NetBSD/sys/kern/init_sysctl.c
elad c27d5f30b6 Tons of process scope changes.
- Add a KAUTH_PROCESS_SCHEDULER action, to handle scheduler related
    requests, and add specific requests for set/get scheduler policy and
    set/get scheduler parameters.

  - Add a KAUTH_PROCESS_KEVENT_FILTER action, to handle kevent(2) related
    requests.

  - Add a KAUTH_DEVICE_TTY_STI action to handle requests to TIOCSTI.

  - Add requests for the KAUTH_PROCESS_CANSEE action, indicating what
    process information is being looked at (entry itself, args, env,
    open files).

  - Add requests for the KAUTH_PROCESS_RLIMIT action indicating set/get.

  - Add requests for the KAUTH_PROCESS_CORENAME action indicating set/get.

  - Make bsd44 secmodel code handle the newly added rqeuests appropriately.

All of the above make it possible to issue finer-grained kauth(9) calls in
many places, removing some KAUTH_GENERIC_ISSUSER requests.

  - Remove the "CAN" from KAUTH_PROCESS_CAN{KTRACE,PROCFS,PTRACE,SIGNAL}.

Discussed with christos@ and yamt@.
2008-01-23 15:04:38 +00:00

3142 lines
83 KiB
C

/* $NetBSD: init_sysctl.c,v 1.120 2008/01/23 15:04:39 elad Exp $ */
/*-
* Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Brown, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.120 2008/01/23 15:04:39 elad Exp $");
#include "opt_sysv.h"
#include "opt_posix.h"
#include "opt_compat_netbsd32.h"
#include "pty.h"
#include "rnd.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/cpu.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/unistd.h>
#include <sys/disklabel.h>
#include <sys/rnd.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/msgbuf.h>
#include <dev/cons.h>
#include <sys/socketvar.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/tty.h>
#include <sys/malloc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/exec.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/stat.h>
#include <sys/kauth.h>
#include <sys/ktrace.h>
#ifdef COMPAT_NETBSD32
#include <compat/netbsd32/netbsd32.h>
#endif
#include <sys/cpu.h>
/* XXX this should not be here */
int security_setidcore_dump;
char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core";
uid_t security_setidcore_owner = 0;
gid_t security_setidcore_group = 0;
mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR);
static const u_int sysctl_flagmap[] = {
PK_ADVLOCK, P_ADVLOCK,
PK_EXEC, P_EXEC,
PK_NOCLDWAIT, P_NOCLDWAIT,
PK_32, P_32,
PK_CLDSIGIGN, P_CLDSIGIGN,
PK_SUGID, P_SUGID,
0
};
static const u_int sysctl_sflagmap[] = {
PS_NOCLDSTOP, P_NOCLDSTOP,
PS_PPWAIT, P_PPWAIT,
PS_WEXIT, P_WEXIT,
PS_STOPFORK, P_STOPFORK,
PS_STOPEXEC, P_STOPEXEC,
PS_STOPEXIT, P_STOPEXIT,
0
};
static const u_int sysctl_slflagmap[] = {
PSL_TRACED, P_TRACED,
PSL_FSTRACE, P_FSTRACE,
PSL_CHTRACED, P_CHTRACED,
PSL_SYSCALL, P_SYSCALL,
0
};
static const u_int sysctl_lflagmap[] = {
PL_CONTROLT, P_CONTROLT,
0
};
static const u_int sysctl_stflagmap[] = {
PST_PROFIL, P_PROFIL,
0
};
static const u_int sysctl_lwpflagmap[] = {
LW_INMEM, P_INMEM,
LW_SINTR, P_SINTR,
LW_SYSTEM, P_SYSTEM,
0
};
static const u_int sysctl_lwpprflagmap[] = {
LPR_DETACHED, L_DETACHED,
0
};
/*
* try over estimating by 5 procs/lwps
*/
#define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
#define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
static int dcopyout(struct lwp *, const void *, void *, size_t);
static int
dcopyout(l, kaddr, uaddr, len)
struct lwp *l;
const void *kaddr;
void *uaddr;
size_t len;
{
int error;
error = copyout(kaddr, uaddr, len);
ktrmibio(-1, UIO_READ, uaddr, len, error);
return error;
}
#ifdef DIAGNOSTIC
static int sysctl_kern_trigger_panic(SYSCTLFN_PROTO);
#endif
static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
static int sysctl_kern_hostid(SYSCTLFN_PROTO);
static int sysctl_setlen(SYSCTLFN_PROTO);
static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
static int sysctl_kern_file(SYSCTLFN_PROTO);
static int sysctl_msgbuf(SYSCTLFN_PROTO);
static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
static int sysctl_kern_cptime(SYSCTLFN_PROTO);
#if NPTY > 0
static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
#endif /* NPTY > 0 */
static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
static int sysctl_kern_urnd(SYSCTLFN_PROTO);
static int sysctl_kern_arnd(SYSCTLFN_PROTO);
static int sysctl_kern_lwp(SYSCTLFN_PROTO);
static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
static int sysctl_kern_drivers(SYSCTLFN_PROTO);
static int sysctl_kern_file2(SYSCTLFN_PROTO);
static int sysctl_security_setidcore(SYSCTLFN_PROTO);
static int sysctl_security_setidcorename(SYSCTLFN_PROTO);
static int sysctl_kern_cpid(SYSCTLFN_PROTO);
static int sysctl_doeproc(SYSCTLFN_PROTO);
static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
static int sysctl_hw_usermem(SYSCTLFN_PROTO);
static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
static u_int sysctl_map_flags(const u_int *, u_int);
static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
static void fill_file(struct kinfo_file *, const struct file *, struct proc *,
int);
/*
* ********************************************************************
* section 1: setup routines
* ********************************************************************
* These functions are stuffed into a link set for sysctl setup
* functions. They're never called or referenced from anywhere else.
* ********************************************************************
*/
/*
* sets up the base nodes...
*/
SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern",
SYSCTL_DESCR("High kernel"),
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "vm",
SYSCTL_DESCR("Virtual memory"),
NULL, 0, NULL, 0,
CTL_VM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "vfs",
SYSCTL_DESCR("Filesystem"),
NULL, 0, NULL, 0,
CTL_VFS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "net",
SYSCTL_DESCR("Networking"),
NULL, 0, NULL, 0,
CTL_NET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "debug",
SYSCTL_DESCR("Debugging"),
NULL, 0, NULL, 0,
CTL_DEBUG, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "hw",
SYSCTL_DESCR("Generic CPU, I/O"),
NULL, 0, NULL, 0,
CTL_HW, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "machdep",
SYSCTL_DESCR("Machine dependent"),
NULL, 0, NULL, 0,
CTL_MACHDEP, CTL_EOL);
/*
* this node is inserted so that the sysctl nodes in libc can
* operate.
