NetBSD/sys/arch/x68k/dev/zs.c

1567 lines
36 KiB
C

/* $NetBSD: zs.c,v 1.7 1997/10/12 18:06:26 oki Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)zs.c 8.1 (Berkeley) 7/19/93
*/
/*
* Zilog Z8530 (ZSCC) driver.
*
* Runs two tty ports (ttya and ttyb) on zs0,
* and runs a keyboard and mouse on zs1.
*
* This driver knows far too much about chip to usage mappings.
*/
#include "zs.h"
#if NZS > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <machine/cpu.h>
#include <x68k/x68k/iodevice.h>
#include <dev/ic/z8530reg.h>
#include <x68k/dev/zsvar.h>
#ifdef KGDB
#include <machine/remote-sl.h>
#endif
#define ZSMAJOR 12 /* XXX */
#define ZS_MOUSE 1 /* XXX */
#define PCLK (5*1000*1000) /* PCLK pin input clock rate */
#if 0
/*
* Select software interrupt bit based on TTY ipl.
*/
#if PIL_TTY == 1
# define IE_ZSSOFT IE_L1
#elif PIL_TTY == 4
# define IE_ZSSOFT IE_L4
#elif PIL_TTY == 6
# define IE_ZSSOFT IE_L6
#else
# error "no suitable software interrupt bit"
#endif
#endif
/*
* Software state per found chip. This would be called `zs_softc',
* but the previous driver had a rather different zs_softc....
*/
struct zs_softc {
struct device zi_dev; /* base device */
volatile struct zsdevice *zi_zs;/* chip registers */
struct zs_chanstate zi_cs[2]; /* channel A and B software state */
};
struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
/* Definition of the driver for autoconfig. */
static int zsmatch __P((struct device *, void *, void *));
static void zsattach __P((struct device *, struct device *, void *));
struct cfattach zs_ca = {
sizeof(struct zs_softc), zsmatch, zsattach
};
struct cfdriver zs_cd = {
NULL, "zs", DV_TTY, NULL, 0
};
#ifdef x68k
static struct zs_chanstate *zsms;
void zs_msmodem __P((int));
#endif
/* Interrupt handlers. */
void zshard __P((int));
int zssoft __P((void *));
struct zs_chanstate *zslist;
/* Routines called from other code. */
cdev_decl(zs);
static void zsiopen __P((struct tty *));
static void zsiclose __P((struct tty *));
static void zsstart __P((struct tty *));
void zsstop __P((struct tty *, int));
static int zsparam __P((struct tty *, struct termios *));
static int zshwiflow __P((struct tty *, int));
/* Routines purely local to this driver. */
static int zs_getspeed __P((volatile struct zschan *));
#ifdef KGDB
static void zs_reset __P((volatile struct zschan *, int, int));
#endif
static void zs_modem __P((struct zs_chanstate *, int));
static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
static void zsabort __P((void));
static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
static void zsoverrun __P((int, long *, char *));
/* Console stuff. */
static struct tty *zs_ctty; /* console `struct tty *' */
static int zs_consin = -1, zs_consout = -1;
static void zscnputc __P((int)); /* console putc function */
static volatile struct zschan *zs_conschan;
static struct tty *zs_checkcons __P((struct zs_softc *, int, struct zs_chanstate *));
#ifdef KGDB
/* KGDB stuff. Must reboot to change zs_kgdbunit. */
extern int kgdb_dev, kgdb_rate;
static int zs_kgdb_savedspeed;
static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
#endif
static volatile struct zsdevice *findzs __P((int));
static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
int zshardscope;
int zsshortcuts; /* number of "shortcut" software interrupts */
static u_int zs_read __P((volatile struct zschan *, u_int reg));
static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
static u_int
zs_read(zc, reg)
volatile struct zschan *zc;
u_int reg;
{
u_char val;
zc->zc_csr = reg;
ZS_DELAY();
val = zc->zc_csr;
ZS_DELAY();
return val;
}
static u_int
zs_write(zc, reg, val)
volatile struct zschan *zc;
u_int reg, val;
{
zc->zc_csr = reg;
ZS_DELAY();
zc->zc_csr = val;
ZS_DELAY();
return val;
}
/*
* find zs address for x68k architecture
*/
static volatile struct zsdevice *
findzs(zs)
int zs;
{
if (zs == 0)
return &IODEVbase->io_inscc;
if (1 <= zs && zs <= 4)
return &(IODEVbase->io_exscc)[zs - 1];
/* none */
return 0;
}
/*
* Match slave number to zs unit number, so that misconfiguration will
* not set up the keyboard as ttya, etc.
