NetBSD/sys/netinet/ip_output.c

1870 lines
45 KiB
C

/* $NetBSD: ip_output.c,v 1.130 2004/03/02 02:28:28 thorpej Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Public Access Networks Corporation ("Panix"). It was developed under
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_output.c 8.3 (Berkeley) 1/21/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.130 2004/03/02 02:28:28 thorpej Exp $");
#include "opt_pfil_hooks.h"
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_mrouting.h"
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/errno.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#ifdef FAST_IPSEC
#include <sys/domain.h>
#endif
#include <sys/systm.h>
#include <sys/proc.h>
#include <net/if.h>
#include <net/route.h>
#include <net/pfil.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#ifdef MROUTING
#include <netinet/ip_mroute.h>
#endif
#include <machine/stdarg.h>
#ifdef IPSEC
#include <netinet6/ipsec.h>
#include <netkey/key.h>
#include <netkey/key_debug.h>
#endif /*IPSEC*/
#ifdef FAST_IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#include <netipsec/xform.h>
#endif /* FAST_IPSEC*/
static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
static struct ifnet *ip_multicast_if __P((struct in_addr *, int *));
static void ip_mloopback
__P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
#ifdef PFIL_HOOKS
extern struct pfil_head inet_pfil_hook; /* XXX */
#endif
/*
* IP output. The packet in mbuf chain m contains a skeletal IP
* header (with len, off, ttl, proto, tos, src, dst).
* The mbuf chain containing the packet will be freed.
* The mbuf opt, if present, will not be freed.
*/
int
#if __STDC__
ip_output(struct mbuf *m0, ...)
#else
ip_output(m0, va_alist)
struct mbuf *m0;
va_dcl
#endif
{
struct ip *ip;
struct ifnet *ifp;
struct mbuf *m = m0;
int hlen = sizeof (struct ip);
int len, error = 0;
struct route iproute;
struct sockaddr_in *dst;
struct in_ifaddr *ia;
struct mbuf *opt;
struct route *ro;
int flags, sw_csum;
int *mtu_p;
u_long mtu;
struct ip_moptions *imo;
struct socket *so;
va_list ap;
#ifdef IPSEC
struct secpolicy *sp = NULL;
#endif /*IPSEC*/
#ifdef FAST_IPSEC
struct inpcb *inp;
struct m_tag *mtag;
struct secpolicy *sp = NULL;
struct tdb_ident *tdbi;
int s;
#endif
u_int16_t ip_len;
len = 0;
va_start(ap, m0);
opt = va_arg(ap, struct mbuf *);
ro = va_arg(ap, struct route *);
flags = va_arg(ap, int);
imo = va_arg(ap, struct ip_moptions *);
so = va_arg(ap, struct socket *);
if (flags & IP_RETURNMTU)
mtu_p = va_arg(ap, int *);
else
mtu_p = NULL;
va_end(ap);
MCLAIM(m, &ip_tx_mowner);
#ifdef FAST_IPSEC
if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
inp = (struct inpcb *)so->so_pcb;
else
inp = NULL;
#endif /* FAST_IPSEC */
#ifdef DIAGNOSTIC
if ((m->m_flags & M_PKTHDR) == 0)
panic("ip_output no HDR");
#endif
if (opt) {
m = ip_insertoptions(m, opt, &len);
if (len >= sizeof(struct ip))
hlen = len;
}
ip = mtod(m, struct ip *);
/*
* Fill in IP header.
*/
if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
ip->ip_v = IPVERSION;
ip->ip_off = htons(0);
ip->ip_id = ip_newid();
ip->ip_hl = hlen >> 2;
ipstat.ips_localout++;
} else {
hlen = ip->ip_hl << 2;
}
/*
* Route packet.
*/
if (ro == 0) {
ro = &iproute;
bzero((caddr_t)ro, sizeof (*ro));
}
dst = satosin(&ro->ro_dst);
/*
* If there is a cached route,
* check that it is to the same destination
* and is still up. If not, free it and try again.
* The address family should also be checked in case of sharing the
* cache with IPv6.
*/
if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
dst->sin_family != AF_INET ||
!in_hosteq(dst->sin_addr, ip->ip_dst))) {
RTFREE(ro->ro_rt);
ro->ro_rt = (struct rtentry *)0;
}
if (ro->ro_rt == 0) {
bzero(dst, sizeof(*dst));
dst->sin_family = AF_INET;
dst->sin_len = sizeof(*dst);
dst->sin_addr = ip->ip_dst;
}
/*
* If routing to interface only,
* short circuit routing lookup.
*/
if (flags & IP_ROUTETOIF) {
if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
ipstat.ips_noroute++;
error = ENETUNREACH;
goto bad;
}
ifp = ia->ia_ifp;
mtu = ifp->if_mtu;
ip->ip_ttl = 1;
} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
ip->ip_dst.s_addr == INADDR_BROADCAST) &&
imo != NULL && imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
mtu = ifp->if_mtu;
IFP_TO_IA(ifp, ia);
} else {
if (ro->ro_rt == 0)
rtalloc(ro);
if (ro->ro_rt == 0) {
ipstat.ips_noroute++;
error = EHOSTUNREACH;
goto bad;
}
ia = ifatoia(ro->ro_rt->rt_ifa);
ifp = ro->ro_rt->rt_ifp;
if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
mtu = ifp->if_mtu;
ro->ro_rt->rt_use++;
if (ro->ro_rt->rt_flags & RTF_GATEWAY)
dst = satosin(ro->ro_rt->rt_gateway);
}
if (IN_MULTICAST(ip->ip_dst.s_addr) ||
(ip->ip_dst.s_addr == INADDR_BROADCAST)) {
struct in_multi *inm;
m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
M_BCAST : M_MCAST;
/*
* IP destination address is multicast. Make sure "dst"
* still points to the address in "ro". (It may have been
* changed to point to a gateway address, above.)
