NetBSD/sys/arch/macppc/dev/adb_direct.c

2156 lines
57 KiB
C

/* $NetBSD: adb_direct.c,v 1.27 2003/10/27 22:48:20 dyoung Exp $ */
/* From: adb_direct.c 2.02 4/18/97 jpw */
/*
* Copyright (C) 1996, 1997 John P. Wittkoski
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John P. Wittkoski.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This code is rather messy, but I don't have time right now
* to clean it up as much as I would like.
* But it works, so I'm happy. :-) jpw
*/
/*
* TO DO:
* - We could reduce the time spent in the adb_intr_* routines
* by having them save the incoming and outgoing data directly
* in the adbInbound and adbOutbound queues, as it would reduce
* the number of times we need to copy the data around. It
* would also make the code more readable and easier to follow.
* - (Related to above) Use the header part of adbCommand to
* reduce the number of copies we have to do of the data.
* - (Related to above) Actually implement the adbOutbound queue.
* This is fairly easy once you switch all the intr routines
* over to using adbCommand structs directly.
* - There is a bug in the state machine of adb_intr_cuda
* code that causes hangs, especially on 030 machines, probably
* because of some timing issues. Because I have been unable to
* determine the exact cause of this bug, I used the timeout function
* to check for and recover from this condition. If anyone finds
* the actual cause of this bug, the calls to timeout and the
* adb_cuda_tickle routine can be removed.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.27 2003/10/27 22:48:20 dyoung Exp $");
#include <sys/param.h>
#include <sys/cdefs.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <machine/param.h>
#include <machine/cpu.h>
#include <machine/adbsys.h>
#include <macppc/dev/viareg.h>
#include <macppc/dev/adbvar.h>
#include <macppc/dev/pm_direct.h>
#define printf_intr printf
#ifdef DEBUG
#ifndef ADB_DEBUG
#define ADB_DEBUG
#endif
#endif
/* some misc. leftovers */
#define vPB 0x0000
#define vPB3 0x08
#define vPB4 0x10
#define vPB5 0x20
#define vSR_INT 0x04
#define vSR_OUT 0x10
/* the type of ADB action that we are currently preforming */
#define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */
#define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */
#define ADB_ACTION_OUT 0x3 /* sending out a command */
#define ADB_ACTION_IN 0x4 /* receiving data */
#define ADB_ACTION_POLLING 0x5 /* polling - II only */
/*
* These describe the state of the ADB bus itself, although they
* don't necessarily correspond directly to ADB states.
* Note: these are not really used in the IIsi code.
*/
#define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */
#define ADB_BUS_IDLE 0x2 /* bus is idle - all models */
#define ADB_BUS_CMD 0x3 /* starting a command - II models */
#define ADB_BUS_ODD 0x4 /* the "odd" state - II models */
#define ADB_BUS_EVEN 0x5 /* the "even" state - II models */
#define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */
#define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */
/*
* Shortcuts for setting or testing the VIA bit states.
* Not all shortcuts are used for every type of ADB hardware.
*/
#define ADB_SET_STATE_IDLE_II() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
#define ADB_SET_STATE_IDLE_IISI() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
#define ADB_SET_STATE_IDLE_CUDA() via_reg_or(VIA1, vBufB, (vPB4 | vPB5))
#define ADB_SET_STATE_CMD() via_reg_and(VIA1, vBufB, ~(vPB4 | vPB5))
#define ADB_SET_STATE_EVEN() write_via_reg(VIA1, vBufB, \
(read_via_reg(VIA1, vBufB) | vPB4) & ~vPB5)
#define ADB_SET_STATE_ODD() write_via_reg(VIA1, vBufB, \
(read_via_reg(VIA1, vBufB) | vPB5) & ~vPB4 )
#define ADB_SET_STATE_ACTIVE() via_reg_or(VIA1, vBufB, vPB5)
#define ADB_SET_STATE_INACTIVE() via_reg_and(VIA1, vBufB, ~vPB5)
#define ADB_SET_STATE_TIP() via_reg_and(VIA1, vBufB, ~vPB5)
#define ADB_CLR_STATE_TIP() via_reg_or(VIA1, vBufB, vPB5)
#define ADB_SET_STATE_ACKON() via_reg_or(VIA1, vBufB, vPB4)
#define ADB_SET_STATE_ACKOFF() via_reg_and(VIA1, vBufB, ~vPB4)
#define ADB_TOGGLE_STATE_ACK_CUDA() via_reg_xor(VIA1, vBufB, vPB4)
#define ADB_SET_STATE_ACKON_CUDA() via_reg_and(VIA1, vBufB, ~vPB4)
#define ADB_SET_STATE_ACKOFF_CUDA() via_reg_or(VIA1, vBufB, vPB4)
#define ADB_SET_SR_INPUT() via_reg_and(VIA1, vACR, ~vSR_OUT)
#define ADB_SET_SR_OUTPUT() via_reg_or(VIA1, vACR, vSR_OUT)
#define ADB_SR() read_via_reg(VIA1, vSR)
#define ADB_VIA_INTR_ENABLE() write_via_reg(VIA1, vIER, 0x84)
#define ADB_VIA_INTR_DISABLE() write_via_reg(VIA1, vIER, 0x04)
#define ADB_VIA_CLR_INTR() write_via_reg(VIA1, vIFR, 0x04)
#define ADB_INTR_IS_OFF (vPB3 == (read_via_reg(VIA1, vBufB) & vPB3))
#define ADB_INTR_IS_ON (0 == (read_via_reg(VIA1, vBufB) & vPB3))
#define ADB_SR_INTR_IS_OFF (0 == (read_via_reg(VIA1, vIFR) & vSR_INT))
#define ADB_SR_INTR_IS_ON (vSR_INT == (read_via_reg(VIA1, \
vIFR) & vSR_INT))
/*
* This is the delay that is required (in uS) between certain
* ADB transactions. The actual timing delay for for each uS is
* calculated at boot time to account for differences in machine speed.
*/
#define ADB_DELAY 150
/*
* Maximum ADB message length; includes space for data, result, and
* device code - plus a little for safety.
*/
#define ADB_MAX_MSG_LENGTH 16
#define ADB_MAX_HDR_LENGTH 8
#define ADB_QUEUE 32
#define ADB_TICKLE_TICKS 4
/*
* A structure for storing information about each ADB device.
*/
struct ADBDevEntry {
void (*ServiceRtPtr) __P((void));
void *DataAreaAddr;
int devType;
int origAddr;
int currentAddr;
};
/*
* Used to hold ADB commands that are waiting to be sent out.
*/
struct adbCmdHoldEntry {
u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */
u_char *saveBuf; /* buffer to know where to save result */
u_char *compRout; /* completion routine pointer */
u_char *data; /* completion routine data pointer */
};
/*
* Eventually used for two separate queues, the queue between
* the upper and lower halves, and the outgoing packet queue.
* TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
*/
struct adbCommand {
u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */
u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */
u_char *saveBuf; /* where to save result */
u_char *compRout; /* completion routine pointer */
u_char *compData; /* completion routine data pointer */
u_int cmd; /* the original command for this data */
u_int unsol; /* 1 if packet was unsolicited */
u_int ack_only; /* 1 for no special processing */
};
/*
* A few variables that we need and their initial values.
*/
int adbHardware = ADB_HW_UNKNOWN;
int adbActionState = ADB_ACTION_NOTREADY;
int adbBusState = ADB_BUS_UNKNOWN;
int adbWaiting = 0; /* waiting for return data from the device */
int adbWriteDelay = 0; /* working on (or waiting to do) a write */
int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
int adbNextEnd = 0; /* the next incoming bute is the last (II) */
int adbSoftPower = 0; /* machine supports soft power */
int adbWaitingCmd = 0; /* ADB command we are waiting for */
u_char *adbBuffer = (long)0; /* pointer to user data area */
void *adbCompRout = (long)0; /* pointer to the completion routine */
void *adbCompData = (long)0; /* pointer to the completion routine data */
long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
* timeouts (II) */
int adbStarting = 1; /* doing ADBReInit so do polling differently */
int adbSendTalk = 0; /* the intr routine is sending the talk, not
* the user (II) */
int adbPolling = 0; /* we are polling for service request */
int adbPollCmd = 0; /* the last poll command we sent */
u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */
u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */
struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
int adbSentChars = 0; /* how many characters we have sent */
int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
int adbLastCommand = 0; /* the last ADB command we sent (II) */
struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */
int adbInCount = 0; /* how many packets in in queue */
int adbInHead = 0; /* head of in queue */
int adbInTail = 0; /* tail of in queue */
struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
int adbOutCount = 0; /* how many packets in out queue */
int adbOutHead = 0; /* head of out queue */
int adbOutTail = 0; /* tail of out queue */
int tickle_count = 0; /* how many tickles seen for this packet? */
int tickle_serial = 0; /* the last packet tickled */
int adb_cuda_serial = 0; /* the current packet */
struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
struct callout adb_soft_intr_ch = CALLOUT_INITIALIZER;
volatile u_char *Via1Base;
extern int adb_polling; /* Are we polling? */
void pm_setup_adb __P((void));
void pm_check_adb_devices __P((int));
void pm_intr __P((void));
int pm_adb_op __P((u_char *, void *, void *, int));
void pm_init_adb_device __P((void));
/*
* The following are private routines.
*/
#ifdef ADB_DEBUG
void print_single __P((u_char *));
#endif
void adb_intr __P((void));
void adb_intr_II __P((void));
void adb_intr_IIsi __P((void));
void adb_intr_cuda __P((void));
void adb_soft_intr __P((void));
int send_adb_II __P((u_char *, u_char *, void *, void *, int));
int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
void adb_intr_cuda_test __P((void));
void adb_cuda_tickle __P((void));
void adb_pass_up __P((struct adbCommand *));
void adb_op_comprout __P((caddr_t, caddr_t, int));
void adb_reinit __P((void));
int count_adbs __P((void));
int get_ind_adb_info __P((ADBDataBlock *, int));
int get_adb_info __P((ADBDataBlock *, int));
int set_adb_info __P((ADBSetInfoBlock *, int));
void adb_setup_hw_type __P((void));
int adb_op __P((Ptr, Ptr, Ptr, short));
int adb_op_sync __P((Ptr, Ptr, Ptr, short));
void adb_read_II __P((u_char *));
void adb_hw_setup __P((void));
void adb_hw_setup_IIsi __P((u_char *));
int adb_cmd_result __P((u_char *));
int adb_cmd_extra __P((u_char *));
int adb_guess_next_device __P((void));
int adb_prog_switch_enable __P((void));
int adb_prog_switch_disable __P((void));
/* we should create this and it will be the public version */
int send_adb __P((u_char *, void *, void *));
int setsoftadb __P((void));
#ifdef ADB_DEBUG
/*
* print_single
* Diagnostic display routine. Displays the hex values of the
* specified elements of the u_char. The length of the "string"
* is in [0].
*/
void
print_single(str)
u_char *str;
{
int x;
if (str == 0) {
printf_intr("no data - null pointer\n");
return;
}
if (*str == 0) {
printf_intr("nothing returned\n");
return;
}
if (*str > 20) {
printf_intr("ADB: ACK > 20 no way!\n");
*str = 20;
}
printf_intr("(length=0x%x):", *str);
for (x = 1; x <= *str; x++)
printf_intr(" 0x%02x", str[x]);
printf_intr("\n");
}
#endif
void
adb_cuda_tickle(void)
{
volatile int s;
if (adbActionState == ADB_ACTION_IN) {
if (tickle_serial == adb_cuda_serial) {
if (++tickle_count > 0) {
s = splhigh();
adbActionState = ADB_ACTION_IDLE;
adbInputBuffer[0] = 0;
ADB_SET_STATE_IDLE_CUDA();
splx(s);
}
} else {
tickle_serial = adb_cuda_serial;
tickle_count = 0;
}
} else {
tickle_serial = adb_cuda_serial;
tickle_count = 0;
}
callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
(void *)adb_cuda_tickle, NULL);
}
/*
* called when when an adb interrupt happens
*
* Cuda version of adb_intr
* TO DO: do we want to add some calls to intr_dispatch() here to
* grab serial interrupts?
*/
void
adb_intr_cuda(void)
{
volatile int i, ending;
volatile unsigned int s;
struct adbCommand packet;
s = splhigh(); /* can't be too careful - might be called */
/* from a routine, NOT an interrupt */
ADB_VIA_CLR_INTR(); /* clear interrupt */
ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
switch_start:
switch (adbActionState) {
case ADB_ACTION_IDLE:
/*
* This is an unexpected packet, so grab the first (dummy)
* byte, set up the proper vars, and tell the chip we are
* starting to receive the packet by setting the TIP bit.
*/
adbInputBuffer[1] = ADB_SR();
adb_cuda_serial++;
if (ADB_INTR_IS_OFF) /* must have been a fake start */
break;
ADB_SET_SR_INPUT();
ADB_SET_STATE_TIP();
adbInputBuffer[0] = 1;
adbActionState = ADB_ACTION_IN;
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("idle 0x%02x ", adbInputBuffer[1]);
#endif
break;
case ADB_ACTION_IN:
adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
/* intr off means this is the last byte (end of frame) */
if (ADB_INTR_IS_OFF)
ending = 1;
else
ending = 0;
if (1 == ending) { /* end of message? */
#ifdef ADB_DEBUG
if (adb_debug) {
printf_intr("in end 0x%02x ",
adbInputBuffer[adbInputBuffer[0]]);
print_single(adbInputBuffer);
}
#endif
/*
* Are we waiting AND does this packet match what we
* are waiting for AND is it coming from either the
* ADB or RTC/PRAM sub-device? This section _should_
* recognize all ADB and RTC/PRAM type commands, but
* there may be more... NOTE: commands are always at
* [4], even for RTC/PRAM commands.
