131 lines
5.0 KiB
C
131 lines
5.0 KiB
C
/* Define control and data flow tables, and regsets.
|
|
Copyright (C) 1987, 1997 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU CC.
|
|
|
|
GNU CC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU CC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU CC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
#include "bitmap.h"
|
|
|
|
typedef bitmap regset; /* Head of register set linked list. */
|
|
|
|
/* Clear a register set by freeing up the linked list. */
|
|
#define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
|
|
|
|
/* Copy a register set to another register set. */
|
|
#define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
|
|
|
|
/* `and' a register set with a second register set. */
|
|
#define AND_REG_SET(TO, FROM) bitmap_operation (TO, TO, FROM, BITMAP_AND)
|
|
|
|
/* `and' the complement of a register set with a register set. */
|
|
#define AND_COMPL_REG_SET(TO, FROM) \
|
|
bitmap_operation (TO, TO, FROM, BITMAP_AND_COMPL)
|
|
|
|
/* Inclusive or a register set with a second register set. */
|
|
#define IOR_REG_SET(TO, FROM) bitmap_operation (TO, TO, FROM, BITMAP_IOR)
|
|
|
|
/* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
|
|
#define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
|
|
bitmap_ior_and_compl (TO, FROM1, FROM2)
|
|
|
|
/* Clear a single register in a register set. */
|
|
#define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
|
|
|
|
/* Set a single register in a register set. */
|
|
#define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
|
|
|
|
/* Return true if a register is set in a register set. */
|
|
#define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
|
|
|
|
/* Copy the hard registers in a register set to the hard register set. */
|
|
#define REG_SET_TO_HARD_REG_SET(TO, FROM) \
|
|
do { \
|
|
int i_; \
|
|
CLEAR_HARD_REG_SET (TO); \
|
|
for (i_ = 0; i_ < FIRST_PSEUDO_REGISTER; i_++) \
|
|
if (REGNO_REG_SET_P (FROM, i_)) \
|
|
SET_HARD_REG_BIT (TO, i_); \
|
|
} while (0)
|
|
|
|
/* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
|
|
register number and executing CODE for all registers that are set. */
|
|
#define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, CODE) \
|
|
EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, CODE)
|
|
|
|
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
|
|
REGNUM to the register number and executing CODE for all registers that are
|
|
set in the first regset and not set in the second. */
|
|
#define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, CODE) \
|
|
EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, CODE)
|
|
|
|
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
|
|
REGNUM to the register number and executing CODE for all registers that are
|
|
set in both regsets. */
|
|
#define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, CODE) \
|
|
EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, CODE)
|
|
|
|
/* Allocate a register set with oballoc. */
|
|
#define OBSTACK_ALLOC_REG_SET(OBSTACK) BITMAP_OBSTACK_ALLOC (OBSTACK)
|
|
|
|
/* Allocate a register set with alloca. */
|
|
#define ALLOCA_REG_SET() BITMAP_ALLOCA ()
|
|
|
|
/* Do any cleanup needed on a regset when it is no longer used. */
|
|
#define FREE_REG_SET(REGSET) BITMAP_FREE(REGSET)
|
|
|
|
/* Do any one-time initializations needed for regsets. */
|
|
#define INIT_ONCE_REG_SET() BITMAP_INIT_ONCE ()
|
|
|
|
/* Grow any tables needed when the number of registers is calculated
|
|
or extended. For the linked list allocation, nothing needs to
|
|
be done, other than zero the statistics on the first allocation. */
|
|
#define MAX_REGNO_REG_SET(NUM_REGS, NEW_P, RENUMBER_P)
|
|
|
|
/* Number of basic blocks in the current function. */
|
|
|
|
extern int n_basic_blocks;
|
|
|
|
/* Index by basic block number, get first insn in the block. */
|
|
|
|
extern rtx *basic_block_head;
|
|
|
|
/* Index by basic block number, get last insn in the block. */
|
|
|
|
extern rtx *basic_block_end;
|
|
|
|
/* Index by basic block number, get address of regset
|
|
describing the registers live at the start of that block. */
|
|
|
|
extern regset *basic_block_live_at_start;
|
|
|
|
/* What registers are live at the setjmp call. */
|
|
|
|
extern regset regs_live_at_setjmp;
|
|
|
|
/* Indexed by n, gives number of basic block that (REG n) is used in.
|
|
If the value is REG_BLOCK_GLOBAL (-2),
|
|
it means (REG n) is used in more than one basic block.
|
|
REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
|
|
This information remains valid for the rest of the compilation
|
|
of the current function; it is used to control register allocation. */
|
|
|
|
#define REG_BLOCK_UNKNOWN -1
|
|
#define REG_BLOCK_GLOBAL -2
|
|
|
|
#define REG_BASIC_BLOCK(N) (reg_n_info[(N)].basic_block)
|