*/
dst = satosin(&ro->ro_dst);
/*
* See if the caller provided any multicast options
*/
if (imo != NULL)
ip->ip_ttl = imo->imo_multicast_ttl;
else
ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
/*
* if we don't know the outgoing ifp yet, we can't generate
* output
*/
if (!ifp) {
ipstat.ips_noroute++;
error = ENETUNREACH;
goto bad;
}
/*
* If the packet is multicast or broadcast, confirm that
* the outgoing interface can transmit it.
*/
if (((m->m_flags & M_MCAST) &&
(ifp->if_flags & IFF_MULTICAST) == 0) ||
((m->m_flags & M_BCAST) &&
(ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
ipstat.ips_noroute++;
error = ENETUNREACH;
goto bad;
}
/*
* If source address not specified yet, use an address
* of outgoing interface.
*/
if (in_nullhost(ip->ip_src)) {
struct in_ifaddr *ia;
IFP_TO_IA(ifp, ia);
if (!ia) {
error = EADDRNOTAVAIL;
goto bad;
}
ip->ip_src = ia->ia_addr.sin_addr;
}
IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
if (inm != NULL &&
(imo == NULL || imo->imo_multicast_loop)) {
/*
* If we belong to the destination multicast group
* on the outgoing interface, and the caller did not
* forbid loopback, loop back a copy.
*/
ip_mloopback(ifp, m, dst);
}
#ifdef MROUTING
else {
/*
* If we are acting as a multicast router, perform
* multicast forwarding as if the packet had just
* arrived on the interface to which we are about
* to send. The multicast forwarding function
* recursively calls this function, using the
* IP_FORWARDING flag to prevent infinite recursion.
*
* Multicasts that are looped back by ip_mloopback(),
* above, will be forwarded by the ip_input() routine,
* if necessary.
*/
extern struct socket *ip_mrouter;
if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
if (ip_mforward(m, ifp) != 0) {
m_freem(m);
goto done;
}
}
}
#endif
/*
* Multicasts with a time-to-live of zero may be looped-
* back, above, but must not be transmitted on a network.
* Also, multicasts addressed to the loopback interface
* are not sent -- the above call to ip_mloopback() will
* loop back a copy if this host actually belongs to the
* destination group on the loopback interface.
*/
if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
m_freem(m);
goto done;
}
goto sendit;
}
#ifndef notdef
/*
* If source address not specified yet, use address
* of outgoing interface.
*/
if (in_nullhost(ip->ip_src))
ip->ip_src = ia->ia_addr.sin_addr;
#endif
/*
* packets with Class-D address as source are not valid per
* RFC 1112
*/
if (IN_MULTICAST(ip->ip_src.s_addr)) {
ipstat.ips_odropped++;
error = EADDRNOTAVAIL;
goto bad;
}
/*
* Look for broadcast address and
* and verify user is allowed to send
* such a packet.
*/
if (in_broadcast(dst->sin_addr, ifp)) {
if ((ifp->if_flags & IFF_BROADCAST) == 0) {
error = EADDRNOTAVAIL;
goto bad;
}
if ((flags & IP_ALLOWBROADCAST) == 0) {
error = EACCES;
goto bad;
}
/* don't allow broadcast messages to be fragmented */
if (ntohs(ip->ip_len) > ifp->if_mtu) {
error = EMSGSIZE;
goto bad;
}
m->m_flags |= M_BCAST;
} else
m->m_flags &= ~M_BCAST;
sendit:
/*
* If we're doing Path MTU Discovery, we need to set DF unless
* the route's MTU is locked.
*/
if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
ip->ip_off |= htons(IP_DF);
/* Remember the current ip_len */
ip_len = ntohs(ip->ip_len);
#ifdef IPSEC
/* get SP for this packet */
if (so == NULL)
sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
flags, &error);
else {
if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
IPSEC_DIR_OUTBOUND))
goto skip_ipsec;
sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
}
if (sp == NULL) {
ipsecstat.out_inval++;
goto bad;
}
error = 0;
/* check policy */
switch (sp->policy) {
case IPSEC_POLICY_DISCARD:
/*
* This packet is just discarded.
*/
ipsecstat.out_polvio++;
goto bad;
case IPSEC_POLICY_BYPASS:
case IPSEC_POLICY_NONE:
/* no need to do IPsec. */
goto skip_ipsec;
case IPSEC_POLICY_IPSEC:
if (sp->req == NULL) {
/* XXX should be panic ? */
printf("ip_output: No IPsec request specified.\n");
error = EINVAL;
goto bad;
}
break;
case IPSEC_POLICY_ENTRUST:
default:
printf("ip_output: Invalid policy found. %d\n", sp->policy);
}
/*
* ipsec4_output() expects ip_len and ip_off in network
* order. They have been set to network order above.