*/
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "user",
SYSCTL_DESCR("User-level"),
NULL, 0, NULL, 0,
CTL_USER, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ddb",
SYSCTL_DESCR("In-kernel debugger"),
NULL, 0, NULL, 0,
CTL_DDB, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc",
SYSCTL_DESCR("Per-process"),
NULL, 0, NULL, 0,
CTL_PROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_NODE, "vendor",
SYSCTL_DESCR("Vendor specific"),
NULL, 0, NULL, 0,
CTL_VENDOR, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "emul",
SYSCTL_DESCR("Emulation settings"),
NULL, 0, NULL, 0,
CTL_EMUL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "security",
SYSCTL_DESCR("Security"),
NULL, 0, NULL, 0,
CTL_SECURITY, CTL_EOL);
}
/*
* this setup routine is a replacement for kern_sysctl()
*/
SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
{
extern int kern_logsigexit; /* defined in kern/kern_sig.c */
extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
extern int dumponpanic; /* defined in kern/subr_prf.c */
const struct sysctlnode *rnode;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "ostype",
SYSCTL_DESCR("Operating system type"),
NULL, 0, &ostype, 0,
CTL_KERN, KERN_OSTYPE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "osrelease",
SYSCTL_DESCR("Operating system release"),
NULL, 0, &osrelease, 0,
CTL_KERN, KERN_OSRELEASE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "osrevision",
SYSCTL_DESCR("Operating system revision"),
NULL, __NetBSD_Version__, NULL, 0,
CTL_KERN, KERN_OSREV, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "version",
SYSCTL_DESCR("Kernel version"),
NULL, 0, &version, 0,
CTL_KERN, KERN_VERSION, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxvnodes",
SYSCTL_DESCR("Maximum number of vnodes"),
sysctl_kern_maxvnodes, 0, NULL, 0,
CTL_KERN, KERN_MAXVNODES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxproc",
SYSCTL_DESCR("Maximum number of simultaneous processes"),
sysctl_kern_maxproc, 0, NULL, 0,
CTL_KERN, KERN_MAXPROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxfiles",
SYSCTL_DESCR("Maximum number of open files"),
NULL, 0, &maxfiles, 0,
CTL_KERN, KERN_MAXFILES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "argmax",
SYSCTL_DESCR("Maximum number of bytes of arguments to "
"execve(2)"),
NULL, ARG_MAX, NULL, 0,
CTL_KERN, KERN_ARGMAX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRING, "hostname",
SYSCTL_DESCR("System hostname"),
sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
CTL_KERN, KERN_HOSTNAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
CTLTYPE_INT, "hostid",
SYSCTL_DESCR("System host ID number"),
sysctl_kern_hostid, 0, NULL, 0,
CTL_KERN, KERN_HOSTID, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "clockrate",
SYSCTL_DESCR("Kernel clock rates"),
sysctl_kern_clockrate, 0, NULL,
sizeof(struct clockinfo),
CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "hardclock_ticks",
SYSCTL_DESCR("Number of hardclock ticks"),
NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "vnode",
SYSCTL_DESCR("System vnode table"),
sysctl_kern_vnode, 0, NULL, 0,
CTL_KERN, KERN_VNODE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "file",
SYSCTL_DESCR("System open file table"),
sysctl_kern_file, 0, NULL, 0,
CTL_KERN, KERN_FILE, CTL_EOL);
#ifndef GPROF
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "profiling",
SYSCTL_DESCR("Profiling information (not available)"),
sysctl_notavail, 0, NULL, 0,
CTL_KERN, KERN_PROF, CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix1version",
SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
"with which the operating system attempts "
"to comply"),
NULL, _POSIX_VERSION, NULL, 0,
CTL_KERN, KERN_POSIX1, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "ngroups",
SYSCTL_DESCR("Maximum number of supplemental groups"),
NULL, NGROUPS_MAX, NULL, 0,
CTL_KERN, KERN_NGROUPS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "job_control",
SYSCTL_DESCR("Whether job control is available"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "saved_ids",
SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
"available"), NULL,
#ifdef _POSIX_SAVED_IDS
1,
#else /* _POSIX_SAVED_IDS */
0,
#endif /* _POSIX_SAVED_IDS */
NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "boottime",
SYSCTL_DESCR("System boot time"),
NULL, 0, &boottime, sizeof(boottime),
CTL_KERN, KERN_BOOTTIME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRING, "domainname",
SYSCTL_DESCR("YP domain name"),
sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "maxpartitions",
SYSCTL_DESCR("Maximum number of partitions allowed per "
"disk"),
NULL, MAXPARTITIONS, NULL, 0,
CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "rawpartition",
SYSCTL_DESCR("Raw partition of a disk"),
NULL, RAW_PART, NULL, 0,
CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "timex", NULL,
sysctl_notavail, 0, NULL, 0,
CTL_KERN, KERN_TIMEX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "rtc_offset",
SYSCTL_DESCR("Offset of real time clock from UTC in "
"minutes"),
sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "root_device",
SYSCTL_DESCR("Name of the root device"),
sysctl_root_device, 0, NULL, 0,
CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "msgbufsize",
SYSCTL_DESCR("Size of the kernel message buffer"),
sysctl_msgbuf, 0, NULL, 0,
CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "fsync",
SYSCTL_DESCR("Whether the POSIX 1003.1b File "
"Synchronization Option is available on "
"this system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_FSYNC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ipc",
SYSCTL_DESCR("SysV IPC options"),
NULL, 0, NULL, 0,
CTL_KERN, KERN_SYSVIPC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "sysvmsg",
SYSCTL_DESCR("System V style message support available"),
NULL,
#ifdef SYSVMSG
1,
#else /* SYSVMSG */
0,
#endif /* SYSVMSG */
NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_MSG, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "sysvsem",
SYSCTL_DESCR("System V style semaphore support "
"available"), NULL,
#ifdef SYSVSEM
1,
#else /* SYSVSEM */
0,
#endif /* SYSVSEM */
NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SEM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "sysvshm",
SYSCTL_DESCR("System V style shared memory support "
"available"), NULL,
#ifdef SYSVSHM
1,
#else /* SYSVSHM */
0,
#endif /* SYSVSHM */
NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "synchronized_io",
SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
"I/O Option is available on this system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "iov_max",
SYSCTL_DESCR("Maximum number of iovec structures per "
"process"),
NULL, IOV_MAX, NULL, 0,
CTL_KERN, KERN_IOV_MAX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "mapped_files",
SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
"Files Option is available on this system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "memlock",
SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
"Locking Option is available on this "
"system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_MEMLOCK, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "memlock_range",
SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
"Locking Option is available on this "
"system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "memory_protection",
SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
"Protection Option is available on this "
"system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "login_name_max",
SYSCTL_DESCR("Maximum login name length"),
NULL, LOGIN_NAME_MAX, NULL, 0,
CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRING, "defcorename",
SYSCTL_DESCR("Default core file name"),
sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "logsigexit",
SYSCTL_DESCR("Log process exit when caused by signals"),
NULL, 0, &kern_logsigexit, 0,
CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "fscale",
SYSCTL_DESCR("Kernel fixed-point scale factor"),
NULL, FSCALE, NULL, 0,
CTL_KERN, KERN_FSCALE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "ccpu",
SYSCTL_DESCR("Scheduler exponential decay value"),
NULL, 0, &ccpu, 0,
CTL_KERN, KERN_CCPU, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "cp_time",
SYSCTL_DESCR("Clock ticks spent in different CPU states"),
sysctl_kern_cptime, 0, NULL, 0,
CTL_KERN, KERN_CP_TIME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "msgbuf",
SYSCTL_DESCR("Kernel message buffer"),
sysctl_msgbuf, 0, NULL, 0,
CTL_KERN, KERN_MSGBUF, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "consdev",
SYSCTL_DESCR("Console device"),
sysctl_consdev, 0, NULL, sizeof(dev_t),
CTL_KERN, KERN_CONSDEV, CTL_EOL);
#if NPTY > 0
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "maxptys",
SYSCTL_DESCR("Maximum number of pseudo-ttys"),
sysctl_kern_maxptys, 0, NULL, 0,
CTL_KERN, KERN_MAXPTYS, CTL_EOL);
#endif /* NPTY > 0 */
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "maxphys",
SYSCTL_DESCR("Maximum raw I/O transfer size"),
NULL, MAXPHYS, NULL, 0,
CTL_KERN, KERN_MAXPHYS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "sbmax",
SYSCTL_DESCR("Maximum socket buffer size"),
sysctl_kern_sbmax, 0, NULL, 0,
CTL_KERN, KERN_SBMAX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "monotonic_clock",
SYSCTL_DESCR("Implementation version of the POSIX "
"1003.1b Monotonic Clock Option"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "urandom",
SYSCTL_DESCR("Random integer value"),
sysctl_kern_urnd, 0, NULL, 0,
CTL_KERN, KERN_URND, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "arandom",
SYSCTL_DESCR("n bytes of random data"),
sysctl_kern_arnd, 0, NULL, 0,
CTL_KERN, KERN_ARND, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "labelsector",
SYSCTL_DESCR("Sector number containing the disklabel"),
NULL, LABELSECTOR, NULL, 0,
CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "labeloffset",
SYSCTL_DESCR("Offset of the disklabel within the "
"sector"),
NULL, LABELOFFSET, NULL, 0,
CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "lwp",
SYSCTL_DESCR("System-wide LWP information"),
sysctl_kern_lwp, 0, NULL, 0,
CTL_KERN, KERN_LWP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "forkfsleep",
SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
"to process limits"),
sysctl_kern_forkfsleep, 0, NULL, 0,
CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_threads",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Threads option to which the system "
"attempts to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_THREADS, NULL, 0,
CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_semaphores",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Semaphores option to which the system "
"attempts to conform"), NULL,
#ifdef P1003_1B_SEMAPHORE
200112,
#else /* P1003_1B_SEMAPHORE */
0,
#endif /* P1003_1B_SEMAPHORE */
NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_barriers",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Barriers option to which the system "
"attempts to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_BARRIERS, NULL, 0,
CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_timers",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Timers option to which the system "
"attempts to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_TIMERS, NULL, 0,
CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_spin_locks",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
"Locks option to which the system attempts "
"to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_SPIN_LOCKS, NULL, 0,
CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_reader_writer_locks",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Read-Write Locks option to which the "
"system attempts to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "dump_on_panic",
SYSCTL_DESCR("Perform a crash dump on system panic"),
NULL, 0, &dumponpanic, 0,
CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
#ifdef DIAGNOSTIC
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "panic_now",
SYSCTL_DESCR("Trigger a panic"),
sysctl_kern_trigger_panic, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "root_partition",
SYSCTL_DESCR("Root partition on the root device"),
sysctl_kern_root_partition, 0, NULL, 0,
CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "drivers",
SYSCTL_DESCR("List of all drivers with block and "
"character device numbers"),
sysctl_kern_drivers, 0, NULL, 0,
CTL_KERN, KERN_DRIVERS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "file2",
SYSCTL_DESCR("System open file table"),
sysctl_kern_file2, 0, NULL, 0,
CTL_KERN, KERN_FILE2, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "cp_id",
SYSCTL_DESCR("Mapping of CPU number to CPU id"),
sysctl_kern_cpid, 0, NULL, 0,
CTL_KERN, KERN_CP_ID, CTL_EOL);
sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "coredump",
SYSCTL_DESCR("Coredump settings."),
NULL, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "setid",
SYSCTL_DESCR("Set-id processes' coredump settings."),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "dump",
SYSCTL_DESCR("Allow set-id processes to dump core."),
sysctl_security_setidcore, 0, &security_setidcore_dump,
sizeof(security_setidcore_dump),
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRING, "path",
SYSCTL_DESCR("Path pattern for set-id coredumps."),
sysctl_security_setidcorename, 0,
&security_setidcore_path,
sizeof(security_setidcore_path),
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "owner",
SYSCTL_DESCR("Owner id for set-id processes' cores."),
sysctl_security_setidcore, 0, &security_setidcore_owner,
0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "group",
SYSCTL_DESCR("Group id for set-id processes' cores."),
sysctl_security_setidcore, 0, &security_setidcore_group,
0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "mode",
SYSCTL_DESCR("Mode for set-id processes' cores."),
sysctl_security_setidcore, 0, &security_setidcore_mode,
0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "no_sa_support",
SYSCTL_DESCR("0 if the kernel supports SA, otherwise it doesn't"),
NULL, 1, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
}
SYSCTL_SETUP(sysctl_kern_proc_setup,
"sysctl kern.proc/proc2/proc_args subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc",
SYSCTL_DESCR("System-wide process information"),
sysctl_doeproc, 0, NULL, 0,
CTL_KERN, KERN_PROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc2",
SYSCTL_DESCR("Machine-independent process information"),
sysctl_doeproc, 0, NULL, 0,
CTL_KERN, KERN_PROC2, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc_args",
SYSCTL_DESCR("Process argument information"),
sysctl_kern_proc_args, 0, NULL, 0,
CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
/*
"nodes" under these:
KERN_PROC_ALL
KERN_PROC_PID pid
KERN_PROC_PGRP pgrp
KERN_PROC_SESSION sess
KERN_PROC_TTY tty
KERN_PROC_UID uid
KERN_PROC_RUID uid
KERN_PROC_GID gid
KERN_PROC_RGID gid
all in all, probably not worth the effort...