*/
/* set up data for adb_pass_up */
memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
if ((adbWaiting == 1) &&
(adbInputBuffer[4] == adbWaitingCmd) &&
((adbInputBuffer[2] == 0x00) ||
(adbInputBuffer[2] == 0x01))) {
packet.saveBuf = adbBuffer;
packet.compRout = adbCompRout;
packet.compData = adbCompData;
packet.unsol = 0;
packet.ack_only = 0;
adb_pass_up(&packet);
adbWaitingCmd = 0; /* reset "waiting" vars */
adbWaiting = 0;
adbBuffer = (long)0;
adbCompRout = (long)0;
adbCompData = (long)0;
} else {
packet.unsol = 1;
packet.ack_only = 0;
adb_pass_up(&packet);
}
/* reset vars and signal the end of this frame */
adbActionState = ADB_ACTION_IDLE;
adbInputBuffer[0] = 0;
ADB_SET_STATE_IDLE_CUDA();
/*ADB_SET_SR_INPUT();*/
/*
* If there is something waiting to be sent out,
* the set everything up and send the first byte.
*/
if (adbWriteDelay == 1) {
delay(ADB_DELAY); /* required */
adbSentChars = 0;
adbActionState = ADB_ACTION_OUT;
/*
* If the interrupt is on, we were too slow
* and the chip has already started to send
* something to us, so back out of the write
* and start a read cycle.
*/
if (ADB_INTR_IS_ON) {
ADB_SET_SR_INPUT();
ADB_SET_STATE_IDLE_CUDA();
adbSentChars = 0;
adbActionState = ADB_ACTION_IDLE;
adbInputBuffer[0] = 0;
break;
}
/*
* If we got here, it's ok to start sending
* so load the first byte and tell the chip
* we want to send.
*/
ADB_SET_STATE_TIP();
ADB_SET_SR_OUTPUT();
write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]);
}
} else {
ADB_TOGGLE_STATE_ACK_CUDA();
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("in 0x%02x ",
adbInputBuffer[adbInputBuffer[0]]);
#endif
}
break;
case ADB_ACTION_OUT:
i = ADB_SR(); /* reset SR-intr in IFR */
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("intr out 0x%02x ", i);
#endif
adbSentChars++;
if (ADB_INTR_IS_ON) { /* ADB intr low during write */
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("intr was on ");
#endif
ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
ADB_SET_STATE_IDLE_CUDA();
adbSentChars = 0; /* must start all over */
adbActionState = ADB_ACTION_IDLE; /* new state */
adbInputBuffer[0] = 0;
adbWriteDelay = 1; /* must retry when done with
* read */
delay(ADB_DELAY);
goto switch_start; /* process next state right
* now */
break;
}
if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
* back? */
adbWaiting = 1; /* signal waiting for return */
adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
} else { /* no talk, so done */
/* set up stuff for adb_pass_up */
memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
packet.saveBuf = adbBuffer;
packet.compRout = adbCompRout;
packet.compData = adbCompData;
packet.cmd = adbWaitingCmd;
packet.unsol = 0;
packet.ack_only = 1;
adb_pass_up(&packet);
/* reset "waiting" vars, just in case */
adbWaitingCmd = 0;
adbBuffer = (long)0;
adbCompRout = (long)0;
adbCompData = (long)0;
}
adbWriteDelay = 0; /* done writing */
adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
ADB_SET_SR_INPUT();
ADB_SET_STATE_IDLE_CUDA();
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("write done ");
#endif
} else {
write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* send next byte */
ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
* shift */
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("toggle ");
#endif
}
break;
case ADB_ACTION_NOTREADY:
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("adb: not yet initialized\n");
#endif
break;
default:
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("intr: unknown ADB state\n");
#endif
break;
}
ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
splx(s); /* restore */
return;
} /* end adb_intr_cuda */
int
send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
command)
{
int s, len;
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("SEND\n");
#endif
if (adbActionState == ADB_ACTION_NOTREADY)
return 1;
/* Don't interrupt while we are messing with the ADB */
s = splhigh();
if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
(ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
} else
if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
adbWriteDelay = 1; /* if no, then we'll "queue"
* it up */
else {
splx(s);
return 1; /* really busy! */
}
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("QUEUE\n");
#endif
if ((long)in == (long)0) { /* need to convert? */
/*
* Don't need to use adb_cmd_extra here because this section
* will be called ONLY when it is an ADB command (no RTC or
* PRAM)
*/
if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
* doing a listen! */
len = buffer[0]; /* length of additional data */
else
len = 0;/* no additional data */
adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
* data */
adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
adbOutputBuffer[2] = (u_char)command; /* load command */
/* copy additional output data, if any */
memcpy(adbOutputBuffer + 3, buffer + 1, len);
} else
/* if data ready, just copy over */
memcpy(adbOutputBuffer, in, in[0] + 2);
adbSentChars = 0; /* nothing sent yet */
adbBuffer = buffer; /* save buffer to know where to save result */
adbCompRout = compRout; /* save completion routine pointer */
adbCompData = data; /* save completion routine data pointer */
adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
if (adbWriteDelay != 1) { /* start command now? */
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("out start NOW");
#endif
delay(ADB_DELAY);
adbActionState = ADB_ACTION_OUT; /* set next state */
ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
write_via_reg(VIA1, vSR, adbOutputBuffer[adbSentChars + 1]); /* load byte for output */
ADB_SET_STATE_ACKOFF_CUDA();
ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
}
adbWriteDelay = 1; /* something in the write "queue" */
splx(s);
if ((s & (1 << 18)) || adb_polling) /* XXX were VIA1 interrupts blocked ? */
/* poll until byte done */
while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
|| (adbWaiting == 1))
if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
adb_intr_cuda(); /* process it */
adb_soft_intr();
}
return 0;
} /* send_adb_cuda */
void
adb_intr_II(void)
{
panic("adb_intr_II");
}
/*
* send_adb version for II series machines
*/
int
send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
{
panic("send_adb_II");
}
/*
* This routine is called from the II series interrupt routine
* to determine what the "next" device is that should be polled.
*/
int
adb_guess_next_device(void)
{
int last, i, dummy;
if (adbStarting) {
/*
* Start polling EVERY device, since we can't be sure there is
* anything in the device table yet
*/
if (adbLastDevice < 1 || adbLastDevice > 15)
adbLastDevice = 1;
if (++adbLastDevice > 15) /* point to next one */
adbLastDevice = 1;
} else {
/* find the next device using the device table */
if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
adbLastDevice = 2;
last = 1; /* default index location */
for (i = 1; i < 16; i++) /* find index entry */
if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
last = i; /* found it */
break;
}
dummy = last; /* index to start at */
for (;;) { /* find next device in index */
if (++dummy > 15) /* wrap around if needed */
dummy = 1;
if (dummy == last) { /* didn't find any other
* device! This can happen if
* there are no devices on the
* bus */
dummy = 1;
break;
}
/* found the next device */
if (ADBDevTable[dummy].devType != 0)
break;
}
adbLastDevice = ADBDevTable[dummy].currentAddr;
}
return adbLastDevice;
}
/*
* Called when when an adb interrupt happens.
