NetBSD/sys/dev/ic/wi.c

2345 lines
56 KiB
C

/* $NetBSD: wi.c,v 1.55 2002/03/25 09:10:54 dbj Exp $ */
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
*
* Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The WaveLAN/IEEE adapter is the second generation of the WaveLAN
* from Lucent. Unlike the older cards, the new ones are programmed
* entirely via a firmware-driven controller called the Hermes.
* Unfortunately, Lucent will not release the Hermes programming manual
* without an NDA (if at all). What they do release is an API library
* called the HCF (Hardware Control Functions) which is supposed to
* do the device-specific operations of a device driver for you. The
* publically available version of the HCF library (the 'HCF Light') is
* a) extremely gross, b) lacks certain features, particularly support
* for 802.11 frames, and c) is contaminated by the GNU Public License.
*
* This driver does not use the HCF or HCF Light at all. Instead, it
* programs the Hermes controller directly, using information gleaned
* from the HCF Light code and corresponding documentation.
*
* This driver supports both the PCMCIA and ISA versions of the
* WaveLAN/IEEE cards. Note however that the ISA card isn't really
* anything of the sort: it's actually a PCMCIA bridge adapter
* that fits into an ISA slot, into which a PCMCIA WaveLAN card is
* inserted. Consequently, you need to use the pccard support for
* both the ISA and PCMCIA adapters.
*/
/*
* FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
* Oslo IETF plenary meeting.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.55 2002/03/25 09:10:54 dbj Exp $");
#define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
#define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/socket.h>
#include <sys/mbuf.h>
#include <sys/ioctl.h>
#include <sys/kernel.h> /* for hz */
#include <sys/proc.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/if_ieee80211.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/bus.h>
#include <dev/ic/wi_ieee.h>
#include <dev/ic/wireg.h>
#include <dev/ic/wivar.h>
static void wi_reset __P((struct wi_softc *));
static int wi_ioctl __P((struct ifnet *, u_long, caddr_t));
static void wi_start __P((struct ifnet *));
static void wi_watchdog __P((struct ifnet *));
static int wi_init __P((struct ifnet *));
static void wi_stop __P((struct ifnet *, int));
static void wi_rxeof __P((struct wi_softc *));
static void wi_txeof __P((struct wi_softc *, int));
static void wi_update_stats __P((struct wi_softc *));
static void wi_setmulti __P((struct wi_softc *));
static int wi_cmd __P((struct wi_softc *, int, int));
static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *));
static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *));
static int wi_read_data __P((struct wi_softc *, int,
int, caddr_t, int));
static int wi_write_data __P((struct wi_softc *, int,
int, caddr_t, int));
static int wi_seek __P((struct wi_softc *, int, int, int));
static int wi_alloc_nicmem __P((struct wi_softc *, int, int *));
static void wi_inquire __P((void *));
static void wi_wait_scan __P((void *));
static int wi_setdef __P((struct wi_softc *, struct wi_req *));
static int wi_getdef __P((struct wi_softc *, struct wi_req *));
static int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int));
static int wi_media_change __P((struct ifnet *));
static void wi_media_status __P((struct ifnet *, struct ifmediareq *));
static void wi_get_id __P((struct wi_softc *));
static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int));
static void wi_request_fill_ssid __P((struct wi_req *,
struct ieee80211_nwid *));
static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *,
struct ieee80211_nwid *));
static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *));
static int wi_sync_media __P((struct wi_softc *, int, int));
static int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
static int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
int
wi_attach(sc)
struct wi_softc *sc;
{
struct ifnet *ifp = sc->sc_ifp;
struct wi_ltv_macaddr mac;
struct wi_ltv_gen gen;
static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
int s;
s = splnet();
callout_init(&sc->wi_inquire_ch);
callout_init(&sc->wi_scan_sh);
/* Make sure interrupts are disabled. */
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
/* Reset the NIC. */
wi_reset(sc);
memset(&mac, 0, sizeof(mac));
/* Read the station address. */
mac.wi_type = WI_RID_MAC_NODE;
mac.wi_len = 4;
wi_read_record(sc, (struct wi_ltv_gen *)&mac);
memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN);
/*
* Check if we got anything meaningful.
*
* Is it really enough just checking against null ethernet address?
* Or, check against possible vendor? XXX.
*/
if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) {
printf("%s: could not get mac address, attach failed\n",
sc->sc_dev.dv_xname);
splx(s);
return 1;
}
printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr));
/* Read NIC identification */
wi_get_id(sc);
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = wi_start;
ifp->if_ioctl = wi_ioctl;
ifp->if_watchdog = wi_watchdog;
ifp->if_init = wi_init;
ifp->if_stop = wi_stop;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
#ifdef IFF_NOTRAILERS
ifp->if_flags |= IFF_NOTRAILERS;
#endif
IFQ_SET_READY(&ifp->if_snd);
(void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME,
sizeof(WI_DEFAULT_NODENAME) - 1);
(void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME,
sizeof(WI_DEFAULT_NETNAME) - 1);
(void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS,
sizeof(WI_DEFAULT_IBSS) - 1);
sc->wi_portnum = WI_DEFAULT_PORT;
sc->wi_ptype = WI_PORTTYPE_BSS;
sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
sc->wi_max_data_len = WI_DEFAULT_DATALEN;
sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
sc->wi_roaming = WI_DEFAULT_ROAMING;
sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
/*
* Read the default channel from the NIC. This may vary
* depending on the country where the NIC was purchased, so
* we can't hard-code a default and expect it to work for
* everyone.
*/
gen.wi_type = WI_RID_OWN_CHNL;
gen.wi_len = 2;
wi_read_record(sc, &gen);
sc->wi_channel = le16toh(gen.wi_val);
memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats));
/* AP info was filled with 0 */
memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps));
sc->wi_scanning=0;
sc->wi_naps=0;
/*
* Find out if we support WEP on this card.