*/
static int
zsmatch(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct cfdata *cfp = match;
volatile void *addr;
if(strcmp("zs", aux) || (addr = findzs(cfp->cf_unit)) == 0)
return(0);
if (badaddr(addr))
return 0;
return(1);
}
/*
* Attach a found zs.
*
* USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
* SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
*/
static void
zsattach(parent, dev, aux)
struct device *parent;
struct device *dev;
void *aux;
{
register int zs = dev->dv_unit, unit;
register struct zs_softc *zi;
register struct zs_chanstate *cs;
register volatile struct zsdevice *addr;
register struct tty *tp, *ctp;
register struct confargs *ca = aux;
int pri;
if ((addr = zsaddr[zs]) == NULL)
addr = zsaddr[zs] = findzs(zs);
printf(" (%s)\n", zs ? "external" : "onboard");
zi = (struct zs_softc *)dev;
zi->zi_zs = addr;
unit = zs * 2;
cs = zi->zi_cs;
cs->cs_ttyp = tp = ttymalloc();
/* link into interrupt list with order (A,B) (B=A+1) */
cs[0].cs_next = &cs[1];
cs[1].cs_next = zslist;
zslist = cs;
cs->cs_unit = unit;
cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
tp->t_dev = makedev(ZSMAJOR, unit);
tp->t_oproc = zsstart;
tp->t_param = zsparam;
tp->t_hwiflow = zshwiflow;
if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
cs->cs_ttyp = tp = ctp;
#ifdef KGDB
if (ctp == NULL)
zs_checkkgdb(unit, cs, tp);
#endif
#ifdef sun
if (unit == ZS_KBD) {
/*
* Keyboard: tell /dev/kbd driver how to talk to us.
*/
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
tp->t_cflag = CS8;
kbd_serial(tp, zsiopen, zsiclose);
cs->cs_conk = 1; /* do L1-A processing */
}
#endif
if (tp != ctp)
tty_attach(tp);
ZS_WRITE(cs->cs_zc, 2, 0x70 + zs); /* XXX interrupt vector */
unit++;
cs++;
cs->cs_ttyp = tp = ttymalloc();
cs->cs_unit = unit;
cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
tp->t_dev = makedev(ZSMAJOR, unit);
tp->t_oproc = zsstart;
tp->t_param = zsparam;
if (unit != ZS_MOUSE)
tp->t_hwiflow = zshwiflow;
if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
cs->cs_ttyp = tp = ctp;
#ifdef KGDB
if (ctp == NULL)
zs_checkkgdb(unit, cs, tp);
#endif
if (unit == ZS_MOUSE) {
/*
* Mouse: tell /dev/mouse driver how to talk to us.
*/
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
tp->t_cflag = CS8 | CSTOPB;
ms_serial(tp, zsiopen, zsiclose);
#ifdef x68k
zsms = cs;
#endif
} else {
if (tp != ctp)
tty_attach(tp);
}
}
#ifdef KGDB
/*
* Put a channel in a known state. Interrupts may be left disabled
* or enabled, as desired.
*/
static void
zs_reset(zc, inten, speed)
volatile struct zschan *zc;
int inten, speed;
{
int tconst;
static u_char reg[16] = {
0,
0,
0,
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0,
0,
0,
0,
ZSWR10_NRZ,
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
0,
0,
ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
};
reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
tconst = BPS_TO_TCONST(PCLK / 16, speed);
reg[12] = tconst;
reg[13] = tconst >> 8;
zs_loadchannelregs(zc, reg);
}
#endif
/*
* Polled console output putchar.
*/
static void
zscnputc(c)
int c;
{
register volatile struct zschan *zc = zs_conschan;
register int s;
if (c == '\n')
zscnputc('\r');
/*
* Must block output interrupts (i.e., raise to >= splzs) without
* lowering current ipl. Need a better way.
*/
s = splhigh();
#ifdef SUN4C /* XXX */
if (CPU_ISSUN4C && s <= (12 << 8))
(void) splzs();
#endif
while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
ZS_DELAY();
zc->zc_data = c;
ZS_DELAY();
splx(s);
}
/*
* Set up the given unit as console input, output, both, or neither, as
* needed. Return console tty if it is to receive console input.
*/
static struct tty *
zs_checkcons(zi, unit, cs)
struct zs_softc *zi;
int unit;
struct zs_chanstate *cs;
{
register struct tty *tp;
char *i, *o;
if ((tp = zs_ctty) == NULL) /* XXX */
return (0);
i = zs_consin == unit ? "input" : NULL;
o = zs_consout == unit ? "output" : NULL;
if (i == NULL && o == NULL)
return (0);
/* rewire the minor device (gack) */
tp->t_dev = makedev(major(tp->t_dev), unit);
/*
* Rewire input and/or output. Note that baud rate reflects
* input settings, not output settings, but we can do no better
* if the console is split across two ports.