*/
}
SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
{
u_int u;
u_quad_t q;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0,
CTL_HW, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "machine",
SYSCTL_DESCR("Machine class"),
NULL, 0, machine, 0,
CTL_HW, HW_MACHINE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "model",
SYSCTL_DESCR("Machine model"),
NULL, 0, cpu_model, 0,
CTL_HW, HW_MODEL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "ncpu",
SYSCTL_DESCR("Number of CPUs configured"),
NULL, 0, &ncpu, 0,
CTL_HW, HW_NCPU, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "byteorder",
SYSCTL_DESCR("System byte order"),
NULL, BYTE_ORDER, NULL, 0,
CTL_HW, HW_BYTEORDER, CTL_EOL);
u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
UINT_MAX : physmem * PAGE_SIZE;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "physmem",
SYSCTL_DESCR("Bytes of physical memory"),
NULL, u, NULL, 0,
CTL_HW, HW_PHYSMEM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "usermem",
SYSCTL_DESCR("Bytes of non-kernel memory"),
sysctl_hw_usermem, 0, NULL, 0,
CTL_HW, HW_USERMEM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "pagesize",
SYSCTL_DESCR("Software page size"),
NULL, PAGE_SIZE, NULL, 0,
CTL_HW, HW_PAGESIZE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "machine_arch",
SYSCTL_DESCR("Machine CPU class"),
NULL, 0, machine_arch, 0,
CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "alignbytes",
SYSCTL_DESCR("Alignment constraint for all possible "
"data types"),
NULL, ALIGNBYTES, NULL, 0,
CTL_HW, HW_ALIGNBYTES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
CTLTYPE_STRING, "cnmagic",
SYSCTL_DESCR("Console magic key sequence"),
sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
CTL_HW, HW_CNMAGIC, CTL_EOL);
q = (u_quad_t)physmem * PAGE_SIZE;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_QUAD, "physmem64",
SYSCTL_DESCR("Bytes of physical memory"),
NULL, q, NULL, 0,
CTL_HW, HW_PHYSMEM64, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_QUAD, "usermem64",
SYSCTL_DESCR("Bytes of non-kernel memory"),
sysctl_hw_usermem, 0, NULL, 0,
CTL_HW, HW_USERMEM64, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "ncpuonline",
SYSCTL_DESCR("Number of CPUs online"),
NULL, 0, &ncpuonline, 0,
CTL_HW, HW_NCPUONLINE, CTL_EOL);
}
#ifdef DEBUG
/*
* Debugging related system variables.
*/
struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
struct ctldebug debug5, debug6, debug7, debug8, debug9;
struct ctldebug debug10, debug11, debug12, debug13, debug14;
struct ctldebug debug15, debug16, debug17, debug18, debug19;
static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
&debug0, &debug1, &debug2, &debug3, &debug4,
&debug5, &debug6, &debug7, &debug8, &debug9,
&debug10, &debug11, &debug12, &debug13, &debug14,
&debug15, &debug16, &debug17, &debug18, &debug19,
};
/*
* this setup routine is a replacement for debug_sysctl()
*
* note that it creates several nodes per defined debug variable
*/
SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
{
struct ctldebug *cdp;
char nodename[20];
int i;
/*
* two ways here:
*
* the "old" way (debug.name -> value) which was emulated by
* the sysctl(8) binary
*
* the new way, which the sysctl(8) binary was actually using
node debug
node debug.0
string debug.0.name
int debug.0.value
int debug.name
*/
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "debug", NULL,
NULL, 0, NULL, 0,
CTL_DEBUG, CTL_EOL);
for (i = 0; i < CTL_DEBUG_MAXID; i++) {
cdp = debugvars[i];
if (cdp->debugname == NULL || cdp->debugvar == NULL)
continue;
snprintf(nodename, sizeof(nodename), "debug%d", i);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
CTLTYPE_NODE, nodename, NULL,
NULL, 0, NULL, 0,
CTL_DEBUG, i, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
CTLTYPE_STRING, "name", NULL,
/*XXXUNCONST*/
NULL, 0, __UNCONST(cdp->debugname), 0,
CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
CTLTYPE_INT, "value", NULL,
NULL, 0, cdp->debugvar, 0,
CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, cdp->debugname, NULL,
NULL, 0, cdp->debugvar, 0,
CTL_DEBUG, CTL_CREATE, CTL_EOL);
}
}
#endif /* DEBUG */
/*
* ********************************************************************
* section 2: private node-specific helper routines.
* ********************************************************************
*/
#ifdef DIAGNOSTIC
static int
sysctl_kern_trigger_panic(SYSCTLFN_ARGS)
{
int newtrig, error;
struct sysctlnode node;
newtrig = 0;
node = *rnode;
node.sysctl_data = &newtrig;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (newtrig != 0)
panic("Panic triggered");
return (error);
}
#endif
/*
* sysctl helper routine for kern.maxvnodes. Drain vnodes if
* new value is lower than desiredvnodes and then calls reinit
* routines that needs to adjust to the new value.
*/
static int
sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
{
int error, new_vnodes, old_vnodes;
struct sysctlnode node;
new_vnodes = desiredvnodes;
node = *rnode;
node.sysctl_data = &new_vnodes;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
old_vnodes = desiredvnodes;
desiredvnodes = new_vnodes;
if (new_vnodes < old_vnodes) {
error = vfs_drainvnodes(new_vnodes, l);
if (error) {
desiredvnodes = old_vnodes;
return (error);
}
}
vfs_reinit();
nchreinit();
return (0);
}
/*
* sysctl helper routine for rtc_offset - set time after changes
*/
static int
sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
{
struct timespec ts, delta;
int error, new_rtc_offset;
struct sysctlnode node;
new_rtc_offset = rtc_offset;
node = *rnode;
node.sysctl_data = &new_rtc_offset;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
KAUTH_REQ_SYSTEM_TIME_RTCOFFSET,
KAUTH_ARG(new_rtc_offset), NULL, NULL))
return (EPERM);
if (rtc_offset == new_rtc_offset)
return (0);
/* if we change the offset, adjust the time */
nanotime(&ts);
delta.tv_sec = 60 * (new_rtc_offset - rtc_offset);
delta.tv_nsec = 0;
timespecadd(&ts, &delta, &ts);
rtc_offset = new_rtc_offset;
return (settime(l->l_proc, &ts));
}
/*
* sysctl helper routine for kern.maxproc. Ensures that the new
* values are not too low or too high.
*/
static int
sysctl_kern_maxproc(SYSCTLFN_ARGS)
{
int error, nmaxproc;
struct sysctlnode node;
nmaxproc = maxproc;
node = *rnode;
node.sysctl_data = &nmaxproc;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (nmaxproc < 0 || nmaxproc >= PID_MAX)
return (EINVAL);
#ifdef __HAVE_CPU_MAXPROC
if (nmaxproc > cpu_maxproc())
return (EINVAL);
#endif
maxproc = nmaxproc;
return (0);
}
/*
* sysctl helper function for kern.hostid. The hostid is a long, but
* we export it as an int, so we need to give it a little help.
*/
static int
sysctl_kern_hostid(SYSCTLFN_ARGS)
{
int error, inthostid;
struct sysctlnode node;
inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
node = *rnode;
node.sysctl_data = &inthostid;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
hostid = (unsigned)inthostid;
return (0);
}
/*
* sysctl helper function for kern.hostname and kern.domainnname.
* resets the relevant recorded length when the underlying name is
* changed.