*/
gen.wi_type = WI_RID_WEP_AVAIL;
gen.wi_len = 2;
wi_read_record(sc, &gen);
sc->wi_has_wep = le16toh(gen.wi_val);
ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
#define IFM_AUTOADHOC \
IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0)
#define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
ADD(IFM_AUTOADHOC, 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_ADHOC, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_ADHOC, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_ADHOC, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_ADHOC, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
#undef ADD
ifmedia_set(&sc->sc_media, IFM_AUTOADHOC);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp, mac.wi_mac_addr);
ifp->if_baudrate = IF_Mbps(2);
/* Attach is successful. */
sc->sc_attached = 1;
splx(s);
return 0;
}
static void wi_rxeof(sc)
struct wi_softc *sc;
{
struct ifnet *ifp;
struct ether_header *eh;
struct wi_frame rx_frame;
struct mbuf *m;
int id;
ifp = sc->sc_ifp;
id = CSR_READ_2(sc, WI_RX_FID);
/* First read in the frame header */
if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
ifp->if_ierrors++;
return;
}
/*
* Drop undecryptable or packets with receive errors here
*/
if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) {
ifp->if_ierrors++;
return;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
/* Align the data after the ethernet header */
m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
- sizeof(struct ether_header);
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
if (le16toh(rx_frame.wi_status) == WI_STAT_1042 ||
le16toh(rx_frame.wi_status) == WI_STAT_TUNNEL ||
le16toh(rx_frame.wi_status) == WI_STAT_WMP_MSG) {
if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) {
printf("%s: oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
sc->sc_dev.dv_xname,
le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr,
ETHER_ADDR_LEN);
memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr,
ETHER_ADDR_LEN);
memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type,
sizeof(u_int16_t));
if (wi_read_data(sc, id, WI_802_11_OFFSET,
mtod(m, caddr_t) + sizeof(struct ether_header),
m->m_len + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
} else {
if ((le16toh(rx_frame.wi_dat_len) +
sizeof(struct ether_header)) > MCLBYTES) {
printf("%s: oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
sc->sc_dev.dv_xname,
le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status));
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header);
if (wi_read_data(sc, id, WI_802_3_OFFSET,
mtod(m, caddr_t), m->m_len + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
}
ifp->if_ipackets++;
#if NBPFILTER > 0
/* Handle BPF listeners. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/* Receive packet. */
(*ifp->if_input)(ifp, m);
}
static void wi_txeof(sc, status)
struct wi_softc *sc;
int status;
{
struct ifnet *ifp = sc->sc_ifp;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (status & WI_EV_TX_EXC)
ifp->if_oerrors++;
else
ifp->if_opackets++;
return;
}
void wi_inquire(xsc)
void *xsc;
{
struct wi_softc *sc;
struct ifnet *ifp;
int s;
sc = xsc;
ifp = &sc->sc_ethercom.ec_if;
if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
return;
KASSERT(sc->sc_enabled);
callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
/* Don't do this while we're transmitting */
if (ifp->if_flags & IFF_OACTIVE)
return;
s = splnet();
wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
splx(s);
}
void wi_wait_scan(xsc)
void *xsc;
{
struct wi_softc *sc;
struct ifnet *ifp;
int s, result;
sc = xsc;
ifp = &sc->sc_ethercom.ec_if;
/* If not scanning, ignore */
if (!sc->wi_scanning)
return;
s = splnet();
/* Wait for sending complete to make INQUIRE */
if (ifp->if_flags & IFF_OACTIVE) {
callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
splx(s);
return;
}
/* try INQUIRE */
result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS);
if (result == ETIMEDOUT)
callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc);
splx(s);
}
void wi_update_stats(sc)
struct wi_softc *sc;
{
struct wi_ltv_gen gen;
struct wi_scan_header ap2_header; /* Prism2 header */
struct wi_scan_data_p2 ap2; /* Prism2 scantable*/
struct wi_scan_data ap; /* Lucent scantable */
struct wi_assoc assoc; /* Association Status */
u_int16_t id;
struct ifnet *ifp;
u_int32_t *ptr;
int len, naps, i, j;
u_int16_t t;
ifp = &sc->sc_ethercom.ec_if;
id = CSR_READ_2(sc, WI_INFO_FID);
if (wi_seek(sc, id, 0, WI_BAP1)) {
return;
}
gen.wi_len = CSR_READ_2(sc, WI_DATA1);
gen.wi_type = CSR_READ_2(sc, WI_DATA1);
switch (gen.wi_type) {
case WI_INFO_SCAN_RESULTS:
if (gen.wi_len <= 3) {
sc->wi_naps = 0;
} else if (sc->sc_prism2) { /* Prism2 chip */
naps = 2 * (gen.wi_len - 3) / sizeof(ap2);
naps = naps > MAXAPINFO ? MAXAPINFO : naps;
sc->wi_naps = naps;
/* Read Header */
for(j=0; j < sizeof(ap2_header) / 2; j++)
((u_int16_t *)&ap2_header)[j] =
CSR_READ_2(sc, WI_DATA1);
/* Read Data */
for (i=0; i < naps; i++) {
for(j=0; j < sizeof(ap2) / 2; j++)
((u_int16_t *)&ap2)[j] =
CSR_READ_2(sc, WI_DATA1);
/* unswap 8 bit data fields: */
for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
LE16TOH(((u_int16_t *)&ap.wi_bssid[0])[j]);
for(j=0;j<sizeof(ap.wi_name)/2;j++)
LE16TOH(((u_int16_t *)&ap.wi_name[0])[j]);
sc->wi_aps[i].scanreason = ap2_header.wi_reason;
memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6);
sc->wi_aps[i].channel = ap2.wi_chid;
sc->wi_aps[i].signal = ap2.wi_signal;
sc->wi_aps[i].noise = ap2.wi_noise;
sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise;
sc->wi_aps[i].capinfo = ap2.wi_capinfo;
sc->wi_aps[i].interval = ap2.wi_interval;
sc->wi_aps[i].rate = ap2.wi_rate;
if (ap2.wi_namelen > 32)
ap2.wi_namelen = 32;
sc->wi_aps[i].namelen = ap2.wi_namelen;
memcpy(sc->wi_aps[i].name, ap2.wi_name,
ap2.wi_namelen);
}
} else { /* Lucent chip */
naps = 2 * gen.wi_len / sizeof(ap);
naps = naps > MAXAPINFO ? MAXAPINFO : naps;
sc->wi_naps = naps;
/* Read Data*/
for (i=0; i < naps; i++) {
for(j=0; j < sizeof(ap) / 2; j++)
((u_int16_t *)&ap)[j] =
CSR_READ_2(sc, WI_DATA1);
/* unswap 8 bit data fields: */
for(j=0;j<sizeof(ap.wi_bssid)/2;j++)
HTOLE16(((u_int16_t *)&ap.wi_bssid[0])[j]);
for(j=0;j<sizeof(ap.wi_name)/2;j++)
HTOLE16(((u_int16_t *)&ap.wi_name[0])[j]);
memcpy(sc->wi_aps[i].bssid, ap.wi_bssid, 6);
sc->wi_aps[i].channel = ap.wi_chid;
sc->wi_aps[i].signal = ap.wi_signal;
sc->wi_aps[i].noise = ap.wi_noise;
sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise;
sc->wi_aps[i].capinfo = ap.wi_capinfo;
sc->wi_aps[i].interval = ap.wi_interval;
if (ap.wi_namelen > 32)
ap.wi_namelen = 32;
sc->wi_aps[i].namelen = ap.wi_namelen;
memcpy(sc->wi_aps[i].name, ap.wi_name,
ap.wi_namelen);
}
}
/* Done scanning */
sc->wi_scanning = 0;
break;
case WI_INFO_COUNTERS:
/* some card versions have a larger stats structure */
len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
ptr = (u_int32_t *)&sc->wi_stats;
for (i = 0; i < len; i++) {
t = CSR_READ_2(sc, WI_DATA1);
#ifdef WI_HERMES_STATS_WAR
if (t > 0xF000)
t = ~t & 0xFFFF;
#endif
ptr[i] += t;
}
ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
sc->wi_stats.wi_tx_multi_retries +
sc->wi_stats.wi_tx_retry_limit;
break;
case WI_INFO_LINK_STAT: {
static char *msg[] = {
"connected",
"disconnected",
"AP change",
"AP out of range",
"AP in range",
"Association Failed"
};
if (gen.wi_len != 2) {
#ifdef WI_DEBUG
printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len);
#endif
break;
}
t = CSR_READ_2(sc, WI_DATA1);
if ((t < 1) || (t > 6)) {
#ifdef WI_DEBUG
printf("WI_INFO_LINK_STAT: status %d\n", t);
#endif
break;
}
/*
* Some cards issue streams of "connected" messages while
* trying to find a peer. Don't bother the user with this
* unless he is debugging.