*
* XXX split consoles don't work anyway -- this needs to be
* thrown away and redone
*/
if (i) {
tp->t_param = zsparam;
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
tp->t_cflag = CS8;
ttsetwater(tp);
}
if (o) {
tp->t_oproc = zsstart;
}
printf("%s%c: console %s\n",
zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
cs->cs_consio = 1;
cs->cs_brkabort = 1;
return (tp);
}
#ifdef KGDB
/*
* The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
* Pick up the current speed and character size and restore the original
* speed.
*/
static void
zs_checkkgdb(unit, cs, tp)
int unit;
struct zs_chanstate *cs;
struct tty *tp;
{
if (kgdb_dev == makedev(ZSMAJOR, unit)) {
tp->t_ispeed = tp->t_ospeed = kgdb_rate;
tp->t_cflag = CS8;
cs->cs_kgdb = 1;
cs->cs_speed = zs_kgdb_savedspeed;
(void) zsparam(tp, &tp->t_termios);
}
}
#endif
/*
* Compute the current baud rate given a ZSCC channel.
*/
static int
zs_getspeed(zc)
register volatile struct zschan *zc;
{
register int tconst;
tconst = ZS_READ(zc, 12);
tconst |= ZS_READ(zc, 13) << 8;
return (TCONST_TO_BPS(PCLK / 16, tconst));
}
/*
* Do an internal open.
*/
static void
zsiopen(tp)
struct tty *tp;
{
(void) zsparam(tp, &tp->t_termios);
ttsetwater(tp);
tp->t_state = TS_ISOPEN | TS_CARR_ON;
}
/*
* Do an internal close. Eventually we should shut off the chip when both
* ports on it are closed.
*/
static void
zsiclose(tp)
struct tty *tp;
{
ttylclose(tp, 0); /* ??? */
ttyclose(tp); /* ??? */
tp->t_state = 0;
}
/*
* Open a zs serial port. This interface may not be used to open
* the keyboard and mouse ports. (XXX)
*/
int
zsopen(dev, flags, mode, p)
dev_t dev;
int flags;
int mode;
struct proc *p;
{
register struct tty *tp;
register struct zs_chanstate *cs;
struct zs_softc *zi;
int unit = minor(dev), zs = unit >> 1, error, s;
if (zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL ||
unit == ZS_MOUSE)
return (ENXIO);
if (zi->zi_zs == NULL)
return (ENXIO);
cs = &zi->zi_cs[unit & 1];
if (cs->cs_consio)
return (ENXIO); /* ??? */
tp = cs->cs_ttyp;
s = spltty();
if ((tp->t_state & TS_ISOPEN) == 0) {
ttychars(tp);
if (tp->t_ispeed == 0) {
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_cflag = TTYDEF_CFLAG;
tp->t_lflag = TTYDEF_LFLAG;
tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
}
(void) zsparam(tp, &tp->t_termios);
ttsetwater(tp);
} else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
splx(s);
return (EBUSY);
}
error = 0;
for (;;) {
register int rr0;
/* loop, turning on the device, until carrier present */
zs_modem(cs, 1);
/* May never get status intr if carrier already on. -gwr */
rr0 = cs->cs_zc->zc_csr;
ZS_DELAY();
if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
tp->t_state |= TS_CARR_ON;
if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
tp->t_state & TS_CARR_ON)
break;
tp->t_state |= TS_WOPEN;
error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
ttopen, 0);
if (error) {
if (!(tp->t_state & TS_ISOPEN)) {
zs_modem(cs, 0);
tp->t_state &= ~TS_WOPEN;
ttwakeup(tp);
}
splx(s);
return error;
}
}
splx(s);
if (error == 0)
error = linesw[tp->t_line].l_open(dev, tp);
if (error)
zs_modem(cs, 0);
return (error);
}
/*
* Close a zs serial port.