*/
{
struct ipsec_output_state state;
bzero(&state, sizeof(state));
state.m = m;
if (flags & IP_ROUTETOIF) {
state.ro = &iproute;
bzero(&iproute, sizeof(iproute));
} else
state.ro = ro;
state.dst = (struct sockaddr *)dst;
/*
* We can't defer the checksum of payload data if
* we're about to encrypt/authenticate it.
*
* XXX When we support crypto offloading functions of
* XXX network interfaces, we need to reconsider this,
* XXX since it's likely that they'll support checksumming,
* XXX as well.
*/
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
error = ipsec4_output(&state, sp, flags);
m = state.m;
if (flags & IP_ROUTETOIF) {
/*
* if we have tunnel mode SA, we may need to ignore
* IP_ROUTETOIF.
*/
if (state.ro != &iproute || state.ro->ro_rt != NULL) {
flags &= ~IP_ROUTETOIF;
ro = state.ro;
}
} else
ro = state.ro;
dst = (struct sockaddr_in *)state.dst;
if (error) {
/* mbuf is already reclaimed in ipsec4_output. */
m0 = NULL;
switch (error) {
case EHOSTUNREACH:
case ENETUNREACH:
case EMSGSIZE:
case ENOBUFS:
case ENOMEM:
break;
default:
printf("ip4_output (ipsec): error code %d\n", error);
/*fall through*/
case ENOENT:
/* don't show these error codes to the user */
error = 0;
break;
}
goto bad;
}
/* be sure to update variables that are affected by ipsec4_output() */
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
ip_len = ntohs(ip->ip_len);
if (ro->ro_rt == NULL) {
if ((flags & IP_ROUTETOIF) == 0) {
printf("ip_output: "
"can't update route after IPsec processing\n");
error = EHOSTUNREACH; /*XXX*/
goto bad;
}
} else {
/* nobody uses ia beyond here */
if (state.encap)
ifp = ro->ro_rt->rt_ifp;
}
}
skip_ipsec:
#endif /*IPSEC*/
#ifdef FAST_IPSEC
/*
* Check the security policy (SP) for the packet and, if
* required, do IPsec-related processing. There are two
* cases here; the first time a packet is sent through
* it will be untagged and handled by ipsec4_checkpolicy.
* If the packet is resubmitted to ip_output (e.g. after
* AH, ESP, etc. processing), there will be a tag to bypass
* the lookup and related policy checking.
*/
mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
s = splsoftnet();
if (mtag != NULL) {
tdbi = (struct tdb_ident *)(mtag + 1);
sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
if (sp == NULL)
error = -EINVAL; /* force silent drop */
m_tag_delete(m, mtag);
} else {
if (inp != NULL &&
IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
goto spd_done;
sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
&error, inp);
}
/*
* There are four return cases:
* sp != NULL apply IPsec policy
* sp == NULL, error == 0 no IPsec handling needed
* sp == NULL, error == -EINVAL discard packet w/o error
* sp == NULL, error != 0 discard packet, report error
*/
if (sp != NULL) {
/* Loop detection, check if ipsec processing already done */
IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
for (mtag = m_tag_first(m); mtag != NULL;
mtag = m_tag_next(m, mtag)) {
#ifdef MTAG_ABI_COMPAT
if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
continue;
#endif
if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
continue;
/*
* Check if policy has an SA associated with it.
* This can happen when an SP has yet to acquire
* an SA; e.g. on first reference. If it occurs,
* then we let ipsec4_process_packet do its thing.
*/
if (sp->req->sav == NULL)
break;
tdbi = (struct tdb_ident *)(mtag + 1);
if (tdbi->spi == sp->req->sav->spi &&
tdbi->proto == sp->req->sav->sah->saidx.proto &&
bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
sizeof (union sockaddr_union)) == 0) {
/*
* No IPsec processing is needed, free
* reference to SP.
*
* NB: null pointer to avoid free at
* done: below.
*/
KEY_FREESP(&sp), sp = NULL;
splx(s);
goto spd_done;
}
}
/*
* Do delayed checksums now because we send before
* this is done in the normal processing path.
*/
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
#ifdef __FreeBSD__
ip->ip_len = htons(ip->ip_len);
ip->ip_off = htons(ip->ip_off);
#endif
/* NB: callee frees mbuf */
error = ipsec4_process_packet(m, sp->req, flags, 0);
/*
* Preserve KAME behaviour: ENOENT can be returned
* when an SA acquire is in progress. Don't propagate
* this to user-level; it confuses applications.
*
* XXX this will go away when the SADB is redone.
*/
if (error == ENOENT)
error = 0;
splx(s);
goto done;
} else {
splx(s);
if (error != 0) {
/*
* Hack: -EINVAL is used to signal that a packet
* should be silently discarded. This is typically
* because we asked key management for an SA and
* it was delayed (e.g. kicked up to IKE).
*/
if (error == -EINVAL)
error = 0;
goto bad;
} else {
/* No IPsec processing for this packet. */
}
#ifdef notyet
/*
* If deferred crypto processing is needed, check that
* the interface supports it.
*/
mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
/* notify IPsec to do its own crypto */
ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
error = EHOSTUNREACH;
goto bad;
}
#endif
}
spd_done:
#endif /* FAST_IPSEC */
#ifdef PFIL_HOOKS
/*
* Run through list of hooks for output packets.
