr, flag, p)
|
|
dev_t dev;
|
|
int cmd;
|
|
caddr_t addr;
|
|
int flag;
|
|
struct proc *p;
|
|
{
|
|
int unit = AUDIOUNIT(dev);
|
|
struct audio_softc *sc = audio_softc[unit];
|
|
struct audio_hw_if *hw = sc->hw_if;
|
|
int error = EINVAL;
|
|
|
|
DPRINTF(("mixer_ioctl(%d,'%c',%d)\n",
|
|
IOCPARM_LEN(cmd), IOCGROUP(cmd), cmd&0xff));
|
|
|
|
switch (cmd) {
|
|
case AUDIO_GETDEV:
|
|
DPRINTF(("AUDIO_GETDEV\n"));
|
|
error = hw->getdev(sc->hw_hdl, (audio_device_t *)addr);
|
|
break;
|
|
|
|
case AUDIO_MIXER_DEVINFO:
|
|
DPRINTF(("AUDIO_MIXER_DEVINFO\n"));
|
|
error = hw->query_devinfo(sc->hw_hdl, (mixer_devinfo_t *)addr);
|
|
break;
|
|
|
|
case AUDIO_MIXER_READ:
|
|
DPRINTF(("AUDIO_MIXER_READ\n"));
|
|
error = hw->get_port(sc->hw_hdl, (mixer_ctrl_t *)addr);
|
|
break;
|
|
|
|
case AUDIO_MIXER_WRITE:
|
|
DPRINTF(("AUDIO_MIXER_WRITE\n"));
|
|
error = hw->set_port(sc->hw_hdl, (mixer_ctrl_t *)addr);
|
|
if (error == 0)
|
|
error = hw->commit_settings(sc->hw_hdl);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
DPRINTF(("mixer_ioctl(%d,'%c',%d) result %d\n",
|
|
IOCPARM_LEN(cmd), IOCGROUP(cmd), cmd&0xff, error));
|
|
return (error);
|
|
}
|
|
#endif
|