*/
int
zsclose(dev, flags, mode, p)
dev_t dev;
int flags;
int mode;
struct proc *p;
{
register struct zs_chanstate *cs;
register struct tty *tp;
struct zs_softc *zi;
int unit = minor(dev), s;
zi = zs_cd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
tp = cs->cs_ttyp;
linesw[tp->t_line].l_close(tp, flags);
if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
(tp->t_state & TS_ISOPEN) == 0) {
zs_modem(cs, 0);
/* hold low for 1 second */
(void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
}
if (cs->cs_creg[5] & ZSWR5_BREAK)
{
s = splzs();
cs->cs_preg[5] &= ~ZSWR5_BREAK;
cs->cs_creg[5] &= ~ZSWR5_BREAK;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
splx(s);
}
ttyclose(tp);
#ifdef KGDB
/* Reset the speed if we're doing kgdb on this port */
if (cs->cs_kgdb) {
tp->t_ispeed = tp->t_ospeed = kgdb_rate;
(void) zsparam(tp, &tp->t_termios);
}
#endif
return (0);
}
/*
* Read/write zs serial port.
*/
int
zsread(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
register struct zs_chanstate *cs;
register struct zs_softc *zi;
register struct tty *tp;
int unit = minor(dev);
zi = zs_cd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
tp = cs->cs_ttyp;
return (linesw[tp->t_line].l_read(tp, uio, flags));
}
int
zswrite(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
register struct zs_chanstate *cs;
register struct zs_softc *zi;
register struct tty *tp;
int unit = minor(dev);
zi = zs_cd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
tp = cs->cs_ttyp;
return (linesw[tp->t_line].l_write(tp, uio, flags));
}
struct tty *
zstty(dev)
dev_t dev;
{
register struct zs_chanstate *cs;
register struct zs_softc *zi;
int unit = minor(dev);
zi = zs_cd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
return (cs->cs_ttyp);
}
/*
* ZS hardware interrupt. Scan all ZS channels. NB: we know here that
* channels are kept in (A,B) pairs.
*
* Do just a little, then get out; set a software interrupt if more
* work is needed.
*
* We deliberately ignore the vectoring Zilog gives us, and match up
* only the number of `reset interrupt under service' operations, not
* the order.
*/
/* ARGSUSED */
void
zshard(intrarg)
int intrarg;
{
register struct zs_chanstate *a;
#define b (a + 1)
register volatile struct zschan *zc;
register int rr3, intflags = 0, v, i;
a = &((struct zs_softc*)zs_cd.cd_devs[(intrarg >> 2) & 0x0f])->zi_cs[0];
rr3 = ZS_READ(a->cs_zc, 3);
if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
intflags |= 2;
zc = a->cs_zc;
i = a->cs_rbput;
if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
intflags |= 4;
}
if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
a->cs_rbput = i;
}
if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
intflags |= 2;
zc = b->cs_zc;
i = b->cs_rbput;
if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
intflags |= 4;
}
if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
intflags |= 1;
}
b->cs_rbput = i;
}
#undef b
if (intflags & 1) {
#if defined(SUN4C) || defined(SUN4M)
if (CPU_ISSUN4M || CPU_ISSUN4C) {
/* XXX -- but this will go away when zshard moves to locore.s */
struct clockframe *p = intrarg;
if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
zsshortcuts++;
(void) spltty();
if (zshardscope) {
LED_ON;
LED_OFF;
}
return (zssoft(intrarg));
}
}
#endif
#if x68k
#define PSL_TTY PSL_IPL4 /* XXX */
if (((intrarg >> 16) & PSL_IPL) < PSL_TTY) {
zsshortcuts++;
(void) spltty();
zssoft(0/*intrarg*/);
return;
}
setsoftserial();
#else
ienab_bis(IE_ZSSOFT);
#endif
}
}
static int
zsrint(cs, zc)
register struct zs_chanstate *cs;
register volatile struct zschan *zc;
{
register int c = zc->zc_data;
ZS_DELAY();
#ifndef x68k
if (cs->cs_conk) {
register struct conk_state *conk = &zsconk_state;
/*
* Check here for console abort function, so that we
* can abort even when interrupts are locking up the
* machine.