* This routine simply transfers control over to the appropriate
* code for the machine we are running on.
*/
void
adb_intr(void)
{
switch (adbHardware) {
case ADB_HW_II:
adb_intr_II();
break;
case ADB_HW_IISI:
adb_intr_IIsi();
break;
case ADB_HW_PB:
pm_intr();
break;
case ADB_HW_CUDA:
adb_intr_cuda();
break;
case ADB_HW_UNKNOWN:
break;
}
}
/*
* called when when an adb interrupt happens
*
* IIsi version of adb_intr
*
*/
void
adb_intr_IIsi(void)
{
panic("adb_intr_IIsi");
}
/*****************************************************************************
* if the device is currently busy, and there is no data waiting to go out, then
* the data is "queued" in the outgoing buffer. If we are already waiting, then
* we return.
* in: if (in == 0) then the command string is built from command and buffer
* if (in != 0) then in is used as the command string
* buffer: additional data to be sent (used only if in == 0)
* this is also where return data is stored
* compRout: the completion routine that is called when then return value
* is received (if a return value is expected)
* data: a data pointer that can be used by the completion routine
* command: an ADB command to be sent (used only if in == 0)
*
*/
int
send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
command)
{
panic("send_adb_IIsi");
}
/*
* adb_pass_up is called by the interrupt-time routines.
* It takes the raw packet data that was received from the
* device and puts it into the queue that the upper half
* processes. It then signals for a soft ADB interrupt which
* will eventually call the upper half routine (adb_soft_intr).
*
* If in->unsol is 0, then this is either the notification
* that the packet was sent (on a LISTEN, for example), or the
* response from the device (on a TALK). The completion routine
* is called only if the user specified one.
*
* If in->unsol is 1, then this packet was unsolicited and
* so we look up the device in the ADB device table to determine
* what it's default service routine is.
*
* If in->ack_only is 1, then we really only need to call
* the completion routine, so don't do any other stuff.
*
* Note that in->data contains the packet header AND data,
* while adbInbound[]->data contains ONLY data.
*
* Note: Called only at interrupt time. Assumes this.
*/
void
adb_pass_up(struct adbCommand *in)
{
int start = 0, len = 0, cmd = 0;
ADBDataBlock block;
/* temp for testing */
/*u_char *buffer = 0;*/
/*u_char *compdata = 0;*/
/*u_char *comprout = 0;*/
if (adbInCount >= ADB_QUEUE) {
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("adb: ring buffer overflow\n");
#endif
return;
}
if (in->ack_only) {
len = in->data[0];
cmd = in->cmd;
start = 0;
} else {
switch (adbHardware) {
case ADB_HW_II:
cmd = in->data[1];
if (in->data[0] < 2)
len = 0;
else
len = in->data[0]-1;
start = 1;
break;
case ADB_HW_IISI:
case ADB_HW_CUDA:
/* If it's unsolicited, accept only ADB data for now */
if (in->unsol)
if (0 != in->data[2])
return;
cmd = in->data[4];
if (in->data[0] < 5)
len = 0;
else
len = in->data[0]-4;
start = 4;
break;
case ADB_HW_PB:
cmd = in->data[1];
if (in->data[0] < 2)
len = 0;
else
len = in->data[0]-1;
start = 1;
break;
case ADB_HW_UNKNOWN:
return;
}
/* Make sure there is a valid device entry for this device */
if (in->unsol) {
/* ignore unsolicited data during adbreinit */
if (adbStarting)
return;
/* get device's comp. routine and data area */
if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
return;
}
}
/*
* If this is an unsolicited packet, we need to fill in
* some info so adb_soft_intr can process this packet
* properly. If it's not unsolicited, then use what
* the caller sent us.
*/
if (in->unsol) {
adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
} else {
adbInbound[adbInTail].compRout = (void *)in->compRout;
adbInbound[adbInTail].compData = (void *)in->compData;
adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
}
#ifdef ADB_DEBUG
if (adb_debug && in->data[1] == 2)
printf_intr("adb: caught error\n");
#endif
/* copy the packet data over */
/*
* TO DO: If the *_intr routines fed their incoming data
* directly into an adbCommand struct, which is passed to
* this routine, then we could eliminate this copy.
*/
memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
adbInbound[adbInTail].data[0] = len;
adbInbound[adbInTail].cmd = cmd;
adbInCount++;
if (++adbInTail >= ADB_QUEUE)
adbInTail = 0;
/*
* If the debugger is running, call upper half manually.
* Otherwise, trigger a soft interrupt to handle the rest later.
*/
if (adb_polling)
adb_soft_intr();
else
setsoftadb();
return;
}
/*
* Called to process the packets after they have been
* placed in the incoming queue.
*
*/
void
adb_soft_intr(void)
{
int s;
int cmd = 0;
u_char *buffer = 0;
u_char *comprout = 0;
u_char *compdata = 0;
#if 0
s = splhigh();
printf_intr("sr: %x\n", (s & 0x0700));
splx(s);
#endif
/*delay(2*ADB_DELAY);*/
while (adbInCount) {
#ifdef ADB_DEBUG
if (adb_debug & 0x80)
printf_intr("%x %x %x ",
adbInCount, adbInHead, adbInTail);
#endif
/* get the data we need from the queue */
buffer = adbInbound[adbInHead].saveBuf;
comprout = adbInbound[adbInHead].compRout;
compdata = adbInbound[adbInHead].compData;
cmd = adbInbound[adbInHead].cmd;
/* copy over data to data area if it's valid */
/*
* Note that for unsol packets we don't want to copy the
* data anywhere, so buffer was already set to 0.
* For ack_only buffer was set to 0, so don't copy.
*/
if (buffer)
memcpy(buffer, adbInbound[adbInHead].data,
adbInbound[adbInHead].data[0] + 1);
#ifdef ADB_DEBUG
if (adb_debug & 0x80) {
printf_intr("%p %p %p %x ",
buffer, comprout, compdata, (short)cmd);
printf_intr("buf: ");
print_single(adbInbound[adbInHead].data);
}
#endif
/* Remove the packet from the queue before calling
* the completion routine, so that the completion
* routine can reentrantly process the queue. For
* example, this happens when polling is turned on
* by entering the debuger by keystroke.
*/
s = splhigh();
adbInCount--;
if (++adbInHead >= ADB_QUEUE)
adbInHead = 0;
splx(s);
/* call default completion routine if it's valid */
if (comprout) {
void (*f)(caddr_t, caddr_t, int) =
(void (*)(caddr_t, caddr_t, int))comprout;
(*f)(buffer, compdata, cmd);
}
}
return;
}
/*
* This is my version of the ADBOp routine. It mainly just calls the
* hardware-specific routine.