*/
if (ifp->if_flags & IFF_DEBUG)
printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]);
break;
}
case WI_INFO_ASSOC_STAT: {
static char *msg[] = {
"STA Associated",
"STA Reassociated",
"STA Disassociated",
"Association Failure",
"Authentication Failed"
};
if (gen.wi_len != 10)
break;
for (i=0; i < gen.wi_len - 1; i++)
((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1);
/* unswap 8 bit data fields: */
for(j=0;j<sizeof(assoc.wi_assoc_sta)/2;j++)
HTOLE16(((u_int16_t *)&assoc.wi_assoc_sta[0])[j]);
for(j=0;j<sizeof(assoc.wi_assoc_osta)/2;j++)
HTOLE16(((u_int16_t *)&assoc.wi_assoc_osta[0])[j]);
switch (assoc.wi_assoc_stat) {
case ASSOC:
case DISASSOC:
case ASSOCFAIL:
case AUTHFAIL:
printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x\n",
sc->sc_dev.dv_xname,
msg[assoc.wi_assoc_stat - 1],
assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff);
break;
case REASSOC:
printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x, "
"OldAP = %02x:%02x:%02x:%02x:%02x:%02x\n",
sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1],
assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff,
assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff,
assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff,
assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff,
assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff,
assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff);
break;
}
}
default:
#ifdef WI_DEBUG
printf("%s: got info type: 0x%04x len=0x%04x\n",
sc->sc_dev.dv_xname, gen.wi_type,gen.wi_len);
#endif
#if 0
for (i = 0; i < gen.wi_len; i++) {
t = CSR_READ_2(sc, WI_DATA1);
printf("[0x%02x] = 0x%04x\n", i, t);
}
#endif
break;
}
}
int wi_intr(arg)
void *arg;
{
struct wi_softc *sc = arg;
struct ifnet *ifp;
u_int16_t status;
if (sc->sc_enabled == 0 ||
(sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
(sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
return (0);
ifp = &sc->sc_ethercom.ec_if;
if (!(ifp->if_flags & IFF_UP)) {
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
CSR_WRITE_2(sc, WI_INT_EN, 0);
return 1;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, 0);
status = CSR_READ_2(sc, WI_EVENT_STAT);
CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
if (status & WI_EV_RX) {
wi_rxeof(sc);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
}
if (status & WI_EV_TX) {
wi_txeof(sc, status);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
}
if (status & WI_EV_ALLOC) {
int id;
id = CSR_READ_2(sc, WI_ALLOC_FID);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
if (id == sc->wi_tx_data_id)
wi_txeof(sc, status);
}
if (status & WI_EV_INFO) {
wi_update_stats(sc);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
}
if (status & WI_EV_TX_EXC) {
wi_txeof(sc, status);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
}
if (status & WI_EV_INFO_DROP) {
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
wi_start(ifp);
return 1;
}
/* Must be called at proper protection level! */
static int
wi_cmd(sc, cmd, val)
struct wi_softc *sc;
int cmd;
int val;
{
int i, s = 0;
/* wait for the busy bit to clear */
for (i = 0; i < WI_TIMEOUT; i++) {
if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
break;
}
if (i == WI_TIMEOUT) {
printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n",
sc->sc_dev.dv_xname, cmd);
return EIO;
}
CSR_WRITE_2(sc, WI_PARAM0, val);
CSR_WRITE_2(sc, WI_PARAM1, 0);
CSR_WRITE_2(sc, WI_PARAM2, 0);
CSR_WRITE_2(sc, WI_COMMAND, cmd);
/* wait for the cmd completed bit */
for (i = 0; i < WI_TIMEOUT; i++) {
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
break;
DELAY(1);
}
/* Ack the command */
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
s = CSR_READ_2(sc, WI_STATUS);
if (s & WI_STAT_CMD_RESULT)
return(EIO);
if (i == WI_TIMEOUT) {
if (!sc->wi_scanning)
printf("%s: command timed out, cmd=0x%x\n",
sc->sc_dev.dv_xname, cmd);
return(ETIMEDOUT);
}
return(0);
}
static void
wi_reset(sc)
struct wi_softc *sc;
{
DELAY(100*1000); /* 100 m sec */
if (wi_cmd(sc, WI_CMD_INI, 0))
printf("%s: init failed\n", sc->sc_dev.dv_xname);
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
/* Calibrate timer. */
WI_SETVAL(WI_RID_TICK_TIME, 8);
return;
}
void
wi_pci_reset(sc)
struct wi_softc *sc;
{
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
WI_PCI_COR, WI_PCI_SOFT_RESET);
DELAY(100*1000); /* 100 m sec */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, WI_PCI_COR, 0x0);
DELAY(100*1000); /* 100 m sec */
return;
}
/*
* Read an LTV record from the NIC.
*/
static int wi_read_record(sc, ltv)
struct wi_softc *sc;
struct wi_ltv_gen *ltv;
{
u_int16_t *ptr;
int len, code;
struct wi_ltv_gen *oltv, p2ltv;
if (sc->sc_prism2) {
oltv = ltv;
switch (ltv->wi_type) {
case WI_RID_ENCRYPTION:
p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
p2ltv.wi_len = 2;
ltv = &p2ltv;
break;
case WI_RID_TX_CRYPT_KEY:
p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
p2ltv.wi_len = 2;
ltv = &p2ltv;
break;
}
}
/* Tell the NIC to enter record read mode. */
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
return(EIO);
/* Seek to the record. */
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
return(EIO);
/*
* Read the length and record type and make sure they
* match what we expect (this verifies that we have enough
* room to hold all of the returned data).