*/
if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
goto done;
if (m == NULL)
goto done;
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
#endif /* PFIL_HOOKS */
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
/*
* If small enough for mtu of path, can just send directly.
*/
if (ip_len <= mtu) {
#if IFA_STATS
/*
* search for the source address structure to
* maintain output statistics.
*/
INADDR_TO_IA(ip->ip_src, ia);
if (ia)
ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
#endif
/*
* Always initialize the sum to 0! Some HW assisted
* checksumming requires this.
*/
ip->ip_sum = 0;
/*
* Perform any checksums that the hardware can't do
* for us.
*
* XXX Does any hardware require the {th,uh}_sum
* XXX fields to be 0?
*/
if (sw_csum & M_CSUM_IPv4) {
ip->ip_sum = in_cksum(m, hlen);
m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
}
if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
#ifdef IPSEC
/* clean ipsec history once it goes out of the node */
ipsec_delaux(m);
#endif
error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
goto done;
}
/*
* We can't use HW checksumming if we're about to
* to fragment the packet.
*
* XXX Some hardware can do this.
*/
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
/*
* Too large for interface; fragment if possible.
* Must be able to put at least 8 bytes per fragment.
*/
if (ntohs(ip->ip_off) & IP_DF) {
if (flags & IP_RETURNMTU)
*mtu_p = mtu;
error = EMSGSIZE;
ipstat.ips_cantfrag++;
goto bad;
}
error = ip_fragment(m, ifp, mtu);
if (error) {
m = NULL;
goto bad;
}
for (; m; m = m0) {
m0 = m->m_nextpkt;
m->m_nextpkt = 0;
if (error == 0) {
#if IFA_STATS
/*
* search for the source address structure to
* maintain output statistics.
*/
INADDR_TO_IA(ip->ip_src, ia);
if (ia) {
ia->ia_ifa.ifa_data.ifad_outbytes +=
ntohs(ip->ip_len);
}
#endif
#ifdef IPSEC
/* clean ipsec history once it goes out of the node */
ipsec_delaux(m);
#endif
KASSERT((m->m_pkthdr.csum_flags &
(M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
error = (*ifp->if_output)(ifp, m, sintosa(dst),
ro->ro_rt);
} else
m_freem(m);
}
if (error == 0)
ipstat.ips_fragmented++;
done:
if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
RTFREE(ro->ro_rt);
ro->ro_rt = 0;
}
#ifdef IPSEC
if (sp != NULL) {
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP ip_output call free SP:%p\n", sp));
key_freesp(sp);
}
#endif /* IPSEC */
#ifdef FAST_IPSEC
if (sp != NULL)
KEY_FREESP(&sp);
#endif /* FAST_IPSEC */
return (error);
bad:
m_freem(m);
goto done;
}
int
ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
{
struct ip *ip, *mhip;
struct mbuf *m0;
int len, hlen, off;
int mhlen, firstlen;
struct mbuf **mnext;
int sw_csum;
int fragments = 0;
int s;
int error = 0;
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
len = (mtu - hlen) &~ 7;
if (len < 8) {
m_freem(m);
return (EMSGSIZE);
}
firstlen = len;
mnext = &m->m_nextpkt;
/*
* Loop through length of segment after first fragment,
* make new header and copy data of each part and link onto chain.
*/
m0 = m;
mhlen = sizeof (struct ip);
for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m == 0) {
error = ENOBUFS;
ipstat.ips_odropped++;
goto sendorfree;
}
MCLAIM(m, m0->m_owner);
*mnext = m;
mnext = &m->m_nextpkt;
m->m_data += max_linkhdr;
mhip = mtod(m, struct ip *);
*mhip = *ip;
/* we must inherit MCAST and BCAST flags */
m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
if (hlen > sizeof (struct ip)) {
mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
mhip->ip_hl = mhlen >> 2;
}
m->m_len = mhlen;
mhip->ip_off = ((off - hlen) >> 3) +
(ntohs(ip->ip_off) & ~IP_MF);
if (ip->ip_off & htons(IP_MF))
mhip->ip_off |= IP_MF;
if (off + len >= ntohs(ip->ip_len))
len = ntohs(ip->ip_len) - off;
else
mhip->ip_off |= IP_MF;
HTONS(mhip->ip_off);
mhip->ip_len = htons((u_int16_t)(len + mhlen));
m->m_next = m_copy(m0, off, len);
if (m->m_next == 0) {
error = ENOBUFS; /* ??? */
ipstat.ips_odropped++;
goto sendorfree;
}
m->m_pkthdr.len = mhlen + len;
m->m_pkthdr.rcvif = (struct ifnet *)0;
mhip->ip_sum = 0;
if (sw_csum & M_CSUM_IPv4) {
mhip->ip_sum = in_cksum(m, mhlen);
KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
} else {
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
}
ipstat.ips_ofragments++;
fragments++;
}
/*
* Update first fragment by trimming what's been copied out
* and updating header, then send each fragment (in order).
*/
m = m0;
m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
m->m_pkthdr.len = hlen + firstlen;
ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
ip->ip_off |= htons(IP_MF);
ip->ip_sum = 0;
if (sw_csum & M_CSUM_IPv4) {
ip->ip_sum = in_cksum(m, hlen);
m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
} else {
KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
}
sendorfree:
/*
* If there is no room for all the fragments, don't queue
* any of them.