*
* data : pointer to data area to be used by compRout
* compRout : completion routine
* buffer : for LISTEN: points to data to send - MAX 8 data bytes,
* byte 0 = # of bytes
* : for TALK: points to place to save return data
* command : the adb command to send
* result : 0 = success
* : -1 = could not complete
*/
int
adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
{
int result;
switch (adbHardware) {
case ADB_HW_II:
result = send_adb_II((u_char *)0, (u_char *)buffer,
(void *)compRout, (void *)data, (int)command);
if (result == 0)
return 0;
else
return -1;
break;
case ADB_HW_IISI:
result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
(void *)compRout, (void *)data, (int)command);
/*
* I wish I knew why this delay is needed. It usually needs to
* be here when several commands are sent in close succession,
* especially early in device probes when doing collision
* detection. It must be some race condition. Sigh. - jpw
*/
delay(100);
if (result == 0)
return 0;
else
return -1;
break;
case ADB_HW_PB:
result = pm_adb_op((u_char *)buffer, (void *)compRout,
(void *)data, (int)command);
if (result == 0)
return 0;
else
return -1;
break;
case ADB_HW_CUDA:
result = send_adb_cuda((u_char *)0, (u_char *)buffer,
(void *)compRout, (void *)data, (int)command);
if (result == 0)
return 0;
else
return -1;
break;
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
/*
* adb_hw_setup
* This routine sets up the possible machine specific hardware
* config (mainly VIA settings) for the various models.
*/
void
adb_hw_setup(void)
{
volatile int i;
u_char send_string[ADB_MAX_MSG_LENGTH];
switch (adbHardware) {
case ADB_HW_II:
via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
* outputs */
via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
* to IN (II, IIsi) */
adbActionState = ADB_ACTION_IDLE; /* used by all types of
* hardware (II, IIsi) */
adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
* code only */
write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
* are on (II, IIsi) */
ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
ADB_VIA_CLR_INTR(); /* clear interrupt */
break;
case ADB_HW_IISI:
via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
* outputs */
via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
* to IN (II, IIsi) */
adbActionState = ADB_ACTION_IDLE; /* used by all types of
* hardware (II, IIsi) */
adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
* code only */
write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
* are on (II, IIsi) */
ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
/* get those pesky clock ticks we missed while booting */
for (i = 0; i < 30; i++) {
delay(ADB_DELAY);
adb_hw_setup_IIsi(send_string);
#ifdef ADB_DEBUG
if (adb_debug) {
printf_intr("adb: cleanup: ");
print_single(send_string);
}
#endif
delay(ADB_DELAY);
if (ADB_INTR_IS_OFF)
break;
}
break;
case ADB_HW_PB:
/*
* XXX - really PM_VIA_CLR_INTR - should we put it in
* pm_direct.h?
*/
write_via_reg(VIA1, vIFR, 0x90); /* clear interrupt */
break;
case ADB_HW_CUDA:
via_reg_or(VIA1, vDirB, 0x30); /* register B bits 4 and 5:
* outputs */
via_reg_and(VIA1, vDirB, 0xf7); /* register B bit 3: input */
via_reg_and(VIA1, vACR, ~vSR_OUT); /* make sure SR is set
* to IN */
write_via_reg(VIA1, vACR, (read_via_reg(VIA1, vACR) | 0x0c) & ~0x10);
adbActionState = ADB_ACTION_IDLE; /* used by all types of
* hardware */
adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
* code only */
write_via_reg(VIA1, vIER, 0x84);/* make sure VIA interrupts
* are on */
ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
/* sort of a device reset */
i = ADB_SR(); /* clear interrupt */
ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
delay(ADB_DELAY);
ADB_SET_STATE_TIP(); /* signal start of frame */
delay(ADB_DELAY);
ADB_TOGGLE_STATE_ACK_CUDA();
delay(ADB_DELAY);
ADB_CLR_STATE_TIP();
delay(ADB_DELAY);
ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
i = ADB_SR(); /* clear interrupt */
ADB_VIA_INTR_ENABLE(); /* ints ok now */
break;
case ADB_HW_UNKNOWN:
default:
write_via_reg(VIA1, vIER, 0x04);/* turn interrupts off - TO
* DO: turn PB ints off? */
return;
break;
}
}
/*
* adb_hw_setup_IIsi
* This is sort of a "read" routine that forces the adb hardware through a read cycle
* if there is something waiting. This helps "clean up" any commands that may have gotten
* stuck or stopped during the boot process.
*
*/
void
adb_hw_setup_IIsi(u_char * buffer)
{
panic("adb_hw_setup_IIsi");
}
/*
* adb_reinit sets up the adb stuff
*
*/
void
adb_reinit(void)
{
u_char send_string[ADB_MAX_MSG_LENGTH];
ADBDataBlock data; /* temp. holder for getting device info */
volatile int i, x;
int s = 0; /* XXX: gcc */
int command;
int result;
int saveptr; /* point to next free relocation address */
int device;
int nonewtimes; /* times thru loop w/o any new devices */
/* Make sure we are not interrupted while building the table. */
if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
s = splhigh();
ADBNumDevices = 0; /* no devices yet */
/* Let intr routines know we are running reinit */
adbStarting = 1;
/*
* Initialize the ADB table. For now, we'll always use the same table
* that is defined at the beginning of this file - no mallocs.
*/
for (i = 0; i < 16; i++)
ADBDevTable[i].devType = 0;
adb_setup_hw_type(); /* setup hardware type */
adb_hw_setup(); /* init the VIA bits and hard reset ADB */
delay(1000);
/* send an ADB reset first */
result = adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
delay(200000);
#ifdef ADB_DEBUG
if (result && adb_debug) {
printf_intr("adb_reinit: failed to reset, result = %d\n",result);
}
#endif
/*
* Probe for ADB devices. Probe devices 1-15 quickly to determine
* which device addresses are in use and which are free. For each
* address that is in use, move the device at that address to a higher
* free address. Continue doing this at that address until no device
* responds at that address. Then move the last device that was moved
* back to the original address. Do this for the remaining addresses
* that we determined were in use.
*
* When finished, do this entire process over again with the updated
* list of in use addresses. Do this until no new devices have been
* found in 20 passes though the in use address list. (This probably
* seems long and complicated, but it's the best way to detect multiple
* devices at the same address - sometimes it takes a couple of tries
* before the collision is detected.)