*/
len = CSR_READ_2(sc, WI_DATA1);
if (len > ltv->wi_len)
return(ENOSPC);
code = CSR_READ_2(sc, WI_DATA1);
if (code != ltv->wi_type)
return(EIO);
ltv->wi_len = len;
ltv->wi_type = code;
/* Now read the data. */
ptr = &ltv->wi_val;
if (ltv->wi_len > 1)
CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
if (sc->sc_prism2) {
int v;
switch (oltv->wi_type) {
case WI_RID_TX_RATE:
case WI_RID_CUR_TX_RATE:
switch (le16toh(ltv->wi_val)) {
case 1: v = 1; break;
case 2: v = 2; break;
case 3: v = 6; break;
case 4: v = 5; break;
case 7: v = 7; break;
case 8: v = 11; break;
case 15: v = 3; break;
default: v = 0x100 + le16toh(ltv->wi_val); break;
}
oltv->wi_val = htole16(v);
break;
case WI_RID_ENCRYPTION:
oltv->wi_len = 2;
if (le16toh(ltv->wi_val) & 0x01)
oltv->wi_val = htole16(1);
else
oltv->wi_val = htole16(0);
break;
case WI_RID_TX_CRYPT_KEY:
oltv->wi_len = 2;
oltv->wi_val = ltv->wi_val;
break;
case WI_RID_AUTH_CNTL:
oltv->wi_len = 2;
if (le16toh(ltv->wi_val) & 0x01)
oltv->wi_val = htole16(1);
else if (le16toh(ltv->wi_val) & 0x02)
oltv->wi_val = htole16(2);
break;
}
}
return(0);
}
/*
* Same as read, except we inject data instead of reading it.
*/
static int wi_write_record(sc, ltv)
struct wi_softc *sc;
struct wi_ltv_gen *ltv;
{
u_int16_t *ptr;
int i;
struct wi_ltv_gen p2ltv;
if (sc->sc_prism2) {
int v;
switch (ltv->wi_type) {
case WI_RID_TX_RATE:
p2ltv.wi_type = WI_RID_TX_RATE;
p2ltv.wi_len = 2;
switch (le16toh(ltv->wi_val)) {
case 1: v = 1; break;
case 2: v = 2; break;
case 3: v = 15; break;
case 5: v = 4; break;
case 6: v = 3; break;
case 7: v = 7; break;
case 11: v = 8; break;
default: return EINVAL;
}
p2ltv.wi_val = htole16(v);
ltv = &p2ltv;
break;
case WI_RID_ENCRYPTION:
p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
p2ltv.wi_len = 2;
if (le16toh(ltv->wi_val))
p2ltv.wi_val = htole16(0x03);
else
p2ltv.wi_val = htole16(0x90);
ltv = &p2ltv;
break;
case WI_RID_TX_CRYPT_KEY:
p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
p2ltv.wi_len = 2;
p2ltv.wi_val = ltv->wi_val;
ltv = &p2ltv;
break;
case WI_RID_DEFLT_CRYPT_KEYS:
{
int error;
int keylen;
struct wi_ltv_str ws;
struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
for (i = 0; i < 4; i++) {
memset(&ws, 0, sizeof(ws));
ws.wi_len = (keylen > 5) ? 8 : 4;
ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
memcpy(ws.wi_str,
&wk->wi_keys[i].wi_keydat, keylen);
error = wi_write_record(sc,
(struct wi_ltv_gen *)&ws);
if (error)
return error;
}
return 0;
}
case WI_RID_AUTH_CNTL:
p2ltv.wi_type = WI_RID_AUTH_CNTL;
p2ltv.wi_len = 2;
if (le16toh(ltv->wi_val) == 1)
p2ltv.wi_val = htole16(0x01);
else if (le16toh(ltv->wi_val) == 2)
p2ltv.wi_val = htole16(0x02);
ltv = &p2ltv;
break;
}
}
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
return(EIO);
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
/* Write data */
ptr = &ltv->wi_val;
if (ltv->wi_len > 1)
CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1);
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
return(EIO);
return(0);
}
static int wi_seek(sc, id, off, chan)
struct wi_softc *sc;
int id, off, chan;
{
int i;
int selreg, offreg;
int status;
switch (chan) {
case WI_BAP0:
selreg = WI_SEL0;
offreg = WI_OFF0;
break;
case WI_BAP1:
selreg = WI_SEL1;
offreg = WI_OFF1;
break;
default:
printf("%s: invalid data path: %x\n",
sc->sc_dev.dv_xname, chan);
return(EIO);
}
CSR_WRITE_2(sc, selreg, id);
CSR_WRITE_2(sc, offreg, off);
for (i = 0; i < WI_TIMEOUT; i++) {
status = CSR_READ_2(sc, offreg);
if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
break;
}
if (i == WI_TIMEOUT) {
printf("%s: timeout in wi_seek to %x/%x; last status %x\n",
sc->sc_dev.dv_xname, id, off, status);
return(ETIMEDOUT);
}
return(0);
}
static int wi_read_data(sc, id, off, buf, len)
struct wi_softc *sc;
int id, off;
caddr_t buf;
int len;
{
u_int16_t *ptr;
if (wi_seek(sc, id, off, WI_BAP1))
return(EIO);
ptr = (u_int16_t *)buf;
CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2);
return(0);
}
/*
* According to the comments in the HCF Light code, there is a bug in
* the Hermes (or possibly in certain Hermes firmware revisions) where
* the chip's internal autoincrement counter gets thrown off during
* data writes: the autoincrement is missed, causing one data word to
* be overwritten and subsequent words to be written to the wrong memory
* locations. The end result is that we could end up transmitting bogus
* frames without realizing it. The workaround for this is to write a
* couple of extra guard words after the end of the transfer, then
* attempt to read then back. If we fail to locate the guard words where
* we expect them, we preform the transfer over again.
*/
static int wi_write_data(sc, id, off, buf, len)
struct wi_softc *sc;
int id, off;
caddr_t buf;
int len;
{
u_int16_t *ptr;
#ifdef WI_HERMES_AUTOINC_WAR
again:
#endif
if (wi_seek(sc, id, off, WI_BAP0))
return(EIO);
ptr = (u_int16_t *)buf;
CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2);
#ifdef WI_HERMES_AUTOINC_WAR
CSR_WRITE_2(sc, WI_DATA0, 0x1234);
CSR_WRITE_2(sc, WI_DATA0, 0x5678);
if (wi_seek(sc, id, off + len, WI_BAP0))
return(EIO);
if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
CSR_READ_2(sc, WI_DATA0) != 0x5678)
goto again;
#endif
return(0);
}
/*
* Allocate a region of memory inside the NIC and zero
* it out.