*/
if (c == KBD_RESET) {
conk->conk_id = 1; /* ignore next byte */
conk->conk_l1 = 0;
} else if (conk->conk_id)
conk->conk_id = 0; /* stop ignoring bytes */
else if (c == KBD_L1)
conk->conk_l1 = 1; /* L1 went down */
else if (c == (KBD_L1|KBD_UP))
conk->conk_l1 = 0; /* L1 went up */
else if (c == KBD_A && conk->conk_l1) {
zsabort();
conk->conk_l1 = 0; /* we never see the up */
goto clearit; /* eat the A after L1-A */
}
}
#endif
#ifdef KGDB
if (c == FRAME_START && cs->cs_kgdb &&
(cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
zskgdb(cs->cs_unit);
goto clearit;
}
#endif
/* compose receive character and status */
c <<= 8;
c |= ZS_READ(zc, 1);
/* clear receive error & interrupt condition */
zc->zc_csr = ZSWR0_RESET_ERRORS;
ZS_DELAY();
zc->zc_csr = ZSWR0_CLR_INTR;
ZS_DELAY();
return (ZRING_MAKE(ZRING_RINT, c));
clearit:
zc->zc_csr = ZSWR0_RESET_ERRORS;
ZS_DELAY();
zc->zc_csr = ZSWR0_CLR_INTR;
ZS_DELAY();
return (0);
}
static int
zsxint(cs, zc)
register struct zs_chanstate *cs;
register volatile struct zschan *zc;
{
register int i = cs->cs_tbc;
if (i == 0) {
zc->zc_csr = ZSWR0_RESET_TXINT;
ZS_DELAY();
zc->zc_csr = ZSWR0_CLR_INTR;
ZS_DELAY();
return (ZRING_MAKE(ZRING_XINT, 0));
}
cs->cs_tbc = i - 1;
zc->zc_data = *cs->cs_tba++;
ZS_DELAY();
zc->zc_csr = ZSWR0_CLR_INTR;
ZS_DELAY();
return (0);
}
static int
zssint(cs, zc)
register struct zs_chanstate *cs;
register volatile struct zschan *zc;
{
register int rr0;
rr0 = zc->zc_csr;
ZS_DELAY();
zc->zc_csr = ZSWR0_RESET_STATUS;
ZS_DELAY();
zc->zc_csr = ZSWR0_CLR_INTR;
ZS_DELAY();
/*
* The chip's hardware flow control is, as noted in zsreg.h,
* busted---if the DCD line goes low the chip shuts off the
* receiver (!). If we want hardware CTS flow control but do
* not have it, and carrier is now on, turn HFC on; if we have
* HFC now but carrier has gone low, turn it off.
*/
if (rr0 & ZSRR0_DCD) {
if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
(cs->cs_creg[3] & ZSWR3_HFC) == 0) {
cs->cs_creg[3] |= ZSWR3_HFC;
ZS_WRITE(zc, 3, cs->cs_creg[3]);
}
} else {
if (cs->cs_creg[3] & ZSWR3_HFC) {
cs->cs_creg[3] &= ~ZSWR3_HFC;
ZS_WRITE(zc, 3, cs->cs_creg[3]);
}
}
if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
#ifdef SUN4
/*
* XXX This might not be necessary. Test and
* delete if it isn't.
*/
if (CPU_ISSUN4) {
while (zc->zc_csr & ZSRR0_BREAK)
ZS_DELAY();
}
#endif
zsabort();
return (0);
}
return (ZRING_MAKE(ZRING_SINT, rr0));
}
static void
zsabort()
{
#ifdef DDB
Debugger();
#else
printf("stopping on keyboard abort\n");
#ifndef x68k
callrom();
#endif
#endif
}
#ifdef KGDB
/*
* KGDB framing character received: enter kernel debugger. This probably
* should time out after a few seconds to avoid hanging on spurious input.
*/
void
zskgdb(unit)
int unit;
{
printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
kgdb_connect(1);
}
#endif
/*
* Print out a ring or fifo overrun error message.
*/
static void
zsoverrun(unit, ptime, what)
int unit;
long *ptime;
char *what;
{
if (*ptime != time.tv_sec) {
*ptime = time.tv_sec;
log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
(unit & 1) + 'a', what);
}
}
/*
* ZS software interrupt. Scan all channels for deferred interrupts.
*/
int
zssoft(arg)
void *arg;
{
register struct zs_chanstate *cs;
register volatile struct zschan *zc;
register struct linesw *line;
register struct tty *tp;
register int get, n, c, cc, unit, s;
int retval = 0;
for (cs = zslist; cs != NULL; cs = cs->cs_next) {
get = cs->cs_rbget;
again:
n = cs->cs_rbput; /* atomic */
if (get == n) /* nothing more on this line */
continue;
retval = 1;
unit = cs->cs_unit; /* set up to handle interrupts */
zc = cs->cs_zc;
tp = cs->cs_ttyp;
line = &linesw[tp->t_line];
/*
* Compute the number of interrupts in the receive ring.
* If the count is overlarge, we lost some events, and
* must advance to the first valid one. It may get
* overwritten if more data are arriving, but this is
* too expensive to check and gains nothing (we already
* lost out; all we can do at this point is trade one
* kind of loss for another).