*/
/* initial scan through the devices */
for (i = 1; i < 16; i++) {
send_string[0] = 0;
command = ADBTALK(i, 3);
result = adb_op_sync((Ptr)send_string, (Ptr)0,
(Ptr)0, (short)command);
#ifdef ADB_DEBUG
if (result && adb_debug) {
printf_intr("adb_reinit: scan of device %d, result = %d, str = 0x%x\n",
i,result,send_string[0]);
}
#endif
if (send_string[0] != 0) {
/* check for valid device handler */
switch (send_string[2]) {
case 0:
case 0xfd:
case 0xfe:
case 0xff:
continue; /* invalid, skip */
}
/* found a device */
++ADBNumDevices;
KASSERT(ADBNumDevices < 16);
ADBDevTable[ADBNumDevices].devType =
(int)send_string[2];
ADBDevTable[ADBNumDevices].origAddr = i;
ADBDevTable[ADBNumDevices].currentAddr = i;
ADBDevTable[ADBNumDevices].DataAreaAddr =
(long)0;
ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
pm_check_adb_devices(i); /* tell pm driver device
* is here */
}
}
/* find highest unused address */
for (saveptr = 15; saveptr > 0; saveptr--)
if (-1 == get_adb_info(&data, saveptr))
break;
#ifdef ADB_DEBUG
if (adb_debug & 0x80) {
printf_intr("first free is: 0x%02x\n", saveptr);
printf_intr("devices: %i\n", ADBNumDevices);
}
#endif
nonewtimes = 0; /* no loops w/o new devices */
while (saveptr > 0 && nonewtimes++ < 11) {
for (i = 1; i <= ADBNumDevices; i++) {
device = ADBDevTable[i].currentAddr;
#ifdef ADB_DEBUG
if (adb_debug & 0x80)
printf_intr("moving device 0x%02x to 0x%02x "
"(index 0x%02x) ", device, saveptr, i);
#endif
/* send TALK R3 to address */
command = ADBTALK(device, 3);
adb_op_sync((Ptr)send_string, (Ptr)0,
(Ptr)0, (short)command);
/* move device to higher address */
command = ADBLISTEN(device, 3);
send_string[0] = 2;
send_string[1] = (u_char)(saveptr | 0x60);
send_string[2] = 0xfe;
adb_op_sync((Ptr)send_string, (Ptr)0,
(Ptr)0, (short)command);
delay(500);
/* send TALK R3 - anything at new address? */
command = ADBTALK(saveptr, 3);
adb_op_sync((Ptr)send_string, (Ptr)0,
(Ptr)0, (short)command);
delay(500);
if (send_string[0] == 0) {
#ifdef ADB_DEBUG
if (adb_debug & 0x80)
printf_intr("failed, continuing\n");
#endif
continue;
}
/* send TALK R3 - anything at old address? */
command = ADBTALK(device, 3);
result = adb_op_sync((Ptr)send_string, (Ptr)0,
(Ptr)0, (short)command);
if (send_string[0] != 0) {
/* check for valid device handler */
switch (send_string[2]) {
case 0:
case 0xfd:
case 0xfe:
case 0xff:
continue; /* invalid, skip */
}
/* new device found */
/* update data for previously moved device */
ADBDevTable[i].currentAddr = saveptr;
#ifdef ADB_DEBUG
if (adb_debug & 0x80)
printf_intr("old device at index %i\n",i);
#endif
/* add new device in table */
#ifdef ADB_DEBUG
if (adb_debug & 0x80)
printf_intr("new device found\n");
#endif
if (saveptr > ADBNumDevices) {
++ADBNumDevices;
KASSERT(ADBNumDevices < 16);
}
ADBDevTable[ADBNumDevices].devType =
(int)send_string[2];
ADBDevTable[ADBNumDevices].origAddr = device;
ADBDevTable[ADBNumDevices].currentAddr = device;
/* These will be set correctly in adbsys.c */
/* Until then, unsol. data will be ignored. */
ADBDevTable[ADBNumDevices].DataAreaAddr =
(long)0;
ADBDevTable[ADBNumDevices].ServiceRtPtr =
(void *)0;
/* find next unused address */
for (x = saveptr; x > 0; x--) {
if (-1 == get_adb_info(&data, x)) {
saveptr = x;
break;
}
}
if (x == 0)
saveptr = 0;
#ifdef ADB_DEBUG
if (adb_debug & 0x80)
printf_intr("new free is 0x%02x\n",
saveptr);
#endif
nonewtimes = 0;
/* tell pm driver device is here */
pm_check_adb_devices(device);
} else {
#ifdef ADB_DEBUG
if (adb_debug & 0x80)
printf_intr("moving back...\n");
#endif
/* move old device back */
command = ADBLISTEN(saveptr, 3);
send_string[0] = 2;
send_string[1] = (u_char)(device | 0x60);
send_string[2] = 0xfe;
adb_op_sync((Ptr)send_string, (Ptr)0,
(Ptr)0, (short)command);
delay(1000);
}
}
}
#ifdef ADB_DEBUG
if (adb_debug) {
for (i = 1; i <= ADBNumDevices; i++) {
x = get_ind_adb_info(&data, i);
if (x != -1)
printf_intr("index 0x%x, addr 0x%x, type 0x%x\n",
i, x, data.devType);
}
}
#endif
#ifndef MRG_ADB
/* enable the programmer's switch, if we have one */
adb_prog_switch_enable();
#endif
#ifdef ADB_DEBUG
if (adb_debug) {
if (0 == ADBNumDevices) /* tell user if no devices found */
printf_intr("adb: no devices found\n");
}
#endif
adbStarting = 0; /* not starting anymore */
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("adb: ADBReInit complete\n");
#endif
if (adbHardware == ADB_HW_CUDA)
callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
(void *)adb_cuda_tickle, NULL);
if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
splx(s);
}
/*
* adb_cmd_result
*
* This routine lets the caller know whether the specified adb command string
* should expect a returned result, such as a TALK command.
*
* returns: 0 if a result should be expected
* 1 if a result should NOT be expected
*/
int
adb_cmd_result(u_char *in)
{
switch (adbHardware) {
case ADB_HW_II:
/* was it an ADB talk command? */
if ((in[1] & 0x0c) == 0x0c)
return 0;
return 1;
case ADB_HW_IISI:
case ADB_HW_CUDA:
/* was it an ADB talk command? */
if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
return 0;
/* was it an RTC/PRAM read date/time? */
if ((in[1] == 0x01) && (in[2] == 0x03))
return 0;
return 1;
case ADB_HW_PB:
return 1;
case ADB_HW_UNKNOWN:
default:
return 1;
}
}
/*
* adb_cmd_extra
*
* This routine lets the caller know whether the specified adb command string
* may have extra data appended to the end of it, such as a LISTEN command.
*
* returns: 0 if extra data is allowed
* 1 if extra data is NOT allowed
*/
int
adb_cmd_extra(u_char *in)
{
switch (adbHardware) {
case ADB_HW_II:
if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
return 0;
return 1;
case ADB_HW_IISI:
case ADB_HW_CUDA:
/*
* TO DO: support needs to be added to recognize RTC and PRAM
* commands
*/
if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
return 0;
/* add others later */
return 1;
case ADB_HW_PB:
return 1;
case ADB_HW_UNKNOWN:
default:
return 1;
}
}
/*
* adb_op_sync
*
* This routine does exactly what the adb_op routine does, except that after
* the adb_op is called, it waits until the return value is present before
* returning.