*/
s = splnet();
if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
error == 0) {
error = ENOBUFS;
ipstat.ips_odropped++;
IFQ_INC_DROPS(&ifp->if_snd);
}
splx(s);
if (error) {
for (m = m0; m; m = m0) {
m0 = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
}
}
return (error);
}
/*
* Process a delayed payload checksum calculation.
*/
void
in_delayed_cksum(struct mbuf *m)
{
struct ip *ip;
u_int16_t csum, offset;
ip = mtod(m, struct ip *);
offset = ip->ip_hl << 2;
csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
csum = 0xffff;
offset += m->m_pkthdr.csum_data; /* checksum offset */
if ((offset + sizeof(u_int16_t)) > m->m_len) {
/* This happen when ip options were inserted
printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
m->m_len, offset, ip->ip_p);
*/
m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
} else
*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
}
/*
* Determine the maximum length of the options to be inserted;
* we would far rather allocate too much space rather than too little.
*/
u_int
ip_optlen(inp)
struct inpcb *inp;
{
struct mbuf *m = inp->inp_options;
if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
return (m->m_len - offsetof(struct ipoption, ipopt_dst));
else
return 0;
}
/*
* Insert IP options into preformed packet.
* Adjust IP destination as required for IP source routing,
* as indicated by a non-zero in_addr at the start of the options.
*/
static struct mbuf *
ip_insertoptions(m, opt, phlen)
struct mbuf *m;
struct mbuf *opt;
int *phlen;
{
struct ipoption *p = mtod(opt, struct ipoption *);
struct mbuf *n;
struct ip *ip = mtod(m, struct ip *);
unsigned optlen;
optlen = opt->m_len - sizeof(p->ipopt_dst);
if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
return (m); /* XXX should fail */
if (!in_nullhost(p->ipopt_dst))
ip->ip_dst = p->ipopt_dst;
if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
MGETHDR(n, M_DONTWAIT, MT_HEADER);
if (n == 0)
return (m);
MCLAIM(n, m->m_owner);
M_COPY_PKTHDR(n, m);
m_tag_delete_chain(m, NULL);
m->m_flags &= ~M_PKTHDR;
m->m_len -= sizeof(struct ip);
m->m_data += sizeof(struct ip);
n->m_next = m;
m = n;
m->m_len = optlen + sizeof(struct ip);
m->m_data += max_linkhdr;
bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
} else {
m->m_data -= optlen;
m->m_len += optlen;
memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
}
m->m_pkthdr.len += optlen;
ip = mtod(m, struct ip *);
bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
*phlen = sizeof(struct ip) + optlen;
ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
return (m);
}
/*
* Copy options from ip to jp,
* omitting those not copied during fragmentation.
*/
int
ip_optcopy(ip, jp)
struct ip *ip, *jp;
{
u_char *cp, *dp;
int opt, optlen, cnt;
cp = (u_char *)(ip + 1);
dp = (u_char *)(jp + 1);
cnt = (ip->ip_hl << 2) - sizeof (struct ip);
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[0];
if (opt == IPOPT_EOL)
break;
if (opt == IPOPT_NOP) {
/* Preserve for IP mcast tunnel's LSRR alignment. */
*dp++ = IPOPT_NOP;
optlen = 1;
continue;
}
#ifdef DIAGNOSTIC
if (cnt < IPOPT_OLEN + sizeof(*cp))
panic("malformed IPv4 option passed to ip_optcopy");
#endif
optlen = cp[IPOPT_OLEN];
#ifdef DIAGNOSTIC
if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
panic("malformed IPv4 option passed to ip_optcopy");
#endif
/* bogus lengths should have been caught by ip_dooptions */
if (optlen > cnt)
optlen = cnt;
if (IPOPT_COPIED(opt)) {
bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
dp += optlen;
}
}
for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
*dp++ = IPOPT_EOL;
return (optlen);
}
/*
* IP socket option processing.