*/
n -= get;
if (n > ZLRB_RING_SIZE) {
zsoverrun(unit, &cs->cs_rotime, "ring");
get += n - ZLRB_RING_SIZE;
n = ZLRB_RING_SIZE;
}
while (--n >= 0) {
/* race to keep ahead of incoming interrupts */
c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
switch (ZRING_TYPE(c)) {
case ZRING_RINT:
c = ZRING_VALUE(c);
if (c & ZSRR1_DO)
zsoverrun(unit, &cs->cs_fotime, "fifo");
cc = c >> 8;
if (c & ZSRR1_FE)
cc |= TTY_FE;
if (c & ZSRR1_PE)
cc |= TTY_PE;
/*
* this should be done through
* bstreams XXX gag choke
*/
else if (unit == ZS_MOUSE)
ms_rint(cc);
else
line->l_rint(cc, tp);
break;
case ZRING_XINT:
/*
* Transmit done: change registers and resume,
* or clear BUSY.
*/
if (cs->cs_heldchange) {
s = splzs();
c = zc->zc_csr;
ZS_DELAY();
if ((c & ZSRR0_DCD) == 0)
cs->cs_preg[3] &= ~ZSWR3_HFC;
bcopy((caddr_t)cs->cs_preg,
(caddr_t)cs->cs_creg, 16);
zs_loadchannelregs(zc, cs->cs_creg);
splx(s);
cs->cs_heldchange = 0;
if (cs->cs_heldtbc &&
(tp->t_state & TS_TTSTOP) == 0) {
cs->cs_tbc = cs->cs_heldtbc - 1;
zc->zc_data = *cs->cs_tba++;
ZS_DELAY();
goto again;
}
}
tp->t_state &= ~TS_BUSY;
if (tp->t_state & TS_FLUSH)
tp->t_state &= ~TS_FLUSH;
else
ndflush(&tp->t_outq,
cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
line->l_start(tp);
break;
case ZRING_SINT:
/*
* Status line change. HFC bit is run in
* hardware interrupt, to avoid locking
* at splzs here.
*/
c = ZRING_VALUE(c);
if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
cc = (c & ZSRR0_DCD) != 0;
if (line->l_modem(tp, cc) == 0)
zs_modem(cs, cc);
}
cs->cs_rr0 = c;
break;
default:
log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
unit >> 1, (unit & 1) + 'a', c);
break;
}
}
cs->cs_rbget = get;
goto again;
}
return (retval);
}
int
zsioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
int unit = minor(dev);
struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
register struct tty *tp = cs->cs_ttyp;
register int error, s;
error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
error = ttioctl(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
switch (cmd) {
case TIOCSBRK:
s = splzs();
cs->cs_preg[5] |= ZSWR5_BREAK;
cs->cs_creg[5] |= ZSWR5_BREAK;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
splx(s);
break;
case TIOCCBRK:
s = splzs();
cs->cs_preg[5] &= ~ZSWR5_BREAK;
cs->cs_creg[5] &= ~ZSWR5_BREAK;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
splx(s);
break;
case TIOCGFLAGS: {
int bits = 0;
if (cs->cs_softcar)
bits |= TIOCFLAG_SOFTCAR;
if (cs->cs_creg[15] & ZSWR15_DCD_IE)
bits |= TIOCFLAG_CLOCAL;
if (cs->cs_creg[3] & ZSWR3_HFC)
bits |= TIOCFLAG_CRTSCTS;
*(int *)data = bits;
break;
}
case TIOCSFLAGS: {
int userbits, driverbits = 0;
error = suser(p->p_ucred, &p->p_acflag);
if (error != 0)
return (EPERM);
userbits = *(int *)data;
/*
* can have `local' or `softcar', and `rtscts' or `mdmbuf'
# defaulting to software flow control.
*/
if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
return(EINVAL);
if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
return(ENXIO);
s = splzs();
if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
cs->cs_softcar = 1; /* turn on softcar */
cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
} else if (userbits & TIOCFLAG_CLOCAL) {
cs->cs_softcar = 0; /* turn off softcar */
cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
cs->cs_creg[15] |= ZSWR15_DCD_IE;
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
tp->t_termios.c_cflag |= CLOCAL;
}
if (userbits & TIOCFLAG_CRTSCTS) {
cs->cs_preg[15] |= ZSWR15_CTS_IE;
cs->cs_creg[15] |= ZSWR15_CTS_IE;
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
cs->cs_preg[3] |= ZSWR3_HFC;
cs->cs_creg[3] |= ZSWR3_HFC;
ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
tp->t_termios.c_cflag |= CRTSCTS;
} else {
/* no mdmbuf, so we must want software flow control */
cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
cs->cs_preg[3] &= ~ZSWR3_HFC;
cs->cs_creg[3] &= ~ZSWR3_HFC;
ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
tp->t_termios.c_cflag &= ~CRTSCTS;
}
splx(s);
break;
}
case TIOCSDTR:
zs_modem(cs, 1);
break;
case TIOCCDTR:
zs_modem(cs, 0);
break;
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
case TIOCMGET:
default:
return (ENOTTY);
}
return (0);
}
/*
* Start or restart transmission.