*/
static int wi_alloc_nicmem(sc, len, id)
struct wi_softc *sc;
int len;
int *id;
{
int i;
if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
printf("%s: failed to allocate %d bytes on NIC\n",
sc->sc_dev.dv_xname, len);
return(ENOMEM);
}
for (i = 0; i < WI_TIMEOUT; i++) {
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
break;
}
if (i == WI_TIMEOUT) {
printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname);
return(ETIMEDOUT);
}
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
*id = CSR_READ_2(sc, WI_ALLOC_FID);
if (wi_seek(sc, *id, 0, WI_BAP0)) {
printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname);
return(EIO);
}
for (i = 0; i < len / 2; i++)
CSR_WRITE_2(sc, WI_DATA0, 0);
return(0);
}
static void wi_setmulti(sc)
struct wi_softc *sc;
{
struct ifnet *ifp;
int i = 0;
struct wi_ltv_mcast mcast;
struct ether_multi *enm;
struct ether_multistep estep;
struct ethercom *ec = &sc->sc_ethercom;
ifp = &sc->sc_ethercom.ec_if;
if ((ifp->if_flags & IFF_PROMISC) != 0) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
memset((char *)&mcast, 0, sizeof(mcast));
mcast.wi_type = WI_RID_MCAST_LIST;
mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
return;
}
i = 0;
ETHER_FIRST_MULTI(estep, ec, enm);
while (enm != NULL) {
/* Punt on ranges or too many multicast addresses. */
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0 ||
i >= 16)
goto allmulti;
memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo,
ETHER_ADDR_LEN);
i++;
ETHER_NEXT_MULTI(estep, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
mcast.wi_type = WI_RID_MCAST_LIST;
mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1;
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
}
static int
wi_setdef(sc, wreq)
struct wi_softc *sc;
struct wi_req *wreq;
{
struct sockaddr_dl *sdl;
struct ifnet *ifp;
int error = 0;
ifp = &sc->sc_ethercom.ec_if;
switch(wreq->wi_type) {
case WI_RID_MAC_NODE:
sdl = (struct sockaddr_dl *)ifp->if_sadl;
memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val,
ETHER_ADDR_LEN);
memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN);
break;
case WI_RID_PORTTYPE:
error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate);
break;
case WI_RID_TX_RATE:
error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0]));
break;
case WI_RID_MAX_DATALEN:
sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
break;
case WI_RID_RTS_THRESH:
sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
break;
case WI_RID_SYSTEM_SCALE:
sc->wi_ap_density = le16toh(wreq->wi_val[0]);
break;
case WI_RID_CREATE_IBSS:
sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
break;
case WI_RID_OWN_CHNL:
sc->wi_channel = le16toh(wreq->wi_val[0]);
break;
case WI_RID_NODENAME:
error = wi_set_ssid(&sc->wi_nodeid,
(u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
break;
case WI_RID_DESIRED_SSID:
error = wi_set_ssid(&sc->wi_netid,
(u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
break;
case WI_RID_OWN_SSID:
error = wi_set_ssid(&sc->wi_ibssid,
(u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0]));
break;
case WI_RID_PM_ENABLED:
sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
break;
case WI_RID_MICROWAVE_OVEN:
sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
break;
case WI_RID_MAX_SLEEP:
sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
break;
case WI_RID_AUTH_CNTL:
sc->wi_authtype = le16toh(wreq->wi_val[0]);
break;
case WI_RID_ROAMING_MODE:
sc->wi_roaming = le16toh(wreq->wi_val[0]);
break;
case WI_RID_ENCRYPTION:
sc->wi_use_wep = le16toh(wreq->wi_val[0]);
break;
case WI_RID_TX_CRYPT_KEY:
sc->wi_tx_key = le16toh(wreq->wi_val[0]);
break;
case WI_RID_DEFLT_CRYPT_KEYS:
memcpy((char *)&sc->wi_keys, (char *)wreq,
sizeof(struct wi_ltv_keys));
break;
default:
error = EINVAL;
break;
}
return (error);
}
static int
wi_getdef(sc, wreq)
struct wi_softc *sc;
struct wi_req *wreq;
{
struct sockaddr_dl *sdl;
struct ifnet *ifp;
int error = 0;
ifp = &sc->sc_ethercom.ec_if;
wreq->wi_len = 2; /* XXX */
switch (wreq->wi_type) {
case WI_RID_MAC_NODE:
wreq->wi_len += ETHER_ADDR_LEN / 2 - 1;
sdl = (struct sockaddr_dl *)ifp->if_sadl;
memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN);
memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
break;
case WI_RID_PORTTYPE:
wreq->wi_val[0] = htole16(sc->wi_ptype);
break;
case WI_RID_TX_RATE:
wreq->wi_val[0] = htole16(sc->wi_tx_rate);
break;
case WI_RID_MAX_DATALEN:
wreq->wi_val[0] = htole16(sc->wi_max_data_len);
break;
case WI_RID_RTS_THRESH:
wreq->wi_val[0] = htole16(sc->wi_rts_thresh);
break;
case WI_RID_SYSTEM_SCALE:
wreq->wi_val[0] = htole16(sc->wi_ap_density);
break;
case WI_RID_CREATE_IBSS:
wreq->wi_val[0] = htole16(sc->wi_create_ibss);
break;
case WI_RID_OWN_CHNL:
wreq->wi_val[0] = htole16(sc->wi_channel);
break;
case WI_RID_NODENAME:
wi_request_fill_ssid(wreq, &sc->wi_nodeid);
break;
case WI_RID_DESIRED_SSID:
wi_request_fill_ssid(wreq, &sc->wi_netid);
break;
case WI_RID_OWN_SSID:
wi_request_fill_ssid(wreq, &sc->wi_ibssid);
break;
case WI_RID_PM_ENABLED:
wreq->wi_val[0] = htole16(sc->wi_pm_enabled);
break;
case WI_RID_MICROWAVE_OVEN:
wreq->wi_val[0] = htole16(sc->wi_mor_enabled);
break;
case WI_RID_MAX_SLEEP:
wreq->wi_val[0] = htole16(sc->wi_max_sleep);
break;
case WI_RID_AUTH_CNTL:
wreq->wi_val[0] = htole16(sc->wi_authtype);
break;
case WI_RID_ROAMING_MODE:
wreq->wi_val[0] = htole16(sc->wi_roaming);
break;
case WI_RID_WEP_AVAIL:
wreq->wi_val[0] = htole16(sc->wi_has_wep);
break;
case WI_RID_ENCRYPTION:
wreq->wi_val[0] = htole16(sc->wi_use_wep);
break;
case WI_RID_TX_CRYPT_KEY:
wreq->wi_val[0] = htole16(sc->wi_tx_key);
break;
case WI_RID_DEFLT_CRYPT_KEYS:
wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1;
memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
break;
default:
#if 0
error = EIO;
#else
#ifdef WI_DEBUG
printf("%s: wi_getdef: unknown request %d\n",
sc->sc_dev.dv_xname, wreq->wi_type);
#endif
#endif
break;
}
return (error);
}
static int
wi_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
int s, error = 0;
int len;
struct wi_softc *sc = ifp->if_softc;
struct wi_req wreq;
struct ifreq *ifr;
struct proc *p = curproc;
struct ieee80211_nwid nwid;
if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
return (ENXIO);
s = splnet();
ifr = (struct ifreq *)data;
switch (command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->wi_if_flags & IFF_PROMISC)) {
WI_SETVAL(WI_RID_PROMISC, 1);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->wi_if_flags & IFF_PROMISC) {
WI_SETVAL(WI_RID_PROMISC, 0);
}
wi_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING) {
wi_stop(ifp, 0);
}
}
sc->wi_if_flags = ifp->if_flags;
if (!(ifp->if_flags & IFF_UP)) {
if (sc->sc_enabled) {
if (sc->sc_disable)
(*sc->sc_disable)(sc);
sc->sc_enabled = 0;
ifp->if_flags &= ~IFF_RUNNING;
}
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
if (sc->sc_enabled != 0) {
/*
* Multicast list has changed. Set the
* hardware filter accordingly.