*/
int
ip_ctloutput(op, so, level, optname, mp)
int op;
struct socket *so;
int level, optname;
struct mbuf **mp;
{
struct inpcb *inp = sotoinpcb(so);
struct mbuf *m = *mp;
int optval = 0;
int error = 0;
#if defined(IPSEC) || defined(FAST_IPSEC)
struct proc *p = curproc; /*XXX*/
#endif
if (level != IPPROTO_IP) {
error = EINVAL;
if (op == PRCO_SETOPT && *mp)
(void) m_free(*mp);
} else switch (op) {
case PRCO_SETOPT:
switch (optname) {
case IP_OPTIONS:
#ifdef notyet
case IP_RETOPTS:
return (ip_pcbopts(optname, &inp->inp_options, m));
#else
return (ip_pcbopts(&inp->inp_options, m));
#endif
case IP_TOS:
case IP_TTL:
case IP_RECVOPTS:
case IP_RECVRETOPTS:
case IP_RECVDSTADDR:
case IP_RECVIF:
if (m == NULL || m->m_len != sizeof(int))
error = EINVAL;
else {
optval = *mtod(m, int *);
switch (optname) {
case IP_TOS:
inp->inp_ip.ip_tos = optval;
break;
case IP_TTL:
inp->inp_ip.ip_ttl = optval;
break;
#define OPTSET(bit) \
if (optval) \
inp->inp_flags |= bit; \
else \
inp->inp_flags &= ~bit;
case IP_RECVOPTS:
OPTSET(INP_RECVOPTS);
break;
case IP_RECVRETOPTS:
OPTSET(INP_RECVRETOPTS);
break;
case IP_RECVDSTADDR:
OPTSET(INP_RECVDSTADDR);
break;
case IP_RECVIF:
OPTSET(INP_RECVIF);
break;
}
}
break;
#undef OPTSET
case IP_MULTICAST_IF:
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
error = ip_setmoptions(optname, &inp->inp_moptions, m);
break;
case IP_PORTRANGE:
if (m == 0 || m->m_len != sizeof(int))
error = EINVAL;
else {
optval = *mtod(m, int *);
switch (optval) {
case IP_PORTRANGE_DEFAULT:
case IP_PORTRANGE_HIGH:
inp->inp_flags &= ~(INP_LOWPORT);
break;
case IP_PORTRANGE_LOW:
inp->inp_flags |= INP_LOWPORT;
break;
default:
error = EINVAL;
break;
}
}
break;
#if defined(IPSEC) || defined(FAST_IPSEC)
case IP_IPSEC_POLICY:
{
caddr_t req = NULL;
size_t len = 0;
int priv = 0;
#ifdef __NetBSD__
if (p == 0 || suser(p->p_ucred, &p->p_acflag))
priv = 0;
else
priv = 1;
#else
priv = (in6p->in6p_socket->so_state & SS_PRIV);
#endif
if (m) {
req = mtod(m, caddr_t);
len = m->m_len;
}
error = ipsec4_set_policy(inp, optname, req, len, priv);
break;
}
#endif /*IPSEC*/
default:
error = ENOPROTOOPT;
break;
}
if (m)
(void)m_free(m);
break;
case PRCO_GETOPT:
switch (optname) {
case IP_OPTIONS:
case IP_RETOPTS:
*mp = m = m_get(M_WAIT, MT_SOOPTS);
MCLAIM(m, so->so_mowner);
if (inp->inp_options) {
m->m_len = inp->inp_options->m_len;
bcopy(mtod(inp->inp_options, caddr_t),
mtod(m, caddr_t), (unsigned)m->m_len);
} else
m->m_len = 0;
break;
case IP_TOS:
case IP_TTL:
case IP_RECVOPTS:
case IP_RECVRETOPTS:
case IP_RECVDSTADDR:
case IP_RECVIF:
case IP_ERRORMTU:
*mp = m = m_get(M_WAIT, MT_SOOPTS);
MCLAIM(m, so->so_mowner);
m->m_len = sizeof(int);
switch (optname) {
case IP_TOS:
optval = inp->inp_ip.ip_tos;
break;
case IP_TTL:
optval = inp->inp_ip.ip_ttl;
break;
case IP_ERRORMTU:
optval = inp->inp_errormtu;
break;
#define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
case IP_RECVOPTS:
optval = OPTBIT(INP_RECVOPTS);
break;
case IP_RECVRETOPTS:
optval = OPTBIT(INP_RECVRETOPTS);
break;
case IP_RECVDSTADDR:
optval = OPTBIT(INP_RECVDSTADDR);
break;
case IP_RECVIF:
optval = OPTBIT(INP_RECVIF);
break;
}
*mtod(m, int *) = optval;
break;
#if defined(IPSEC) || defined(FAST_IPSEC)
case IP_IPSEC_POLICY:
{
caddr_t req = NULL;
size_t len = 0;
if (m) {
req = mtod(m, caddr_t);
len = m->m_len;
}
error = ipsec4_get_policy(inp, req, len, mp);
break;
}
#endif /*IPSEC*/
case IP_MULTICAST_IF:
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
error = ip_getmoptions(optname, inp->inp_moptions, mp);
if (*mp)
MCLAIM(*mp, so->so_mowner);
break;
case IP_PORTRANGE:
*mp = m = m_get(M_WAIT, MT_SOOPTS);
MCLAIM(m, so->so_mowner);
m->m_len = sizeof(int);
if (inp->inp_flags & INP_LOWPORT)
optval = IP_PORTRANGE_LOW;
else
optval = IP_PORTRANGE_DEFAULT;
*mtod(m, int *) = optval;
break;
default:
error = ENOPROTOOPT;
break;
}
break;
}
return (error);
}
/*
* Set up IP options in pcb for insertion in output packets.
* Store in mbuf with pointer in pcbopt, adding pseudo-option
* with destination address if source routed.
*/
int
#ifdef notyet
ip_pcbopts(optname, pcbopt, m)
int optname;
#else
ip_pcbopts(pcbopt, m)
#endif
struct mbuf **pcbopt;
struct mbuf *m;
{
int cnt, optlen;
u_char *cp;
u_char opt;
/* turn off any old options */
if (*pcbopt)
(void)m_free(*pcbopt);
*pcbopt = 0;
if (m == (struct mbuf *)0 || m->m_len == 0) {
/*
* Only turning off any previous options.
*/
if (m)
(void)m_free(m);
return (0);
}
#ifndef __vax__
if (m->m_len % sizeof(int32_t))
goto bad;
#endif
/*
* IP first-hop destination address will be stored before
* actual options; move other options back
* and clear it when none present.