*/
static void
zsstart(tp)
register struct tty *tp;
{
register struct zs_chanstate *cs;
register int s, nch;
int unit = minor(tp->t_dev);
struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
s = spltty();
/*
* If currently active or delaying, no need to do anything.
*/
if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
goto out;
/*
* If there are sleepers, and output has drained below low
* water mark, awaken.
*/
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (tp->t_state & TS_ASLEEP) {
tp->t_state &= ~TS_ASLEEP;
wakeup((caddr_t)&tp->t_outq);
}
selwakeup(&tp->t_wsel);
}
nch = ndqb(&tp->t_outq, 0); /* XXX */
if (nch) {
register char *p = tp->t_outq.c_cf;
/* mark busy, enable tx done interrupts, & send first byte */
tp->t_state |= TS_BUSY;
(void) splzs();
cs->cs_preg[1] |= ZSWR1_TIE;
cs->cs_creg[1] |= ZSWR1_TIE;
ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
cs->cs_zc->zc_data = *p;
ZS_DELAY();
cs->cs_tba = p + 1;
cs->cs_tbc = nch - 1;
} else {
/*
* Nothing to send, turn off transmit done interrupts.
* This is useful if something is doing polled output.
*/
(void) splzs();
cs->cs_preg[1] &= ~ZSWR1_TIE;
cs->cs_creg[1] &= ~ZSWR1_TIE;
ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
}
out:
splx(s);
}
/*
* Stop output, e.g., for ^S or output flush.
*/
void
zsstop(tp, flag)
register struct tty *tp;
int flag;
{
register struct zs_chanstate *cs;
register int s, unit = minor(tp->t_dev);
struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
cs = &zi->zi_cs[unit & 1];
s = splzs();
if (tp->t_state & TS_BUSY) {
/*
* Device is transmitting; must stop it.
*/
cs->cs_tbc = 0;
if ((tp->t_state & TS_TTSTOP) == 0)
tp->t_state |= TS_FLUSH;
}
splx(s);
}
/*
* Set ZS tty parameters from termios.
*
* This routine makes use of the fact that only registers
* 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
*/
static int
zsparam(tp, t)
register struct tty *tp;
register struct termios *t;
{
int unit = minor(tp->t_dev);
struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
register int tmp, tmp5, cflag, s;
/*
* Because PCLK is only run at 5 MHz, the fastest we
* can go is 51200 baud (this corresponds to TC=1).
* This is somewhat unfortunate as there is no real
* reason we should not be able to handle higher rates.
*/
tmp = t->c_ospeed;
if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
return (EINVAL);
if (tmp == 0) {
/* stty 0 => drop DTR and RTS */
zs_modem(cs, 0);
return (0);
}
tmp = BPS_TO_TCONST(PCLK / 16, tmp);
if (tmp < 2)
return (EINVAL);
cflag = t->c_cflag;
tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
tp->t_cflag = cflag;
/*
* Block interrupts so that state will not
* be altered until we are done setting it up.
*/
s = splzs();
cs->cs_preg[12] = tmp;
cs->cs_preg[13] = tmp >> 8;
cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
switch (cflag & CSIZE) {
case CS5:
tmp = ZSWR3_RX_5;
tmp5 = ZSWR5_TX_5;
break;
case CS6:
tmp = ZSWR3_RX_6;
tmp5 = ZSWR5_TX_6;
break;
case CS7:
tmp = ZSWR3_RX_7;
tmp5 = ZSWR5_TX_7;
break;
case CS8:
default:
tmp = ZSWR3_RX_8;
tmp5 = ZSWR5_TX_8;
break;
}
/*
* Output hardware flow control on the chip is horrendous: if
* carrier detect drops, the receiver is disabled. Hence we
* can only do this when the carrier is on.
*/
tmp |= ZSWR3_RX_ENABLE;
if (cflag & CCTS_OFLOW) {
if (cs->cs_zc->zc_csr & ZSRR0_DCD)
tmp |= ZSWR3_HFC;
ZS_DELAY();
}
cs->cs_preg[3] = tmp;
cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
if ((cflag & PARODD) == 0)
tmp |= ZSWR4_EVENP;
if (cflag & PARENB)
tmp |= ZSWR4_PARENB;
cs->cs_preg[4] = tmp;
cs->cs_preg[9] = ZSWR9_MASTER_IE /*| ZSWR9_NO_VECTOR*/;
cs->cs_preg[10] = ZSWR10_NRZ;
cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
/*
* If nothing is being transmitted, set up new current values,
* else mark them as pending.