*/
wi_setmulti(sc);
}
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
break;
case SIOCGWAVELAN:
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
if (wreq.wi_type == WI_RID_IFACE_STATS) {
memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats,
sizeof(sc->wi_stats));
wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
} else if (wreq.wi_type == WI_RID_READ_APS) {
if (sc->wi_scanning) {
error = EINPROGRESS;
break;
} else {
len = sc->wi_naps * sizeof(struct wi_apinfo);
len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len;
len = len / sizeof(struct wi_apinfo);
memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len));
memcpy((char *)&wreq.wi_val + sizeof(len),
(char *)&sc->wi_aps,
len * sizeof(struct wi_apinfo));
}
} else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
/* For non-root user, return all-zeroes keys */
if (suser(p->p_ucred, &p->p_acflag))
memset((char *)&wreq, 0,
sizeof(struct wi_ltv_keys));
else
memcpy((char *)&wreq, (char *)&sc->wi_keys,
sizeof(struct wi_ltv_keys));
} else {
if (sc->sc_enabled == 0)
error = wi_getdef(sc, &wreq);
else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
error = EINVAL;
}
if (error == 0)
error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
break;
case SIOCSWAVELAN:
error = suser(p->p_ucred, &p->p_acflag);
if (error)
break;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
if (wreq.wi_type == WI_RID_IFACE_STATS) {
if (sc->sc_enabled)
wi_inquire(sc);
break;
} else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
wreq.wi_len);
} else if (wreq.wi_type == WI_RID_SCAN_APS) {
if (wreq.wi_len != 4) {
error = EINVAL;
break;
}
if (!sc->wi_scanning) {
if (sc->sc_prism2) {
wreq.wi_type = WI_RID_SCAN_REQ;
error = wi_write_record(sc,
(struct wi_ltv_gen *)&wreq);
}
if (!error) {
sc->wi_scanning = 1;
callout_reset(&sc->wi_scan_sh, hz * 1,
wi_wait_scan, sc);
}
}
} else {
if (sc->sc_enabled != 0)
error = wi_write_record(sc,
(struct wi_ltv_gen *)&wreq);
if (error == 0)
error = wi_setdef(sc, &wreq);
if (error == 0 && sc->sc_enabled != 0)
/* Reinitialize WaveLAN. */
wi_init(ifp);
}
break;
case SIOCG80211NWID:
if (sc->sc_enabled == 0) {
/* Return the desired ID */
error = copyout(&sc->wi_netid, ifr->ifr_data,
sizeof(sc->wi_netid));
} else {
wreq.wi_type = WI_RID_CURRENT_SSID;
wreq.wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) ||
le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN)
error = EINVAL;
else {
wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1],
le16toh(wreq.wi_val[0]));
error = copyout(&nwid, ifr->ifr_data,
sizeof(nwid));
}
}
break;
case SIOCS80211NWID:
error = copyin(ifr->ifr_data, &nwid, sizeof(nwid));
if (error != 0)
break;
if (nwid.i_len > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
if (sc->wi_netid.i_len == nwid.i_len &&
memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0)
break;
wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len);
if (sc->sc_enabled != 0)
/* Reinitialize WaveLAN. */
wi_init(ifp);
break;
case SIOCS80211NWKEY:
error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
break;
case SIOCG80211NWKEY:
error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
break;
case SIOCS80211POWER:
error = wi_set_pm(sc, (struct ieee80211_power *)data);
break;
case SIOCG80211POWER:
error = wi_get_pm(sc, (struct ieee80211_power *)data);
break;
default:
error = EINVAL;
break;
}
splx(s);
return (error);
}
static int
wi_init(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc = ifp->if_softc;
struct wi_req wreq;
struct wi_ltv_macaddr mac;
int error, id = 0;
if (!sc->sc_enabled) {
if ((error = (*sc->sc_enable)(sc)) != 0)
goto out;
sc->sc_enabled = 1;
}
wi_stop(ifp, 0);
wi_reset(sc);
/* Program max data length. */
WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
/* Enable/disable IBSS creation. */
WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
/* Set the port type. */
WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
/* Program the RTS/CTS threshold. */
WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
/* Program the TX rate */
WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
/* Access point density */
WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
/* Power Management Enabled */
WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
/* Power Managment Max Sleep */
WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
/* Roaming type */
WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
/* Specify the IBSS name */
wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid);
/* Specify the network name */
wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid);
/* Specify the frequency to use */
WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
/* Program the nodename. */
wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid);
/* Set our MAC address. */
mac.wi_len = 4;
mac.wi_type = WI_RID_MAC_NODE;
memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN);
wi_write_record(sc, (struct wi_ltv_gen *)&mac);
/* Initialize promisc mode. */
if (ifp->if_flags & IFF_PROMISC) {
WI_SETVAL(WI_RID_PROMISC, 1);
} else {
WI_SETVAL(WI_RID_PROMISC, 0);
}
/* Configure WEP. */
if (sc->wi_has_wep) {
WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
if (sc->sc_prism2 && sc->wi_use_wep) {
/*
* ONLY HWB3163 EVAL-CARD Firmware version
* less than 0.8 variant2
*
* If promiscuous mode disable, Prism2 chip
* does not work with WEP .
* It is under investigation for details.