*
* NOTE: The user specified compRout is ignored, since this routine specifies
* it's own to adb_op, which is why you really called this in the first place
* anyway.
*/
int
adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
{
int tmout;
int result;
volatile int flag = 0;
result = adb_op(buffer, (void *)adb_op_comprout,
(void *)&flag, command); /* send command */
if (result == 0) { /* send ok? */
/*
* Total time to wait is calculated as follows:
* - Tlt (stop to start time): 260 usec
* - start bit: 100 usec
* - up to 8 data bytes: 64 * 100 usec = 6400 usec
* - stop bit (with SRQ): 140 usec
* Total: 6900 usec
*
* This is the total time allowed by the specification. Any
* device that doesn't conform to this will fail to operate
* properly on some Apple systems. In spite of this we
* double the time to wait; some Cuda-based apparently
* queues some commands and allows the main CPU to continue
* processing (radical concept, eh?). To be safe, allow
* time for two complete ADB transactions to occur.
*/
for (tmout = 13800; !flag && tmout >= 10; tmout -= 10)
delay(10);
if (!flag && tmout > 0)
delay(tmout);
if (!flag)
result = -2;
}
return result;
}
/*
* adb_op_comprout
*
* This function is used by the adb_op_sync routine so it knows when the
* function is done.
*/
void
adb_op_comprout(buffer, compdata, cmd)
caddr_t buffer, compdata;
int cmd;
{
short *p = (short *)compdata;
*p = 1;
}
void
adb_setup_hw_type(void)
{
switch (adbHardware) {
case ADB_HW_CUDA:
adbSoftPower = 1;
return;
case ADB_HW_PB:
adbSoftPower = 1;
pm_setup_adb();
return;
default:
panic("unknown adb hardware");
}
#if 0
response = 0; /*mac68k_machine.machineid;*/
/*
* Determine what type of ADB hardware we are running on.
*/
switch (response) {
case MACH_MACC610: /* Centris 610 */
case MACH_MACC650: /* Centris 650 */
case MACH_MACII: /* II */
case MACH_MACIICI: /* IIci */
case MACH_MACIICX: /* IIcx */
case MACH_MACIIX: /* IIx */
case MACH_MACQ610: /* Quadra 610 */
case MACH_MACQ650: /* Quadra 650 */
case MACH_MACQ700: /* Quadra 700 */
case MACH_MACQ800: /* Quadra 800 */
case MACH_MACSE30: /* SE/30 */
adbHardware = ADB_HW_II;
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("adb: using II series hardware support\n");
#endif
break;
case MACH_MACCLASSICII: /* Classic II */
case MACH_MACLCII: /* LC II, Performa 400/405/430 */
case MACH_MACLCIII: /* LC III, Performa 450 */
case MACH_MACIISI: /* IIsi */
case MACH_MACIIVI: /* IIvi */
case MACH_MACIIVX: /* IIvx */
case MACH_MACP460: /* Performa 460/465/467 */
case MACH_MACP600: /* Performa 600 */
adbHardware = ADB_HW_IISI;
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("adb: using IIsi series hardware support\n");
#endif
break;
case MACH_MACPB140: /* PowerBook 140 */
case MACH_MACPB145: /* PowerBook 145 */
case MACH_MACPB150: /* PowerBook 150 */
case MACH_MACPB160: /* PowerBook 160 */
case MACH_MACPB165: /* PowerBook 165 */
case MACH_MACPB165C: /* PowerBook 165c */
case MACH_MACPB170: /* PowerBook 170 */
case MACH_MACPB180: /* PowerBook 180 */
case MACH_MACPB180C: /* PowerBook 180c */
adbHardware = ADB_HW_PB;
pm_setup_adb();
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("adb: using PowerBook 100-series hardware support\n");
#endif
break;
case MACH_MACPB210: /* PowerBook Duo 210 */
case MACH_MACPB230: /* PowerBook Duo 230 */
case MACH_MACPB250: /* PowerBook Duo 250 */
case MACH_MACPB270: /* PowerBook Duo 270 */
case MACH_MACPB280: /* PowerBook Duo 280 */
case MACH_MACPB280C: /* PowerBook Duo 280c */
case MACH_MACPB500: /* PowerBook 500 series */
adbHardware = ADB_HW_PB;
pm_setup_adb();
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
#endif
break;
case MACH_MACC660AV: /* Centris 660AV */
case MACH_MACCCLASSIC: /* Color Classic */
case MACH_MACCCLASSICII: /* Color Classic II */
case MACH_MACLC475: /* LC 475, Performa 475/476 */
case MACH_MACLC475_33: /* Clock-chipped 47x */
case MACH_MACLC520: /* LC 520 */
case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
case MACH_MACP550: /* LC 550, Performa 550 */
case MACH_MACP580: /* Performa 580/588 */
case MACH_MACQ605: /* Quadra 605 */
case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */
case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
case MACH_MACQ840AV: /* Quadra 840AV */
adbHardware = ADB_HW_CUDA;
#ifdef ADB_DEBUG
if (adb_debug)
printf_intr("adb: using Cuda series hardware support\n");
#endif
break;
default:
adbHardware = ADB_HW_UNKNOWN;
#ifdef ADB_DEBUG
if (adb_debug) {
printf_intr("adb: hardware type unknown for this machine\n");
printf_intr("adb: ADB support is disabled\n");
}
#endif
break;
}
/*
* Determine whether this machine has ADB based soft power.