*/
if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
goto bad;
cnt = m->m_len;
m->m_len += sizeof(struct in_addr);
cp = mtod(m, u_char *) + sizeof(struct in_addr);
memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
bzero(mtod(m, caddr_t), sizeof(struct in_addr));
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[IPOPT_OPTVAL];
if (opt == IPOPT_EOL)
break;
if (opt == IPOPT_NOP)
optlen = 1;
else {
if (cnt < IPOPT_OLEN + sizeof(*cp))
goto bad;
optlen = cp[IPOPT_OLEN];
if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
goto bad;
}
switch (opt) {
default:
break;
case IPOPT_LSRR:
case IPOPT_SSRR:
/*
* user process specifies route as:
* ->A->B->C->D
* D must be our final destination (but we can't
* check that since we may not have connected yet).
* A is first hop destination, which doesn't appear in
* actual IP option, but is stored before the options.
*/
if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
goto bad;
m->m_len -= sizeof(struct in_addr);
cnt -= sizeof(struct in_addr);
optlen -= sizeof(struct in_addr);
cp[IPOPT_OLEN] = optlen;
/*
* Move first hop before start of options.
*/
bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
sizeof(struct in_addr));
/*
* Then copy rest of options back
* to close up the deleted entry.
*/
memmove(&cp[IPOPT_OFFSET+1],
(caddr_t)(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
(unsigned)cnt + sizeof(struct in_addr));
break;
}
}
if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
goto bad;
*pcbopt = m;
return (0);
bad:
(void)m_free(m);
return (EINVAL);
}
/*
* following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
*/
static struct ifnet *
ip_multicast_if(a, ifindexp)
struct in_addr *a;
int *ifindexp;
{
int ifindex;
struct ifnet *ifp = NULL;
struct in_ifaddr *ia;
if (ifindexp)
*ifindexp = 0;
if (ntohl(a->s_addr) >> 24 == 0) {
ifindex = ntohl(a->s_addr) & 0xffffff;
if (ifindex < 0 || if_indexlim <= ifindex)
return NULL;
ifp = ifindex2ifnet[ifindex];
if (!ifp)
return NULL;
if (ifindexp)
*ifindexp = ifindex;
} else {
LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
(ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
ifp = ia->ia_ifp;
break;
}
}
}
return ifp;
}
/*
* Set the IP multicast options in response to user setsockopt().
*/
int
ip_setmoptions(optname, imop, m)
int optname;
struct ip_moptions **imop;
struct mbuf *m;
{
int error = 0;
u_char loop;
int i;
struct in_addr addr;
struct ip_mreq *mreq;
struct ifnet *ifp;
struct ip_moptions *imo = *imop;
struct route ro;
struct sockaddr_in *dst;
int ifindex;
if (imo == NULL) {
/*
* No multicast option buffer attached to the pcb;
* allocate one and initialize to default values.
*/
imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
M_WAITOK);
if (imo == NULL)
return (ENOBUFS);
*imop = imo;
imo->imo_multicast_ifp = NULL;
imo->imo_multicast_addr.s_addr = INADDR_ANY;
imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
imo->imo_num_memberships = 0;
}
switch (optname) {
case IP_MULTICAST_IF:
/*
* Select the interface for outgoing multicast packets.
*/
if (m == NULL || m->m_len != sizeof(struct in_addr)) {
error = EINVAL;
break;
}
addr = *(mtod(m, struct in_addr *));
/*
* INADDR_ANY is used to remove a previous selection.
* When no interface is selected, a default one is
* chosen every time a multicast packet is sent.
*/
if (in_nullhost(addr)) {
imo->imo_multicast_ifp = NULL;
break;
}
/*
* The selected interface is identified by its local
* IP address. Find the interface and confirm that
* it supports multicasting.
*/
ifp = ip_multicast_if(&addr, &ifindex);
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
error = EADDRNOTAVAIL;
break;
}
imo->imo_multicast_ifp = ifp;
if (ifindex)
imo->imo_multicast_addr = addr;
else
imo->imo_multicast_addr.s_addr = INADDR_ANY;
break;
case IP_MULTICAST_TTL:
/*
* Set the IP time-to-live for outgoing multicast packets.
*/
if (m == NULL || m->m_len != 1) {
error = EINVAL;
break;
}
imo->imo_multicast_ttl = *(mtod(m, u_char *));
break;
case IP_MULTICAST_LOOP:
/*
* Set the loopback flag for outgoing multicast packets.
* Must be zero or one.
*/
if (m == NULL || m->m_len != 1 ||
(loop = *(mtod(m, u_char *))) > 1) {
error = EINVAL;
break;
}
imo->imo_multicast_loop = loop;
break;
case IP_ADD_MEMBERSHIP:
/*
* Add a multicast group membership.
* Group must be a valid IP multicast address.
*/
if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
error = EINVAL;
break;
}
mreq = mtod(m, struct ip_mreq *);
if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
error = EINVAL;
break;
}
/*
* If no interface address was provided, use the interface of
* the route to the given multicast address.
*/
if (in_nullhost(mreq->imr_interface)) {
bzero((caddr_t)&ro, sizeof(ro));
ro.ro_rt = NULL;
dst = satosin(&ro.ro_dst);
dst->sin_len = sizeof(*dst);
dst->sin_family = AF_INET;
dst->sin_addr = mreq->imr_multiaddr;
rtalloc(&ro);
if (ro.ro_rt == NULL) {
error = EADDRNOTAVAIL;
break;
}
ifp = ro.ro_rt->rt_ifp;
rtfree(ro.ro_rt);
} else {
ifp = ip_multicast_if(&mreq->imr_interface, NULL);
}
/*
* See if we found an interface, and confirm that it
* supports multicast.