*/
static int
sysctl_setlen(SYSCTLFN_ARGS)
{
int error;
error = sysctl_lookup(SYSCTLFN_CALL(rnode));
if (error || newp == NULL)
return (error);
switch (rnode->sysctl_num) {
case KERN_HOSTNAME:
hostnamelen = strlen((const char*)rnode->sysctl_data);
break;
case KERN_DOMAINNAME:
domainnamelen = strlen((const char*)rnode->sysctl_data);
break;
}
return (0);
}
/*
* sysctl helper routine for kern.clockrate. Assembles a struct on
* the fly to be returned to the caller.
*/
static int
sysctl_kern_clockrate(SYSCTLFN_ARGS)
{
struct clockinfo clkinfo;
struct sysctlnode node;
clkinfo.tick = tick;
clkinfo.tickadj = tickadj;
clkinfo.hz = hz;
clkinfo.profhz = profhz;
clkinfo.stathz = stathz ? stathz : hz;
node = *rnode;
node.sysctl_data = &clkinfo;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* sysctl helper routine for kern.file pseudo-subtree.
*/
static int
sysctl_kern_file(SYSCTLFN_ARGS)
{
int error;
size_t buflen;
struct file *fp, *dp, *np, fbuf;
char *start, *where;
start = where = oldp;
buflen = *oldlenp;
dp = NULL;
if (where == NULL) {
/*
* overestimate by 10 files
*/
*oldlenp = sizeof(filehead) + (nfiles + 10) *
sizeof(struct file);
return (0);
}
/*
* first dcopyout filehead
*/
if (buflen < sizeof(filehead)) {
*oldlenp = 0;
return (0);
}
sysctl_unlock();
error = dcopyout(l, &filehead, where, sizeof(filehead));
if (error) {
sysctl_relock();
return error;
}
buflen -= sizeof(filehead);
where += sizeof(filehead);
/*
* allocate dummy file descriptor to make position in list
*/
if ((dp = fgetdummy()) == NULL) {
sysctl_relock();
return ENOMEM;
}
/*
* followed by an array of file structures
*/
mutex_enter(&filelist_lock);
for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
/*
* XXX Need to prevent that from being an alternative way
* XXX to getting process information.
*/
if (kauth_authorize_generic(l->l_cred,
KAUTH_GENERIC_CANSEE, fp->f_cred) != 0) {
np = LIST_NEXT(fp, f_list);
continue;
}
if (buflen < sizeof(struct file)) {
*oldlenp = where - start;
mutex_exit(&filelist_lock);
error = ENOMEM;
break;
}
memcpy(&fbuf, fp, sizeof(fbuf));
LIST_INSERT_AFTER(fp, dp, f_list);
mutex_exit(&filelist_lock);
error = dcopyout(l, &fbuf, where, sizeof(fbuf));
if (error) {
mutex_enter(&filelist_lock);
LIST_REMOVE(dp, f_list);
break;
}
buflen -= sizeof(struct file);
where += sizeof(struct file);
mutex_enter(&filelist_lock);
np = LIST_NEXT(dp, f_list);
LIST_REMOVE(dp, f_list);
}
mutex_exit(&filelist_lock);
*oldlenp = where - start;
if (dp != NULL)
fputdummy(dp);
sysctl_relock();
return (error);
}
/*
* sysctl helper routine for kern.msgbufsize and kern.msgbuf. For the
* former it merely checks the message buffer is set up. For the latter,
* it also copies out the data if necessary.
*/
static int
sysctl_msgbuf(SYSCTLFN_ARGS)
{
char *where = oldp;
size_t len, maxlen;
long beg, end;
extern kmutex_t log_lock;
int error;
if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
msgbufenabled = 0;
return (ENXIO);
}
switch (rnode->sysctl_num) {
case KERN_MSGBUFSIZE: {
struct sysctlnode node = *rnode;
int msg_bufs = (int)msgbufp->msg_bufs;
node.sysctl_data = &msg_bufs;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
case KERN_MSGBUF:
break;
default:
return (EOPNOTSUPP);
}
if (newp != NULL)
return (EPERM);
if (oldp == NULL) {
/* always return full buffer size */
*oldlenp = msgbufp->msg_bufs;
return (0);
}
sysctl_unlock();
/*
* First, copy from the write pointer to the end of
* message buffer.
*/
error = 0;
mutex_spin_enter(&log_lock);
maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
beg = msgbufp->msg_bufx;
end = msgbufp->msg_bufs;
mutex_spin_exit(&log_lock);
while (maxlen > 0) {
len = MIN(end - beg, maxlen);
if (len == 0)
break;
/* XXX unlocked, but hardly matters. */
error = dcopyout(l, &msgbufp->msg_bufc[beg], where, len);
if (error)
break;
where += len;
maxlen -= len;
/*
* ... then, copy from the beginning of message buffer to
* the write pointer.
*/
beg = 0;
end = msgbufp->msg_bufx;
}
sysctl_relock();
return (error);
}
/*
* sysctl helper routine for kern.defcorename. In the case of a new
* string being assigned, check that it's not a zero-length string.
* (XXX the check in -current doesn't work, but do we really care?)
*/
static int
sysctl_kern_defcorename(SYSCTLFN_ARGS)
{
int error;
char *newcorename;
struct sysctlnode node;
newcorename = PNBUF_GET();
node = *rnode;
node.sysctl_data = &newcorename[0];
memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL) {
goto done;
}
/*
* when sysctl_lookup() deals with a string, it's guaranteed
* to come back nul terminated. So there. :)
*/
if (strlen(newcorename) == 0) {
error = EINVAL;
} else {
memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
error = 0;
}
done:
PNBUF_PUT(newcorename);
return error;
}
/*
* sysctl helper routine for kern.cp_time node. Adds up cpu time
* across all cpus.
*/
static int
sysctl_kern_cptime(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
uint64_t *cp_time = NULL;
int error, n = ncpu, i;
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
/*
* if you specifically pass a buffer that is the size of the
* sum, or if you are probing for the size, you get the "sum"
* of cp_time (and the size thereof) across all processors.
*
* alternately, you can pass an additional mib number and get
* cp_time for that particular processor.
*/
switch (namelen) {
case 0:
if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) {
node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
n = -1; /* SUM */
}
else {
node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES;
n = -2; /* ALL */
}
break;
case 1:
if (name[0] < 0 || name[0] >= n)
return (ENOENT); /* ENOSUCHPROCESSOR */
node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
n = name[0];
/*
* adjust these so that sysctl_lookup() will be happy
*/
name++;
namelen--;
break;
default:
return (EINVAL);
}
cp_time = kmem_alloc(node.sysctl_size, KM_SLEEP);
if (cp_time == NULL)
return (ENOMEM);
node.sysctl_data = cp_time;
memset(cp_time, 0, node.sysctl_size);
for (CPU_INFO_FOREACH(cii, ci)) {
if (n <= 0) {
for (i = 0; i < CPUSTATES; i++) {
cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
}
}
/*
* if a specific processor was requested and we just
* did it, we're done here
*/
if (n == 0)
break;
/*
* if doing "all", skip to next cp_time set for next processor
*/
if (n == -2)
cp_time += CPUSTATES;
/*
* if we're doing a specific processor, we're one
* processor closer
*/
if (n > 0)
n--;
}
error = sysctl_lookup(SYSCTLFN_CALL(&node));
kmem_free(node.sysctl_data, node.sysctl_size);
return (error);
}
#if NPTY > 0
/*
* sysctl helper routine for kern.maxptys. Ensures that any new value
* is acceptable to the pty subsystem.
*/
static int
sysctl_kern_maxptys(SYSCTLFN_ARGS)
{
int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
int error, xmax;
struct sysctlnode node;
/* get current value of maxptys */
xmax = pty_maxptys(0, 0);
node = *rnode;
node.sysctl_data = &xmax;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (xmax != pty_maxptys(xmax, 1))
return (EINVAL);
return (0);
}
#endif /* NPTY > 0 */
/*
* sysctl helper routine for kern.sbmax. Basically just ensures that
* any new value is not too small.
*/
static int
sysctl_kern_sbmax(SYSCTLFN_ARGS)
{
int error, new_sbmax;
struct sysctlnode node;
new_sbmax = sb_max;
node = *rnode;
node.sysctl_data = &new_sbmax;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
KERNEL_LOCK(1, NULL);
error = sb_max_set(new_sbmax);
KERNEL_UNLOCK_ONE(NULL);
return (error);
}
/*
* sysctl helper routine for kern.urandom node. Picks a random number
* for you.
*/
static int
sysctl_kern_urnd(SYSCTLFN_ARGS)
{
#if NRND > 0
int v, rv;
KERNEL_LOCK(1, NULL);
rv = rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY);
KERNEL_UNLOCK_ONE(NULL);
if (rv == sizeof(v)) {
struct sysctlnode node = *rnode;
node.sysctl_data = &v;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
else
return (EIO); /*XXX*/
#else
return (EOPNOTSUPP);
#endif
}
/*
* sysctl helper routine for kern.arandom node. Picks a random number
* for you.
*/
static int
sysctl_kern_arnd(SYSCTLFN_ARGS)
{
#if NRND > 0
int error;
void *v;
struct sysctlnode node = *rnode;
if (*oldlenp == 0)
return 0;
if (*oldlenp > 8192)
return E2BIG;
v = kmem_alloc(*oldlenp, KM_SLEEP);
arc4randbytes(v, *oldlenp);
node.sysctl_data = v;
node.sysctl_size = *oldlenp;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
kmem_free(v, *oldlenp);
return error;
#else
return (EOPNOTSUPP);
#endif
}
/*
* sysctl helper routine to do kern.lwp.* work.