*/
switch (response) {
case MACH_MACCCLASSIC: /* Color Classic */
case MACH_MACCCLASSICII: /* Color Classic II */
case MACH_MACIISI: /* IIsi */
case MACH_MACIIVI: /* IIvi */
case MACH_MACIIVX: /* IIvx */
case MACH_MACLC520: /* LC 520 */
case MACH_MACLC575: /* LC 575, Performa 575/577/578 */
case MACH_MACP550: /* LC 550, Performa 550 */
case MACH_MACP600: /* Performa 600 */
case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */
case MACH_MACQ840AV: /* Quadra 840AV */
adbSoftPower = 1;
break;
}
#endif
}
int
count_adbs(void)
{
int i;
int found;
found = 0;
for (i = 1; i < 16; i++)
if (0 != ADBDevTable[i].devType)
found++;
return found;
}
int
get_ind_adb_info(ADBDataBlock * info, int index)
{
if ((index < 1) || (index > 15)) /* check range 1-15 */
return (-1);
#ifdef ADB_DEBUG
if (adb_debug & 0x80)
printf_intr("index 0x%x devType is: 0x%x\n", index,
ADBDevTable[index].devType);
#endif
if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
return (-1);
info->devType = ADBDevTable[index].devType;
info->origADBAddr = ADBDevTable[index].origAddr;
info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
return (ADBDevTable[index].currentAddr);
}
int
get_adb_info(ADBDataBlock * info, int adbAddr)
{
int i;
if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
return (-1);
for (i = 1; i < 15; i++)
if (ADBDevTable[i].currentAddr == adbAddr) {
info->devType = ADBDevTable[i].devType;
info->origADBAddr = ADBDevTable[i].origAddr;
info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
return 0; /* found */
}
return (-1); /* not found */
}
int
set_adb_info(ADBSetInfoBlock * info, int adbAddr)
{
int i;
if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
return (-1);
for (i = 1; i < 15; i++)
if (ADBDevTable[i].currentAddr == adbAddr) {
ADBDevTable[i].ServiceRtPtr =
(void *)(info->siServiceRtPtr);
ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
return 0; /* found */
}
return (-1); /* not found */
}
#ifndef MRG_ADB
/* caller should really use machine-independant version: getPramTime */
/* this version does pseudo-adb access only */
int
adb_read_date_time(unsigned long *time)
{
u_char output[ADB_MAX_MSG_LENGTH];
int result;
volatile int flag = 0;
switch (adbHardware) {
case ADB_HW_II:
return -1;
case ADB_HW_IISI:
output[0] = 0x02; /* 2 byte message */
output[1] = 0x01; /* to pram/rtc device */
output[2] = 0x03; /* read date/time */
result = send_adb_IIsi((u_char *)output, (u_char *)output,
(void *)adb_op_comprout, (int *)&flag, (int)0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for result */
;
*time = (long)(*(long *)(output + 1));
return 0;
case ADB_HW_PB:
pm_read_date_time(time);
return 0;
case ADB_HW_CUDA:
output[0] = 0x02; /* 2 byte message */
output[1] = 0x01; /* to pram/rtc device */
output[2] = 0x03; /* read date/time */
result = send_adb_cuda((u_char *)output, (u_char *)output,
(void *)adb_op_comprout, (void *)&flag, (int)0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for result */
;
memcpy(time, output + 1, 4);
return 0;
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
/* caller should really use machine-independant version: setPramTime */
/* this version does pseudo-adb access only */
int
adb_set_date_time(unsigned long time)
{
u_char output[ADB_MAX_MSG_LENGTH];
int result;
volatile int flag = 0;
switch (adbHardware) {
case ADB_HW_CUDA:
output[0] = 0x06; /* 6 byte message */
output[1] = 0x01; /* to pram/rtc device */
output[2] = 0x09; /* set date/time */
output[3] = (u_char)(time >> 24);
output[4] = (u_char)(time >> 16);
output[5] = (u_char)(time >> 8);
output[6] = (u_char)(time);
result = send_adb_cuda((u_char *)output, (u_char *)0,
(void *)adb_op_comprout, (void *)&flag, (int)0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for send to finish */
;
return 0;
case ADB_HW_PB:
pm_set_date_time(time);
return 0;
case ADB_HW_II:
case ADB_HW_IISI:
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
int
adb_poweroff(void)
{
u_char output[ADB_MAX_MSG_LENGTH];
int result;
if (!adbSoftPower)
return -1;
adb_polling = 1;
switch (adbHardware) {
case ADB_HW_IISI:
output[0] = 0x02; /* 2 byte message */
output[1] = 0x01; /* to pram/rtc/soft-power device */
output[2] = 0x0a; /* set date/time */
result = send_adb_IIsi((u_char *)output, (u_char *)0,
(void *)0, (void *)0, (int)0);
if (result != 0) /* exit if not sent */
return -1;
for (;;); /* wait for power off */
return 0;
case ADB_HW_PB:
pm_adb_poweroff();
for (;;); /* wait for power off */
return 0;
case ADB_HW_CUDA:
output[0] = 0x02; /* 2 byte message */
output[1] = 0x01; /* to pram/rtc/soft-power device */
output[2] = 0x0a; /* set date/time */
result = send_adb_cuda((u_char *)output, (u_char *)0,
(void *)0, (void *)0, (int)0);
if (result != 0) /* exit if not sent */
return -1;
for (;;); /* wait for power off */
return 0;
case ADB_HW_II: /* II models don't do ADB soft power */
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
int
adb_prog_switch_enable(void)
{
u_char output[ADB_MAX_MSG_LENGTH];
int result;
volatile int flag = 0;
switch (adbHardware) {
case ADB_HW_IISI:
output[0] = 0x03; /* 3 byte message */
output[1] = 0x01; /* to pram/rtc/soft-power device */
output[2] = 0x1c; /* prog. switch control */
output[3] = 0x01; /* enable */
result = send_adb_IIsi((u_char *)output, (u_char *)0,
(void *)adb_op_comprout, (void *)&flag, (int)0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for send to finish */
;
return 0;
case ADB_HW_PB:
return -1;
case ADB_HW_II: /* II models don't do prog. switch */
case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
int
adb_prog_switch_disable(void)
{
u_char output[ADB_MAX_MSG_LENGTH];
int result;
volatile int flag = 0;
switch (adbHardware) {
case ADB_HW_IISI:
output[0] = 0x03; /* 3 byte message */
output[1] = 0x01; /* to pram/rtc/soft-power device */
output[2] = 0x1c; /* prog. switch control */
output[3] = 0x01; /* disable */
result = send_adb_IIsi((u_char *)output, (u_char *)0,
(void *)adb_op_comprout, (void *)&flag, (int)0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for send to finish */
;
return 0;
case ADB_HW_PB:
return -1;
case ADB_HW_II: /* II models don't do prog. switch */
case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
int
CountADBs(void)
{
return (count_adbs());
}
void
ADBReInit(void)
{
adb_reinit();
}
int
GetIndADB(ADBDataBlock * info, int index)
{
return (get_ind_adb_info(info, index));
}
int
GetADBInfo(ADBDataBlock * info, int adbAddr)
{
return (get_adb_info(info, adbAddr));
}
int
SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
{
return (set_adb_info(info, adbAddr));
}
int
ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
{
return (adb_op(buffer, compRout, data, commandNum));
}
#endif
int
setsoftadb()
{
callout_reset(&adb_soft_intr_ch, 1, (void *)adb_soft_intr, NULL);
return 0;
}
void
adb_cuda_autopoll()
{
volatile int flag = 0;
int result;
u_char output[16];
output[0] = 0x03; /* 3-byte message */
output[1] = 0x01; /* to pram/rtc device */
output[2] = 0x01; /* cuda autopoll */
output[3] = 0x01;
result = send_adb_cuda(output, output, adb_op_comprout, (void *)&flag,
0);
if (result != 0) /* exit if not sent */
return;
while (flag == 0); /* wait for result */
}
void
adb_restart(void)
{
int result;
u_char output[16];
adb_polling = 1;
switch (adbHardware) {
case ADB_HW_CUDA:
output[0] = 0x02; /* 2 byte message */
output[1] = 0x01; /* to pram/rtc/soft-power device */
output[2] = 0x11; /* restart */
result = send_adb_cuda(output, NULL, NULL, NULL, 0);
if (result != 0) /* exit if not sent */
return;
while (1); /* not return */
case ADB_HW_PB:
pm_adb_restart();
while (1); /* not return */
}
}