*/
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
error = EADDRNOTAVAIL;
break;
}
/*
* See if the membership already exists or if all the
* membership slots are full.
*/
for (i = 0; i < imo->imo_num_memberships; ++i) {
if (imo->imo_membership[i]->inm_ifp == ifp &&
in_hosteq(imo->imo_membership[i]->inm_addr,
mreq->imr_multiaddr))
break;
}
if (i < imo->imo_num_memberships) {
error = EADDRINUSE;
break;
}
if (i == IP_MAX_MEMBERSHIPS) {
error = ETOOMANYREFS;
break;
}
/*
* Everything looks good; add a new record to the multicast
* address list for the given interface.
*/
if ((imo->imo_membership[i] =
in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
error = ENOBUFS;
break;
}
++imo->imo_num_memberships;
break;
case IP_DROP_MEMBERSHIP:
/*
* Drop a multicast group membership.
* Group must be a valid IP multicast address.
*/
if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
error = EINVAL;
break;
}
mreq = mtod(m, struct ip_mreq *);
if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
error = EINVAL;
break;
}
/*
* If an interface address was specified, get a pointer
* to its ifnet structure.
*/
if (in_nullhost(mreq->imr_interface))
ifp = NULL;
else {
ifp = ip_multicast_if(&mreq->imr_interface, NULL);
if (ifp == NULL) {
error = EADDRNOTAVAIL;
break;
}
}
/*
* Find the membership in the membership array.
*/
for (i = 0; i < imo->imo_num_memberships; ++i) {
if ((ifp == NULL ||
imo->imo_membership[i]->inm_ifp == ifp) &&
in_hosteq(imo->imo_membership[i]->inm_addr,
mreq->imr_multiaddr))
break;
}
if (i == imo->imo_num_memberships) {
error = EADDRNOTAVAIL;
break;
}
/*
* Give up the multicast address record to which the
* membership points.
*/
in_delmulti(imo->imo_membership[i]);
/*
* Remove the gap in the membership array.
*/
for (++i; i < imo->imo_num_memberships; ++i)
imo->imo_membership[i-1] = imo->imo_membership[i];
--imo->imo_num_memberships;
break;
default:
error = EOPNOTSUPP;
break;
}
/*
* If all options have default values, no need to keep the mbuf.
*/
if (imo->imo_multicast_ifp == NULL &&
imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
imo->imo_num_memberships == 0) {
free(*imop, M_IPMOPTS);
*imop = NULL;
}
return (error);
}
/*
* Return the IP multicast options in response to user getsockopt().
*/
int
ip_getmoptions(optname, imo, mp)
int optname;
struct ip_moptions *imo;
struct mbuf **mp;
{
u_char *ttl;
u_char *loop;
struct in_addr *addr;
struct in_ifaddr *ia;
*mp = m_get(M_WAIT, MT_SOOPTS);
switch (optname) {
case IP_MULTICAST_IF:
addr = mtod(*mp, struct in_addr *);
(*mp)->m_len = sizeof(struct in_addr);
if (imo == NULL || imo->imo_multicast_ifp == NULL)
*addr = zeroin_addr;
else if (imo->imo_multicast_addr.s_addr) {
/* return the value user has set */
*addr = imo->imo_multicast_addr;
} else {
IFP_TO_IA(imo->imo_multicast_ifp, ia);
*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
}
return (0);
case IP_MULTICAST_TTL:
ttl = mtod(*mp, u_char *);
(*mp)->m_len = 1;
*ttl = imo ? imo->imo_multicast_ttl
: IP_DEFAULT_MULTICAST_TTL;
return (0);
case IP_MULTICAST_LOOP:
loop = mtod(*mp, u_char *);
(*mp)->m_len = 1;
*loop = imo ? imo->imo_multicast_loop
: IP_DEFAULT_MULTICAST_LOOP;
return (0);
default:
return (EOPNOTSUPP);
}
}
/*
* Discard the IP multicast options.
*/
void
ip_freemoptions(imo)
struct ip_moptions *imo;
{
int i;
if (imo != NULL) {
for (i = 0; i < imo->imo_num_memberships; ++i)
in_delmulti(imo->imo_membership[i]);
free(imo, M_IPMOPTS);
}
}
/*
* Routine called from ip_output() to loop back a copy of an IP multicast
* packet to the input queue of a specified interface. Note that this
* calls the output routine of the loopback "driver", but with an interface
* pointer that might NOT be &loif -- easier than replicating that code here.
*/
static void
ip_mloopback(ifp, m, dst)
struct ifnet *ifp;
struct mbuf *m;
struct sockaddr_in *dst;
{
struct ip *ip;
struct mbuf *copym;
copym = m_copy(m, 0, M_COPYALL);
if (copym != NULL
&& (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
copym = m_pullup(copym, sizeof(struct ip));
if (copym != NULL) {
/*
* We don't bother to fragment if the IP length is greater
* than the interface's MTU. Can this possibly matter?
*/
ip = mtod(copym, struct ip *);
if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
in_delayed_cksum(copym);
copym->m_pkthdr.csum_flags &=
~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
ip->ip_sum = 0;
ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
(void) looutput(ifp, copym, sintosa(dst), NULL);
}
}