*/
static int
sysctl_kern_lwp(SYSCTLFN_ARGS)
{
struct kinfo_lwp klwp;
struct proc *p;
struct lwp *l2, *l3;
char *where, *dp;
int pid, elem_size, elem_count;
int buflen, needed, error;
bool gotit;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
dp = where = oldp;
buflen = where != NULL ? *oldlenp : 0;
error = needed = 0;
if (newp != NULL || namelen != 3)
return (EINVAL);
pid = name[0];
elem_size = name[1];
elem_count = name[2];
sysctl_unlock();
if (pid == -1) {
mutex_enter(&proclist_lock);
LIST_FOREACH(p, &allproc, p_list) {
/* Grab a hold on the process. */
if (!rw_tryenter(&p->p_reflock, RW_READER)) {
continue;
}
mutex_exit(&proclist_lock);
mutex_enter(&p->p_smutex);
LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
if (buflen >= elem_size && elem_count > 0) {
lwp_lock(l2);
fill_lwp(l2, &klwp);
lwp_unlock(l2);
mutex_exit(&p->p_smutex);
/*
* Copy out elem_size, but not
* larger than the size of a
* struct kinfo_proc2.
*/
error = dcopyout(l, &klwp, dp,
min(sizeof(klwp), elem_size));
if (error) {
rw_exit(&p->p_reflock);
goto cleanup;
}
mutex_enter(&p->p_smutex);
LIST_FOREACH(l3, &p->p_lwps,
l_sibling) {
if (l2 == l3)
break;
}
if (l3 == NULL) {
mutex_exit(&p->p_smutex);
rw_exit(&p->p_reflock);
error = EAGAIN;
goto cleanup;
}
dp += elem_size;
buflen -= elem_size;
elem_count--;
}
needed += elem_size;
}
mutex_exit(&p->p_smutex);
/* Drop reference to process. */
mutex_enter(&proclist_lock);
rw_exit(&p->p_reflock);
}
mutex_exit(&proclist_lock);
} else {
mutex_enter(&proclist_lock);
p = p_find(pid, PFIND_LOCKED);
if (p == NULL) {
error = ESRCH;
mutex_exit(&proclist_lock);
goto cleanup;
}
/* Grab a hold on the process. */
gotit = rw_tryenter(&p->p_reflock, RW_READER);
mutex_exit(&proclist_lock);
if (!gotit) {
error = ESRCH;
goto cleanup;
}
mutex_enter(&p->p_smutex);
LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
if (buflen >= elem_size && elem_count > 0) {
lwp_lock(l2);
fill_lwp(l2, &klwp);
lwp_unlock(l2);
mutex_exit(&p->p_smutex);
/*
* Copy out elem_size, but not larger than
* the size of a struct kinfo_proc2.
*/
error = dcopyout(l, &klwp, dp,
min(sizeof(klwp), elem_size));
if (error) {
rw_exit(&p->p_reflock);
goto cleanup;
}
mutex_enter(&p->p_smutex);
LIST_FOREACH(l3, &p->p_lwps, l_sibling) {
if (l2 == l3)
break;
}
if (l3 == NULL) {
mutex_exit(&p->p_smutex);
rw_exit(&p->p_reflock);
error = EAGAIN;
goto cleanup;
}
dp += elem_size;
buflen -= elem_size;
elem_count--;
}
needed += elem_size;
}
mutex_exit(&p->p_smutex);
/* Drop reference to process. */
rw_exit(&p->p_reflock);
}
if (where != NULL) {
*oldlenp = dp - where;
if (needed > *oldlenp) {
sysctl_relock();
return (ENOMEM);
}
} else {
needed += KERN_LWPSLOP;
*oldlenp = needed;
}
error = 0;
cleanup:
sysctl_relock();
return (error);
}
/*
* sysctl helper routine for kern.forkfsleep node. Ensures that the
* given value is not too large or two small, and is at least one
* timer tick if not zero.
*/
static int
sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
{
/* userland sees value in ms, internally is in ticks */
extern int forkfsleep; /* defined in kern/kern_fork.c */
int error, timo, lsleep;
struct sysctlnode node;
lsleep = forkfsleep * 1000 / hz;
node = *rnode;
node.sysctl_data = &lsleep;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
/* refuse negative values, and overly 'long time' */
if (lsleep < 0 || lsleep > MAXSLP * 1000)
return (EINVAL);
timo = mstohz(lsleep);
/* if the interval is >0 ms && <1 tick, use 1 tick */
if (lsleep != 0 && timo == 0)
forkfsleep = 1;
else
forkfsleep = timo;
return (0);
}
/*
* sysctl helper routine for kern.root_partition
*/
static int
sysctl_kern_root_partition(SYSCTLFN_ARGS)
{
int rootpart = DISKPART(rootdev);
struct sysctlnode node = *rnode;
node.sysctl_data = &rootpart;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* sysctl helper function for kern.drivers
*/
static int
sysctl_kern_drivers(SYSCTLFN_ARGS)
{
int error;
size_t buflen;
struct kinfo_drivers kd;
char *start, *where;
const char *dname;
int i;
extern struct devsw_conv *devsw_conv;
extern int max_devsw_convs;
extern kmutex_t devsw_lock;
if (newp != NULL || namelen != 0)
return (EINVAL);
start = where = oldp;
buflen = *oldlenp;
if (where == NULL) {
*oldlenp = max_devsw_convs * sizeof kd;
return 0;
}
/*
* An array of kinfo_drivers structures
*/
error = 0;
sysctl_unlock();
mutex_enter(&devsw_lock);
for (i = 0; i < max_devsw_convs; i++) {
dname = devsw_conv[i].d_name;
if (dname == NULL)
continue;
if (buflen < sizeof kd) {
error = ENOMEM;
break;
}
memset(&kd, 0, sizeof(kd));
kd.d_bmajor = devsw_conv[i].d_bmajor;
kd.d_cmajor = devsw_conv[i].d_cmajor;
strlcpy(kd.d_name, dname, sizeof kd.d_name);
mutex_exit(&devsw_lock);
error = dcopyout(l, &kd, where, sizeof kd);
mutex_enter(&devsw_lock);
if (error != 0)
break;
buflen -= sizeof kd;
where += sizeof kd;
}
mutex_exit(&devsw_lock);
sysctl_relock();
*oldlenp = where - start;
return error;
}
/*
* sysctl helper function for kern.file2
*/
static int
sysctl_kern_file2(SYSCTLFN_ARGS)
{
struct proc *p;
struct file *fp;
struct filedesc *fd;
struct kinfo_file kf;
char *dp;
u_int i, op;
size_t len, needed, elem_size, out_size;
int error, arg, elem_count;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
if (namelen != 4)
return (EINVAL);
error = 0;
dp = oldp;
len = (oldp != NULL) ? *oldlenp : 0;
op = name[0];
arg = name[1];
elem_size = name[2];
elem_count = name[3];
out_size = MIN(sizeof(kf), elem_size);
needed = 0;
if (elem_size < 1 || elem_count < 0)
return (EINVAL);
switch (op) {
case KERN_FILE_BYFILE:
/*
* doesn't use arg so it must be zero
*/
if (arg != 0)
return (EINVAL);
sysctl_unlock();
mutex_enter(&filelist_lock);
LIST_FOREACH(fp, &filehead, f_list) {
/*
* XXX Need to prevent that from being an alternative
* XXX way for getting process information.
*/
if (kauth_authorize_generic(l->l_cred,
KAUTH_GENERIC_CANSEE, fp->f_cred) != 0)
continue;
mutex_enter(&fp->f_lock);
if (fp->f_count == 0) {
mutex_exit(&fp->f_lock);
continue;
}
FILE_USE(fp);
if (len >= elem_size && elem_count > 0) {
fill_file(&kf, fp, NULL, 0);
error = dcopyout(l, &kf, dp, out_size);
if (error) {
mutex_enter(&filelist_lock);
FILE_UNUSE(fp, NULL);
break;
}
dp += elem_size;
len -= elem_size;
}
if (elem_count > 0) {
needed += elem_size;
if (elem_count != INT_MAX)
elem_count--;
}
/* XXXAD can't work?? */
mutex_enter(&filelist_lock);
FILE_UNUSE(fp, NULL);
}
mutex_exit(&filelist_lock);
sysctl_relock();
break;
case KERN_FILE_BYPID:
if (arg < -1)
/* -1 means all processes */
return (EINVAL);
sysctl_unlock();
/* XXX Why not use pfind()? */
mutex_enter(&proclist_lock);
LIST_FOREACH(p, &allproc, p_list) {
if (p->p_stat == SIDL) {
/* skip embryonic processes */
continue;
}
if (arg > 0 && p->p_pid != arg) {
/* pick only the one we want */
/* XXX want 0 to mean "kernel files" */
continue;
}
mutex_enter(&p->p_mutex);
error = kauth_authorize_process(l->l_cred,
KAUTH_PROCESS_CANSEE, p,
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
NULL, NULL);
mutex_exit(&p->p_mutex);
if (error != 0) {
continue;
}
/*
* Grab a hold on the process.