*/
if (cs->cs_heldchange == 0) {
if (cs->cs_ttyp->t_state & TS_BUSY) {
cs->cs_heldtbc = cs->cs_tbc;
cs->cs_tbc = 0;
cs->cs_heldchange = 1;
} else {
bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
}
}
splx(s);
return (0);
}
/*
* Raise or lower modem control (DTR/RTS) signals. If a character is
* in transmission, the change is deferred.
*/
static void
zs_modem(cs, onoff)
struct zs_chanstate *cs;
int onoff;
{
int s, bis, and;
if (onoff) {
bis = ZSWR5_DTR | ZSWR5_RTS;
and = ~0;
} else {
bis = 0;
and = ~(ZSWR5_DTR | ZSWR5_RTS);
}
s = splzs();
cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
if (cs->cs_heldchange == 0) {
if (cs->cs_ttyp->t_state & TS_BUSY) {
cs->cs_heldtbc = cs->cs_tbc;
cs->cs_tbc = 0;
cs->cs_heldchange = 1;
} else {
cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
}
}
splx(s);
}
/*
* Hardware flow (RTS) control.
*/
static int
zshwiflow(tp, flag)
struct tty *tp;
int flag;
{
int unit = minor(tp->t_dev);
struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
int s;
#if 0
printf ("zshwiflow %d\n", flag);
#endif
s = splzs();
if (flag) {
cs->cs_preg[5] &= ~ZSWR5_RTS;
cs->cs_creg[5] &= ~ZSWR5_RTS;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
} else {
cs->cs_preg[5] |= ZSWR5_RTS;
cs->cs_creg[5] |= ZSWR5_RTS;
ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
}
splx(s);
return 1;
}
/*
* Write the given register set to the given zs channel in the proper order.
* The channel must not be transmitting at the time. The receiver will
* be disabled for the time it takes to write all the registers.
*/
static void
zs_loadchannelregs(zc, reg)
volatile struct zschan *zc;
u_char *reg;
{
int i;
zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
ZS_DELAY();
i = zc->zc_data; /* drain fifo */
ZS_DELAY();
i = zc->zc_data;
ZS_DELAY();
i = zc->zc_data;
ZS_DELAY();
ZS_WRITE(zc, 4, reg[4]);
ZS_WRITE(zc, 10, reg[10]);
ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
ZS_WRITE(zc, 1, reg[1]);
ZS_WRITE(zc, 9, reg[9]);
ZS_WRITE(zc, 11, reg[11]);
ZS_WRITE(zc, 12, reg[12]);
ZS_WRITE(zc, 13, reg[13]);
ZS_WRITE(zc, 14, reg[14]);
ZS_WRITE(zc, 15, reg[15]);
ZS_WRITE(zc, 3, reg[3]);
ZS_WRITE(zc, 5, reg[5]);
}
#ifdef x68k
void
zs_msmodem(onoff)
int onoff;
{
if (zsms != NULL) {
zs_modem(zsms, onoff);
while(!(mfp.tsr & MFP_TSR_BE))
/* XXX wait */ ;
mfp.udr = 0x40 | (onoff ? 0 : 1);
}
}
#endif
#ifdef KGDB
/*
* Get a character from the given kgdb channel. Called at splhigh().
*/
static int
zs_kgdb_getc(arg)
void *arg;
{
register volatile struct zschan *zc = (volatile struct zschan *)arg;
while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
ZS_DELAY();
return (zc->zc_data);
}
/*
* Put a character to the given kgdb channel. Called at splhigh().
*/
static void
zs_kgdb_putc(arg, c)
void *arg;
int c;
{
register volatile struct zschan *zc = (volatile struct zschan *)arg;
while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
ZS_DELAY();
zc->zc_data = c;
ZS_DELAY();
}
/*
* Set up for kgdb; called at boot time before configuration.
* KGDB interrupts will be enabled later when zs0 is configured.
*/
void
zs_kgdb_init()
{
volatile struct zsdevice *addr;
volatile struct zschan *zc;
int unit, zs;
if (major(kgdb_dev) != ZSMAJOR)
return;
unit = minor(kgdb_dev);
zs = unit >> 1;
if ((addr = zsaddr[zs]) == NULL)
addr = zsaddr[zs] = findzs(zs);
unit &= 1;
zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
zs_kgdb_savedspeed = zs_getspeed(zc);
printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
zs, unit + 'a', kgdb_rate);
zs_reset(zc, 1, kgdb_rate);
kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
}
#endif /* KGDB */
#endif