* (ichiro@netbsd.org)
*/
if (sc->sc_firmware_ver < 82 ) {
/* firm ver < 0.8 variant 2 */
WI_SETVAL(WI_RID_PROMISC, 1);
}
WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype);
}
}
/* Set multicast filter. */
wi_setmulti(sc);
/* Enable desired port */
wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0);
/* scanning variable is modal, therefore reinit to OFF, in case it was on. */
sc->wi_scanning=0;
sc->wi_naps=0;
if ((error = wi_alloc_nicmem(sc,
1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
printf("%s: tx buffer allocation failed\n",
sc->sc_dev.dv_xname);
goto out;
}
sc->wi_tx_data_id = id;
if ((error = wi_alloc_nicmem(sc,
1518 + sizeof(struct wi_frame) + 8, &id)) != 0) {
printf("%s: mgmt. buffer allocation failed\n",
sc->sc_dev.dv_xname);
goto out;
}
sc->wi_tx_mgmt_id = id;
/* Enable interrupts */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc);
out:
if (error) {
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
}
return (error);
}
static void
wi_start(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc;
struct mbuf *m0;
struct wi_frame tx_frame;
struct ether_header *eh;
int id;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_OACTIVE)
return;
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
return;
memset((char *)&tx_frame, 0, sizeof(tx_frame));
id = sc->wi_tx_data_id;
eh = mtod(m0, struct ether_header *);
/*
* Use RFC1042 encoding for IP and ARP datagrams,
* 802.3 for anything else.
*/
if (ntohs(eh->ether_type) == ETHERTYPE_IP ||
ntohs(eh->ether_type) == ETHERTYPE_ARP ||
ntohs(eh->ether_type) == ETHERTYPE_REVARP ||
ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost,
ETHER_ADDR_LEN);
memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost,
ETHER_ADDR_LEN);
memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost,
ETHER_ADDR_LEN);
memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost,
ETHER_ADDR_LEN);
tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
tx_frame.wi_type = eh->ether_type;
m_copydata(m0, sizeof(struct ether_header),
m0->m_pkthdr.len - sizeof(struct ether_header),
(caddr_t)&sc->wi_txbuf);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
(m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
} else {
tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
m0->m_pkthdr.len + 2);
}
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of
* this frame to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
m_freem(m0);
if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static int
wi_mgmt_xmit(sc, data, len)
struct wi_softc *sc;
caddr_t data;
int len;
{
struct wi_frame tx_frame;
int id;
struct wi_80211_hdr *hdr;
caddr_t dptr;
hdr = (struct wi_80211_hdr *)data;
dptr = data + sizeof(struct wi_80211_hdr);
memset((char *)&tx_frame, 0, sizeof(tx_frame));
id = sc->wi_tx_mgmt_id;
memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr,
sizeof(struct wi_80211_hdr));
tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN);
tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
(len - sizeof(struct wi_80211_hdr)) + 2);
if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
return(EIO);
}
return(0);
}
static void
wi_stop(ifp, disable)
struct ifnet *ifp;
{
struct wi_softc *sc = ifp->if_softc;
CSR_WRITE_2(sc, WI_INT_EN, 0);
wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
callout_stop(&sc->wi_inquire_ch);
callout_stop(&sc->wi_scan_sh);
if (disable) {
if (sc->sc_enabled) {
if (sc->sc_disable)
(*sc->sc_disable)(sc);
sc->sc_enabled = 0;
}
}
ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
ifp->if_timer = 0;
}
static void
wi_watchdog(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc;
sc = ifp->if_softc;
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
wi_init(ifp);
ifp->if_oerrors++;
return;
}
void
wi_shutdown(sc)
struct wi_softc *sc;
{
int s;
s = splnet();
if (sc->sc_enabled) {
if (sc->sc_disable)
(*sc->sc_disable)(sc);
sc->sc_enabled = 0;
}
splx(s);
}
int
wi_activate(self, act)
struct device *self;
enum devact act;
{
struct wi_softc *sc = (struct wi_softc *)self;
int rv = 0, s;
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
rv = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_ethercom.ec_if);
break;
}
splx(s);
return (rv);
}
static void
wi_get_id(sc)
struct wi_softc *sc;
{
struct wi_ltv_ver ver;
/* getting chip identity */
memset(&ver, 0, sizeof(ver));
ver.wi_type = WI_RID_CARD_ID;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
printf("%s: using ", sc->sc_dev.dv_xname);
switch (le16toh(ver.wi_ver[0])) {
case WI_NIC_EVB2:
printf("RF:PRISM2 MAC:HFA3841");
sc->sc_prism2 = 1;
break;
case WI_NIC_HWB3763:
printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3763 rev.B");
sc->sc_prism2 = 1;
break;
case WI_NIC_HWB3163:
printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.A");
sc->sc_prism2 = 1;
break;
case WI_NIC_HWB3163B:
printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163 rev.B");
sc->sc_prism2 = 1;
break;
case WI_NIC_EVB3:
printf("RF:PRISM2 MAC:HFA3842");
sc->sc_prism2 = 1;
break;
case WI_NIC_HWB1153:
printf("RF:PRISM1 MAC:HFA3841 CARD:HWB1153");
sc->sc_prism2 = 1;
break;
case WI_NIC_P2_SST:
printf("RF:PRISM2 MAC:HFA3841 CARD:HWB3163-SST-flash");
sc->sc_prism2 = 1;
break;
case WI_NIC_PRISM2_5:
printf("RF:PRISM2.5 MAC:ISL3873");
sc->sc_prism2 = 1;
break;
case WI_NIC_3874A:
printf("RF:PRISM2.5 MAC:ISL3874A(PCI)");
sc->sc_prism2 = 1;
break;
case WI_NIC_LUCENT:
printf("Lucent Technologies, WaveLAN/IEEE");
sc->sc_prism2 = 0;
break;
default:
printf("Lucent chip or unknown chip");
sc->sc_prism2 = 0;
break;
}
/* get firmware version */
memset(&ver, 0, sizeof(ver));
ver.wi_type = WI_RID_STA_IDENTITY;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
LE16TOH(ver.wi_ver[1]);
LE16TOH(ver.wi_ver[2]);
LE16TOH(ver.wi_ver[3]);
printf(", Firmware: %i.%i variant %i\n", ver.wi_ver[2],
ver.wi_ver[3], ver.wi_ver[1]);
sc->sc_firmware_ver = ver.wi_ver[2] * 100 +
ver.wi_ver[3] * 10 + ver.wi_ver[1];
return;
}
int
wi_detach(sc)
struct wi_softc *sc;
{
struct ifnet *ifp = sc->sc_ifp;
int s;