*/
if (!rw_tryenter(&p->p_reflock, RW_READER)) {
continue;
}
mutex_exit(&proclist_lock);
/* XXX Do we need to check permission per file? */
fd = p->p_fd;
rw_enter(&fd->fd_lock, RW_READER);
for (i = 0; i < fd->fd_nfiles; i++) {
fp = fd->fd_ofiles[i];
if (fp == NULL) {
continue;
}
mutex_enter(&fp->f_lock);
if (!FILE_IS_USABLE(fp)) {
mutex_exit(&fp->f_lock);
continue;
}
if (len >= elem_size && elem_count > 0) {
fill_file(&kf, fd->fd_ofiles[i], p, i);
mutex_exit(&fp->f_lock);
rw_exit(&fd->fd_lock);
error = dcopyout(l, &kf, dp, out_size);
rw_enter(&fd->fd_lock, RW_READER);
if (error)
break;
dp += elem_size;
len -= elem_size;
} else {
mutex_exit(&fp->f_lock);
}
if (elem_count > 0) {
needed += elem_size;
if (elem_count != INT_MAX)
elem_count--;
}
}
rw_exit(&fd->fd_lock);
/*
* Release reference to process.
*/
mutex_enter(&proclist_lock);
rw_exit(&p->p_reflock);
}
mutex_exit(&proclist_lock);
sysctl_relock();
break;
default:
return (EINVAL);
}
if (oldp == NULL)
needed += KERN_FILESLOP * elem_size;
*oldlenp = needed;
return (error);
}
static void
fill_file(struct kinfo_file *kp, const struct file *fp, struct proc *p, int i)
{
memset(kp, 0, sizeof(*kp));
kp->ki_fileaddr = PTRTOUINT64(fp);
kp->ki_flag = fp->f_flag;
kp->ki_iflags = fp->f_iflags;
kp->ki_ftype = fp->f_type;
kp->ki_count = fp->f_count;
kp->ki_msgcount = fp->f_msgcount;
kp->ki_usecount = fp->f_usecount;
kp->ki_fucred = PTRTOUINT64(fp->f_cred);
kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
kp->ki_fops = PTRTOUINT64(fp->f_ops);
kp->ki_foffset = fp->f_offset;
kp->ki_fdata = PTRTOUINT64(fp->f_data);
/* vnode information to glue this file to something */
if (fp->f_type == DTYPE_VNODE) {
struct vnode *vp = (struct vnode *)fp->f_data;
kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
kp->ki_vsize = vp->v_size;
kp->ki_vtype = vp->v_type;
kp->ki_vtag = vp->v_tag;
kp->ki_vdata = PTRTOUINT64(vp->v_data);
}
/* process information when retrieved via KERN_FILE_BYPID */
if (p) {
KASSERT(rw_lock_held(&p->p_fd->fd_lock));
kp->ki_pid = p->p_pid;
kp->ki_fd = i;
kp->ki_ofileflags = p->p_fd->fd_ofileflags[i];
}
}
static int
sysctl_doeproc(SYSCTLFN_ARGS)
{
struct eproc *eproc;
struct kinfo_proc2 *kproc2;
struct kinfo_proc *dp;
struct proc *p;
char *where, *dp2;
int type, op, arg;
u_int elem_size, elem_count;
size_t buflen, needed;
bool match;
int error;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
dp = oldp;
dp2 = where = oldp;
buflen = where != NULL ? *oldlenp : 0;
error = 0;
needed = 0;
type = rnode->sysctl_num;
if (type == KERN_PROC) {
if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
return (EINVAL);
op = name[0];
if (op != KERN_PROC_ALL)
arg = name[1];
else
arg = 0; /* Quell compiler warning */
elem_size = elem_count = 0; /* Ditto */
} else {
if (namelen != 4)
return (EINVAL);
op = name[0];
arg = name[1];
elem_size = name[2];
elem_count = name[3];
}
sysctl_unlock();
if (type == KERN_PROC) {
eproc = kmem_alloc(sizeof(*eproc), KM_SLEEP);
kproc2 = NULL;
} else {
eproc = NULL;
kproc2 = kmem_alloc(sizeof(*kproc2), KM_SLEEP);
}
mutex_enter(&proclist_lock);
LIST_FOREACH(p, &allproc, p_list) {
/*
* Skip embryonic processes.
*/
if (p->p_stat == SIDL)
continue;
mutex_enter(&p->p_mutex);
error = kauth_authorize_process(l->l_cred,
KAUTH_PROCESS_CANSEE, p,
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
if (error != 0) {
mutex_exit(&p->p_mutex);
continue;
}
/*
* TODO - make more efficient (see notes below).
* do by session.
*/
switch (op) {
case KERN_PROC_PID:
/* could do this with just a lookup */
match = (p->p_pid == (pid_t)arg);
break;
case KERN_PROC_PGRP:
/* could do this by traversing pgrp */
match = (p->p_pgrp->pg_id == (pid_t)arg);
break;
case KERN_PROC_SESSION:
match = (p->p_session->s_sid == (pid_t)arg);
break;
case KERN_PROC_TTY:
match = true;
if (arg == (int) KERN_PROC_TTY_REVOKE) {
if ((p->p_lflag & PL_CONTROLT) == 0 ||
p->p_session->s_ttyp == NULL ||
p->p_session->s_ttyvp != NULL) {
match = false;
}
} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
p->p_session->s_ttyp == NULL) {
if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
match = false;
}
} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
match = false;
}
break;
case KERN_PROC_UID:
match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
break;
case KERN_PROC_RUID:
match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
break;
case KERN_PROC_GID:
match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
break;
case KERN_PROC_RGID:
match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
break;
case KERN_PROC_ALL:
match = true;
/* allow everything */
break;
default:
error = EINVAL;
mutex_exit(&p->p_mutex);
goto cleanup;
}
if (!match) {
mutex_exit(&p->p_mutex);
continue;
}
/*
* Grab a hold on the process.
*/
if (!rw_tryenter(&p->p_reflock, RW_READER)) {
mutex_exit(&p->p_mutex);
continue;
}
if (type == KERN_PROC) {
if (buflen >= sizeof(struct kinfo_proc)) {
fill_eproc(p, eproc);
mutex_exit(&p->p_mutex);
mutex_exit(&proclist_lock);
error = dcopyout(l, p, &dp->kp_proc,
sizeof(struct proc));
mutex_enter(&proclist_lock);
if (error)
goto cleanup;
error = dcopyout(l, eproc, &dp->kp_eproc,
sizeof(*eproc));
if (error)
goto cleanup;
dp++;
buflen -= sizeof(struct kinfo_proc);
} else {
mutex_exit(&p->p_mutex);
}
needed += sizeof(struct kinfo_proc);
} else { /* KERN_PROC2 */
if (buflen >= elem_size && elem_count > 0) {
fill_kproc2(p, kproc2);
mutex_exit(&p->p_mutex);
mutex_exit(&proclist_lock);
/*
* Copy out elem_size, but not larger than
* the size of a struct kinfo_proc2.
*/
error = dcopyout(l, kproc2, dp2,
min(sizeof(*kproc2), elem_size));
mutex_enter(&proclist_lock);
if (error)
goto cleanup;
dp2 += elem_size;
buflen -= elem_size;
elem_count--;
} else {
mutex_exit(&p->p_mutex);
}
needed += elem_size;
}
/*
* Release reference to process.
*/
rw_exit(&p->p_reflock);
}
mutex_exit(&proclist_lock);
if (where != NULL) {
if (type == KERN_PROC)
*oldlenp = (char *)dp - where;
else
*oldlenp = dp2 - where;
if (needed > *oldlenp) {
error = ENOMEM;
goto out;
}
} else {
needed += KERN_PROCSLOP;
*oldlenp = needed;
}
if (kproc2)
kmem_free(kproc2, sizeof(*kproc2));
if (eproc)
kmem_free(eproc, sizeof(*eproc));
sysctl_relock();
return 0;
cleanup:
mutex_exit(&proclist_lock);
out:
if (kproc2)
kmem_free(kproc2, sizeof(*kproc2));
if (eproc)
kmem_free(eproc, sizeof(*eproc));
sysctl_relock();
return error;
}
/*
* sysctl helper routine for kern.proc_args pseudo-subtree.
*/
static int
sysctl_kern_proc_args(SYSCTLFN_ARGS)
{
struct ps_strings pss;
struct proc *p;
size_t len, i;
struct uio auio;
struct iovec aiov;
pid_t pid;
int nargv, type, error, argvlen;
char *arg;
char **argv = NULL;
char *tmp;
struct vmspace *vmspace;
vaddr_t psstr_addr;
vaddr_t offsetn;
vaddr_t offsetv;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
if (newp != NULL || namelen != 2)
return (EINVAL);
pid = name[0];
type = name[1];
argv = NULL;
argvlen = 0;
switch (type) {
case KERN_PROC_ARGV:
case KERN_PROC_NARGV:
case KERN_PROC_ENV:
case KERN_PROC_NENV:
/* ok */
break;
default:
return (EINVAL);
}
sysctl_unlock();
/* check pid */
mutex_enter(&proclist_lock);
if ((p = p_find(pid, PFIND_LOCKED)) == NULL) {
error = EINVAL;
goto out_locked;
}
mutex_enter(&p->p_mutex);
/* Check permission. */
if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
else
error = EINVAL; /* XXXGCC */
if (error) {
mutex_exit(&p->p_mutex);
goto out_locked;
}
if (oldp == NULL) {
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
*oldlenp = sizeof (int);
else
*oldlenp = ARG_MAX; /* XXX XXX XXX */
error = 0;
mutex_exit(&p->p_mutex);
goto out_locked;
}
/*
* Zombies don't have a stack, so we can't read their psstrings.
* System processes also don't have a user stack.
*/
if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
error = EINVAL;
mutex_exit(&p->p_mutex);
goto out_locked;
}
/*
* Lock the process down in memory.
*/
psstr_addr = (vaddr_t)p->p_psstr;
if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
offsetn = p->p_psnargv;
offsetv = p->p_psargv;
} else {
offsetn = p->p_psnenv;
offsetv = p->p_psenv;
}
vmspace = p->p_vmspace;
uvmspace_addref(vmspace);
mutex_exit(&p->p_mutex);
mutex_exit(&proclist_lock);
/*
* Allocate a temporary buffer to hold the arguments.
*/
arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
/*
* Read in the ps_strings structure.
*/
aiov.iov_base = &pss;
aiov.iov_len = sizeof(pss);
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = psstr_addr;
auio.uio_resid = sizeof(pss);
auio.uio_rw = UIO_READ;
UIO_SETUP_SYSSPACE(&auio);
error = uvm_io(&vmspace->vm_map, &auio);
if (error)
goto done;
memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
error = dcopyout(l, &nargv, oldp, sizeof(nargv));
*oldlenp = sizeof(nargv);
goto done;
}
/*
* Now read the address of the argument vector.
*/
switch (type) {
case KERN_PROC_ARGV:
/* FALLTHROUGH */
case KERN_PROC_ENV:
memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
break;
default:
error = EINVAL;
goto done;
}
#ifdef COMPAT_NETBSD32
if (p->p_flag & PK_32)
len = sizeof(netbsd32_charp) * nargv;
else
#endif
len = sizeof(char *) * nargv;
if ((argvlen = len) != 0)
argv = kmem_alloc(len, KM_SLEEP);
aiov.iov_base = argv;
aiov.iov_len = len;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = (off_t)(unsigned long)tmp;
auio.uio_resid = len;
auio.uio_rw = UIO_READ;
UIO_SETUP_SYSSPACE(&auio);
error = uvm_io(&vmspace->vm_map, &auio);
if (error)
goto done;
/*
* Now copy each string.
*/
len = 0; /* bytes written to user buffer */
for (i = 0; i < nargv; i++) {
int finished = 0;
vaddr_t base;
size_t xlen;
int j;
#ifdef COMPAT_NETBSD32
if (p->p_flag & PK_32) {
netbsd32_charp *argv32;
argv32 = (netbsd32_charp *)argv;
base = (vaddr_t)NETBSD32PTR64(argv32[i]);
} else
#endif
base = (vaddr_t)argv[i];
/*
* The program has messed around with its arguments,
* possibly deleting some, and replacing them with
* NULL's. Treat this as the last argument and not
* a failure.
*/
if (base == 0)
break;
while (!finished) {
xlen = PAGE_SIZE - (base & PAGE_MASK);
aiov.iov_base = arg;
aiov.iov_len = PAGE_SIZE;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = base;
auio.uio_resid = xlen;
auio.uio_rw = UIO_READ;
UIO_SETUP_SYSSPACE(&auio);
error = uvm_io(&vmspace->vm_map, &auio);
if (error)
goto done;
/* Look for the end of the string */
for (j = 0; j < xlen; j++) {
if (arg[j] == '\0') {
xlen = j + 1;
finished = 1;
break;
}
}
/* Check for user buffer overflow */
if (len + xlen > *oldlenp) {
finished = 1;
if (len > *oldlenp)
xlen = 0;
else
xlen = *oldlenp - len;
}
/* Copyout the page */
error = dcopyout(l, arg, (char *)oldp + len, xlen);
if (error)
goto done;
len += xlen;
base += xlen;
}
}
*oldlenp = len;
done:
if (argvlen != 0)
kmem_free(argv, argvlen);
uvmspace_free(vmspace);
kmem_free(arg, PAGE_SIZE);
sysctl_relock();
return error;
out_locked:
mutex_exit(&proclist_lock);
sysctl_relock();
return error;
}
static int
sysctl_security_setidcore(SYSCTLFN_ARGS)
{
int newsize, error;
struct sysctlnode node;
node = *rnode;
node.sysctl_data = &newsize;
newsize = *(int *)rnode->sysctl_data;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
0, NULL, NULL, NULL))
return (EPERM);
*(int *)rnode->sysctl_data = newsize;
return 0;
}
static int
sysctl_security_setidcorename(SYSCTLFN_ARGS)
{
int error;
char *newsetidcorename;
struct sysctlnode node;
newsetidcorename = PNBUF_GET();
node = *rnode;
node.sysctl_data = newsetidcorename;
memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL) {
goto out;
}
if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
0, NULL, NULL, NULL)) {
error = EPERM;
goto out;
}
if (strlen(newsetidcorename) == 0) {
error = EINVAL;
goto out;
}
memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
out:
PNBUF_PUT(newsetidcorename);
return error;
}
/*
* sysctl helper routine for kern.cp_id node. Maps cpus to their
* cpuids.
*/
static int
sysctl_kern_cpid(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
uint64_t *cp_id = NULL;
int error, n = ncpu;
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
/*
* Here you may either retrieve a single cpu id or the whole
* set. The size you get back when probing depends on what
* you ask for.
*/
switch (namelen) {
case 0:
node.sysctl_size = n * sizeof(uint64_t);
n = -2; /* ALL */
break;
case 1:
if (name[0] < 0 || name[0] >= n)
return (ENOENT); /* ENOSUCHPROCESSOR */
node.sysctl_size = sizeof(uint64_t);
n = name[0];
/*
* adjust these so that sysctl_lookup() will be happy
*/
name++;
namelen--;
break;
default:
return (EINVAL);
}
cp_id = kmem_alloc(node.sysctl_size, KM_SLEEP);
if (cp_id == NULL)
return (ENOMEM);
node.sysctl_data = cp_id;
memset(cp_id, 0, node.sysctl_size);
for (CPU_INFO_FOREACH(cii, ci)) {
if (n <= 0)
cp_id[0] = ci->ci_cpuid;
/*
* if a specific processor was requested and we just
* did it, we're done here
*/
if (n == 0)
break;
/*
* if doing "all", skip to next cp_id slot for next processor
*/
if (n == -2)
cp_id++;
/*
* if we're doing a specific processor, we're one
* processor closer
*/
if (n > 0)
n--;
}
error = sysctl_lookup(SYSCTLFN_CALL(&node));
kmem_free(node.sysctl_data, node.sysctl_size);
return (error);
}
/*
* sysctl helper routine for hw.usermem and hw.usermem64. Values are
* calculate on the fly taking into account integer overflow and the
* current wired count.
*/
static int
sysctl_hw_usermem(SYSCTLFN_ARGS)
{
u_int ui;
u_quad_t uq;
struct sysctlnode node;
node = *rnode;
switch (rnode->sysctl_num) {
case HW_USERMEM:
if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
ui = UINT_MAX;
else
ui *= PAGE_SIZE;
node.sysctl_data = &ui;
break;
case HW_USERMEM64:
uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
node.sysctl_data = &uq;
break;
default:
return (EINVAL);
}
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* sysctl helper routine for kern.cnmagic node. Pulls the old value
* out, encoded, and stuffs the new value in for decoding.
*/
static int
sysctl_hw_cnmagic(SYSCTLFN_ARGS)
{
char magic[CNS_LEN];
int error;
struct sysctlnode node;
if (oldp)
cn_get_magic(magic, CNS_LEN);
node = *rnode;
node.sysctl_data = &magic[0];
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
return (cn_set_magic(magic));
}
/*
* ********************************************************************
* section 3: public helper routines that are used for more than one
* node
* ********************************************************************
*/
/*
* sysctl helper routine for the kern.root_device node and some ports'
* machdep.root_device nodes.
*/
int
sysctl_root_device(SYSCTLFN_ARGS)
{
struct sysctlnode node;
node = *rnode;
node.sysctl_data = root_device->dv_xname;
node.sysctl_size = strlen(root_device->dv_xname) + 1;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* sysctl helper routine for kern.consdev, dependent on the current
* state of the console. Also used for machdep.console_device on some
* ports.
*/
int
sysctl_consdev(SYSCTLFN_ARGS)
{
dev_t consdev;
struct sysctlnode node;
if (cn_tab != NULL)
consdev = cn_tab->cn_dev;
else
consdev = NODEV;
node = *rnode;
node.sysctl_data = &consdev;
node.sysctl_size = sizeof(consdev);
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* ********************************************************************
* section 4: support for some helpers
* ********************************************************************
*/
/*
* Fill in a kinfo_proc2 structure for the specified process.