if (!sc->sc_attached)
return (0);
s = splnet();
callout_stop(&sc->wi_inquire_ch);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
if (sc->sc_enabled) {
if (sc->sc_disable)
(*sc->sc_disable)(sc);
sc->sc_enabled = 0;
}
splx(s);
return (0);
}
void
wi_power(sc, why)
struct wi_softc *sc;
int why;
{
int s;
if (!sc->sc_enabled)
return;
s = splnet();
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
wi_stop(sc->sc_ifp, 0);
if (sc->sc_enabled) {
if (sc->sc_disable)
(*sc->sc_disable)(sc);
}
break;
case PWR_RESUME:
sc->sc_enabled = 0;
wi_init(sc->sc_ifp);
(void)wi_intr(sc);
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
splx(s);
}
static int
wi_set_ssid(ws, id, len)
struct ieee80211_nwid *ws;
u_int8_t *id;
int len;
{
if (len > IEEE80211_NWID_LEN)
return (EINVAL);
ws->i_len = len;
memcpy(ws->i_nwid, id, len);
return (0);
}
static void
wi_request_fill_ssid(wreq, ws)
struct wi_req *wreq;
struct ieee80211_nwid *ws;
{
int len = ws->i_len;
memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val));
wreq->wi_val[0] = htole16(len);
wreq->wi_len = roundup(len, 2) / 2 + 2;
memcpy(&wreq->wi_val[1], ws->i_nwid, len);
}
static int
wi_write_ssid(sc, type, wreq, ws)
struct wi_softc *sc;
int type;
struct wi_req *wreq;
struct ieee80211_nwid *ws;
{
wreq->wi_type = type;
wi_request_fill_ssid(wreq, ws);
return (wi_write_record(sc, (struct wi_ltv_gen *)wreq));
}
static int
wi_sync_media(sc, ptype, txrate)
struct wi_softc *sc;
int ptype;
int txrate;
{
int media = sc->sc_media.ifm_cur->ifm_media;
int options = IFM_OPTIONS(media);
int subtype;
switch (txrate) {
case 1:
subtype = IFM_IEEE80211_DS1;
break;
case 2:
subtype = IFM_IEEE80211_DS2;
break;
case 3:
subtype = IFM_AUTO;
break;
case 5:
subtype = IFM_IEEE80211_DS5;
break;
case 11:
subtype = IFM_IEEE80211_DS11;
break;
default:
subtype = IFM_MANUAL; /* Unable to represent */
break;
}
switch (ptype) {
case WI_PORTTYPE_ADHOC:
options |= IFM_IEEE80211_ADHOC;
break;
case WI_PORTTYPE_BSS:
options &= ~IFM_IEEE80211_ADHOC;
break;
default:
subtype = IFM_MANUAL; /* Unable to represent */
break;
}
media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
IFM_INST(media));
if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL)
return (EINVAL);
ifmedia_set(&sc->sc_media, media);
sc->wi_ptype = ptype;
sc->wi_tx_rate = txrate;
return (0);
}
static int
wi_media_change(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc = ifp->if_softc;
int otype = sc->wi_ptype;
int orate = sc->wi_tx_rate;
if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
sc->wi_ptype = WI_PORTTYPE_ADHOC;
else
sc->wi_ptype = WI_PORTTYPE_BSS;
switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
case IFM_IEEE80211_DS1:
sc->wi_tx_rate = 1;
break;
case IFM_IEEE80211_DS2:
sc->wi_tx_rate = 2;
break;
case IFM_AUTO:
sc->wi_tx_rate = 3;
break;
case IFM_IEEE80211_DS5:
sc->wi_tx_rate = 5;
break;
case IFM_IEEE80211_DS11:
sc->wi_tx_rate = 11;
break;
}
if (sc->sc_enabled != 0) {
if (otype != sc->wi_ptype ||
orate != sc->wi_tx_rate)
wi_init(ifp);
}
ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
return (0);
}
static void
wi_media_status(ifp, imr)
struct ifnet *ifp;
struct ifmediareq *imr;
{
struct wi_softc *sc = ifp->if_softc;
if (sc->sc_enabled == 0) {
imr->ifm_active = IFM_IEEE80211|IFM_NONE;
imr->ifm_status = 0;
return;
}
imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
}
static int
wi_set_nwkey(sc, nwkey)
struct wi_softc *sc;
struct ieee80211_nwkey *nwkey;
{
int i, error;
size_t len;
struct wi_req wreq;
struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
if (!sc->wi_has_wep)
return ENODEV;
if (nwkey->i_defkid <= 0 ||
nwkey->i_defkid > IEEE80211_WEP_NKID)
return EINVAL;
memcpy(wk, &sc->wi_keys, sizeof(*wk));
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (nwkey->i_key[i].i_keydat == NULL)
continue;
len = nwkey->i_key[i].i_keylen;
if (len > sizeof(wk->wi_keys[i].wi_keydat))
return EINVAL;
error = copyin(nwkey->i_key[i].i_keydat,
wk->wi_keys[i].wi_keydat, len);
if (error)
return error;
wk->wi_keys[i].wi_keylen = htole16(len);
}
wk->wi_len = (sizeof(*wk) / 2) + 1;
wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
if (sc->sc_enabled != 0) {
error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
if (error)
return error;
}
error = wi_setdef(sc, &wreq);
if (error)
return error;
wreq.wi_len = 2;
wreq.wi_type = WI_RID_TX_CRYPT_KEY;
wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
if (sc->sc_enabled != 0) {
error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
if (error)
return error;
}
error = wi_setdef(sc, &wreq);
if (error)
return error;
wreq.wi_type = WI_RID_ENCRYPTION;
wreq.wi_val[0] = htole16(nwkey->i_wepon);
if (sc->sc_enabled != 0) {
error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
if (error)
return error;
}
error = wi_setdef(sc, &wreq);
if (error)
return error;
if (sc->sc_enabled != 0)
wi_init(&sc->sc_ethercom.ec_if);
return 0;
}
static int
wi_get_nwkey(sc, nwkey)
struct wi_softc *sc;
struct ieee80211_nwkey *nwkey;
{
int i, len, error;
struct wi_ltv_keys *wk = &sc->wi_keys;
if (!sc->wi_has_wep)
return ENODEV;
nwkey->i_wepon = sc->wi_use_wep;
nwkey->i_defkid = sc->wi_tx_key + 1;
/* do not show any keys to non-root user */
error = suser(curproc->p_ucred, &curproc->p_acflag);
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (nwkey->i_key[i].i_keydat == NULL)
continue;
/* error holds results of suser() for the first time */
if (error)
return error;
len = le16toh(wk->wi_keys[i].wi_keylen);
if (nwkey->i_key[i].i_keylen < len)
return ENOSPC;
nwkey->i_key[i].i_keylen = len;
error = copyout(wk->wi_keys[i].wi_keydat,
nwkey->i_key[i].i_keydat, len);
if (error)
return error;
}
return 0;
}
static int
wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
{
sc->wi_pm_enabled = power->i_enabled;
sc->wi_max_sleep = power->i_maxsleep;
if (sc->sc_enabled)
return (wi_init(&sc->sc_ethercom.ec_if));
return (0);
}
static int
wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
{
power->i_enabled = sc->wi_pm_enabled;
power->i_maxsleep = sc->wi_max_sleep;
return (0);
}