*/
static void
fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
{
struct tty *tp;
struct lwp *l, *l2;
struct timeval ut, st, rt;
sigset_t ss1, ss2;
KASSERT(mutex_owned(&proclist_lock));
KASSERT(mutex_owned(&p->p_mutex));
memset(ki, 0, sizeof(*ki));
ki->p_paddr = PTRTOUINT64(p);
ki->p_fd = PTRTOUINT64(p->p_fd);
ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
ki->p_stats = PTRTOUINT64(p->p_stats);
ki->p_limit = PTRTOUINT64(p->p_limit);
ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
ki->p_sess = PTRTOUINT64(p->p_session);
ki->p_tsess = 0; /* may be changed if controlling tty below */
ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
ki->p_eflag = 0;
ki->p_exitsig = p->p_exitsig;
ki->p_flag = sysctl_map_flags(sysctl_flagmap, p->p_flag);
ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
ki->p_pid = p->p_pid;
if (p->p_pptr)
ki->p_ppid = p->p_pptr->p_pid;
else
ki->p_ppid = 0;
ki->p_sid = p->p_session->s_sid;
ki->p__pgid = p->p_pgrp->pg_id;
ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
ki->p_uid = kauth_cred_geteuid(p->p_cred);
ki->p_ruid = kauth_cred_getuid(p->p_cred);
ki->p_gid = kauth_cred_getegid(p->p_cred);
ki->p_rgid = kauth_cred_getgid(p->p_cred);
ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
kauth_cred_getgroups(p->p_cred, ki->p_groups,
min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
UIO_SYSSPACE);
ki->p_jobc = p->p_pgrp->pg_jobc;
if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
ki->p_tdev = tp->t_dev;
ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
ki->p_tsess = PTRTOUINT64(tp->t_session);
} else {
ki->p_tdev = NODEV;
}
mutex_enter(&p->p_smutex);
ki->p_uticks = p->p_uticks;
ki->p_sticks = p->p_sticks;
ki->p_iticks = p->p_iticks;
ki->p_tracep = PTRTOUINT64(p->p_tracep);
ki->p_traceflag = p->p_traceflag;
memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
ki->p_cpticks = 0;
ki->p_pctcpu = p->p_pctcpu;
ki->p_estcpu = 0;
ss1 = p->p_sigpend.sp_set;
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
/* This is hardly correct, but... */
sigplusset(&l->l_sigpend.sp_set, &ss1);
sigplusset(&l->l_sigmask, &ss2);
ki->p_cpticks += l->l_cpticks;
ki->p_pctcpu += l->l_pctcpu;
ki->p_estcpu += l->l_estcpu;
}
memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
ki->p_realstat = p->p_stat;
ki->p_nice = p->p_nice;
ki->p_xstat = p->p_xstat;
ki->p_acflag = p->p_acflag;
strncpy(ki->p_comm, p->p_comm,
min(sizeof(ki->p_comm), sizeof(p->p_comm)));
strncpy(ki->p_login, p->p_session->s_login,
min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
ki->p_nlwps = p->p_nlwps;
ki->p_realflag = ki->p_flag;
if (p->p_stat == SIDL || P_ZOMBIE(p)) {
ki->p_vm_rssize = 0;
ki->p_vm_tsize = 0;
ki->p_vm_dsize = 0;
ki->p_vm_ssize = 0;
ki->p_nrlwps = 0;
l = NULL;
} else {
struct vmspace *vm = p->p_vmspace;
int tmp;
ki->p_vm_rssize = vm_resident_count(vm);
ki->p_vm_tsize = vm->vm_tsize;
ki->p_vm_dsize = vm->vm_dsize;
ki->p_vm_ssize = vm->vm_ssize;
/* Pick a "representative" LWP */
l = proc_representative_lwp(p, &tmp, 1);
lwp_lock(l);
ki->p_nrlwps = tmp;
ki->p_forw = 0;
ki->p_back = 0;
ki->p_addr = PTRTOUINT64(l->l_addr);
ki->p_stat = l->l_stat;
ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
ki->p_swtime = l->l_swtime;
ki->p_slptime = l->l_slptime;
if (l->l_stat == LSONPROC)
ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
else
ki->p_schedflags = 0;
ki->p_holdcnt = l->l_holdcnt;
ki->p_priority = lwp_eprio(l);
ki->p_usrpri = l->l_priority;
if (l->l_wmesg)
strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
ki->p_wchan = PTRTOUINT64(l->l_wchan);
lwp_unlock(l);
}
if (p->p_session->s_ttyvp)
ki->p_eflag |= EPROC_CTTY;
if (SESS_LEADER(p))
ki->p_eflag |= EPROC_SLEADER;
/* XXX Is this double check necessary? */
if (P_ZOMBIE(p)) {
ki->p_uvalid = 0;
ki->p_rtime_sec = 0;
ki->p_rtime_usec = 0;
} else {
ki->p_uvalid = 1;
ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
calcru(p, &ut, &st, NULL, &rt);
ki->p_rtime_sec = rt.tv_sec;
ki->p_rtime_usec = rt.tv_usec;
ki->p_uutime_sec = ut.tv_sec;
ki->p_uutime_usec = ut.tv_usec;
ki->p_ustime_sec = st.tv_sec;
ki->p_ustime_usec = st.tv_usec;
ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
ki->p_uru_nvcsw = 0;
ki->p_uru_nivcsw = 0;
LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
ki->p_uru_nvcsw += (l->l_ncsw - l->l_nivcsw);
ki->p_uru_nivcsw += l->l_nivcsw;
}
timeradd(&p->p_stats->p_cru.ru_utime,
&p->p_stats->p_cru.ru_stime, &ut);
ki->p_uctime_sec = ut.tv_sec;
ki->p_uctime_usec = ut.tv_usec;
}
if (l != NULL)
ki->p_cpuid = l->l_cpu->ci_cpuid;
mutex_exit(&p->p_smutex);
}
/*
* Fill in a kinfo_lwp structure for the specified lwp.
*/
static void
fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
{
struct proc *p = l->l_proc;
struct timeval tv;
kl->l_forw = 0;
kl->l_back = 0;
kl->l_laddr = PTRTOUINT64(l);
kl->l_addr = PTRTOUINT64(l->l_addr);
kl->l_stat = l->l_stat;
kl->l_lid = l->l_lid;
kl->l_flag = sysctl_map_flags(sysctl_lwpprflagmap, l->l_prflag);
kl->l_swtime = l->l_swtime;
kl->l_slptime = l->l_slptime;
if (l->l_stat == LSONPROC)
kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
else
kl->l_schedflags = 0;
kl->l_holdcnt = l->l_holdcnt;
kl->l_priority = lwp_eprio(l);
kl->l_usrpri = l->l_priority;
if (l->l_wmesg)
strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
kl->l_wchan = PTRTOUINT64(l->l_wchan);
kl->l_cpuid = l->l_cpu->ci_cpuid;
bintime2timeval(&l->l_rtime, &tv);
kl->l_rtime_sec = tv.tv_sec;
kl->l_rtime_usec = tv.tv_usec;
kl->l_cpticks = l->l_cpticks;
kl->l_pctcpu = l->l_pctcpu;
kl->l_pid = p->p_pid;
if (l->l_name == NULL)
kl->l_name[0] = '\0';
else
strlcpy(kl->l_name, l->l_name, sizeof(kl->l_name));
}
/*
* Fill in an eproc structure for the specified process.
*/
void
fill_eproc(struct proc *p, struct eproc *ep)
{
struct tty *tp;
struct lwp *l;
KASSERT(mutex_owned(&proclist_lock));
KASSERT(mutex_owned(&p->p_mutex));
ep->e_paddr = p;
ep->e_sess = p->p_session;
kauth_cred_topcred(p->p_cred, &ep->e_pcred);
kauth_cred_toucred(p->p_cred, &ep->e_ucred);
if (p->p_stat == SIDL || P_ZOMBIE(p)) {
ep->e_vm.vm_rssize = 0;
ep->e_vm.vm_tsize = 0;
ep->e_vm.vm_dsize = 0;
ep->e_vm.vm_ssize = 0;
/* ep->e_vm.vm_pmap = XXX; */
} else {
struct vmspace *vm = p->p_vmspace;
ep->e_vm.vm_rssize = vm_resident_count(vm);
ep->e_vm.vm_tsize = vm->vm_tsize;
ep->e_vm.vm_dsize = vm->vm_dsize;
ep->e_vm.vm_ssize = vm->vm_ssize;
/* Pick a "representative" LWP */
mutex_enter(&p->p_smutex);
l = proc_representative_lwp(p, NULL, 1);
lwp_lock(l);
if (l->l_wmesg)
strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
lwp_unlock(l);
mutex_exit(&p->p_smutex);
}
if (p->p_pptr)
ep->e_ppid = p->p_pptr->p_pid;
else
ep->e_ppid = 0;
ep->e_pgid = p->p_pgrp->pg_id;
ep->e_sid = ep->e_sess->s_sid;
ep->e_jobc = p->p_pgrp->pg_jobc;
if ((p->p_lflag & PL_CONTROLT) &&
(tp = ep->e_sess->s_ttyp)) {
ep->e_tdev = tp->t_dev;
ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
ep->e_tsess = tp->t_session;
} else
ep->e_tdev = NODEV;
ep->e_xsize = ep->e_xrssize = 0;
ep->e_xccount = ep->e_xswrss = 0;
ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
if (SESS_LEADER(p))
ep->e_flag |= EPROC_SLEADER;
strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
}
u_int
sysctl_map_flags(const u_int *map, u_int word)
{
u_int rv;
for (rv = 0; *map != 0; map += 2)
if ((word & map[0]) != 0)
rv |= map[1];
return rv;
}