1061 lines
24 KiB
C
1061 lines
24 KiB
C
/* $NetBSD: uvm_pdaemon.c,v 1.125 2020/02/23 15:46:43 ad Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997 Charles D. Cranor and Washington University.
|
|
* Copyright (c) 1991, 1993, The Regents of the University of California.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
|
|
* from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* uvm_pdaemon.c: the page daemon
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.125 2020/02/23 15:46:43 ad Exp $");
|
|
|
|
#include "opt_uvmhist.h"
|
|
#include "opt_readahead.h"
|
|
|
|
#define __RWLOCK_PRIVATE
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/kthread.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
#include <uvm/uvm_pdpolicy.h>
|
|
#include <uvm/uvm_pgflcache.h>
|
|
|
|
#ifdef UVMHIST
|
|
UVMHIST_DEFINE(pdhist);
|
|
#endif
|
|
|
|
/*
|
|
* UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
|
|
* in a pass thru the inactive list when swap is full. the value should be
|
|
* "small"... if it's too large we'll cycle the active pages thru the inactive
|
|
* queue too quickly to for them to be referenced and avoid being freed.
|
|
*/
|
|
|
|
#define UVMPD_NUMDIRTYREACTS 16
|
|
|
|
#define UVMPD_NUMTRYLOCKOWNER 128
|
|
|
|
/*
|
|
* local prototypes
|
|
*/
|
|
|
|
static void uvmpd_scan(void);
|
|
static void uvmpd_scan_queue(void);
|
|
static void uvmpd_tune(void);
|
|
static void uvmpd_pool_drain_thread(void *);
|
|
static void uvmpd_pool_drain_wakeup(void);
|
|
|
|
static unsigned int uvm_pagedaemon_waiters;
|
|
|
|
/* State for the pool drainer thread */
|
|
static kmutex_t uvmpd_lock __cacheline_aligned;
|
|
static kcondvar_t uvmpd_pool_drain_cv;
|
|
static bool uvmpd_pool_drain_run = false;
|
|
|
|
/*
|
|
* XXX hack to avoid hangs when large processes fork.
|
|
*/
|
|
u_int uvm_extrapages;
|
|
|
|
/*
|
|
* uvm_wait: wait (sleep) for the page daemon to free some pages
|
|
*
|
|
* => should be called with all locks released
|
|
* => should _not_ be called by the page daemon (to avoid deadlock)
|
|
*/
|
|
|
|
void
|
|
uvm_wait(const char *wmsg)
|
|
{
|
|
int timo = 0;
|
|
|
|
if (uvm.pagedaemon_lwp == NULL)
|
|
panic("out of memory before the pagedaemon thread exists");
|
|
|
|
mutex_spin_enter(&uvmpd_lock);
|
|
|
|
/*
|
|
* check for page daemon going to sleep (waiting for itself)
|
|
*/
|
|
|
|
if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
|
|
/*
|
|
* now we have a problem: the pagedaemon wants to go to
|
|
* sleep until it frees more memory. but how can it
|
|
* free more memory if it is asleep? that is a deadlock.
|
|
* we have two options:
|
|
* [1] panic now
|
|
* [2] put a timeout on the sleep, thus causing the
|
|
* pagedaemon to only pause (rather than sleep forever)
|
|
*
|
|
* note that option [2] will only help us if we get lucky
|
|
* and some other process on the system breaks the deadlock
|
|
* by exiting or freeing memory (thus allowing the pagedaemon
|
|
* to continue). for now we panic if DEBUG is defined,
|
|
* otherwise we hope for the best with option [2] (better
|
|
* yet, this should never happen in the first place!).
|
|
*/
|
|
|
|
printf("pagedaemon: deadlock detected!\n");
|
|
timo = hz >> 3; /* set timeout */
|
|
#if defined(DEBUG)
|
|
/* DEBUG: panic so we can debug it */
|
|
panic("pagedaemon deadlock");
|
|
#endif
|
|
}
|
|
|
|
uvm_pagedaemon_waiters++;
|
|
wakeup(&uvm.pagedaemon); /* wake the daemon! */
|
|
UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
|
|
}
|
|
|
|
/*
|
|
* uvm_kick_pdaemon: perform checks to determine if we need to
|
|
* give the pagedaemon a nudge, and do so if necessary.
|
|
*/
|
|
|
|
void
|
|
uvm_kick_pdaemon(void)
|
|
{
|
|
int fpages = uvm_availmem();
|
|
|
|
if (fpages + uvmexp.paging < uvmexp.freemin ||
|
|
(fpages + uvmexp.paging < uvmexp.freetarg &&
|
|
uvmpdpol_needsscan_p()) ||
|
|
uvm_km_va_starved_p()) {
|
|
mutex_spin_enter(&uvmpd_lock);
|
|
wakeup(&uvm.pagedaemon);
|
|
mutex_spin_exit(&uvmpd_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvmpd_tune: tune paging parameters
|
|
*
|
|
* => called when ever memory is added (or removed?) to the system
|
|
*/
|
|
|
|
static void
|
|
uvmpd_tune(void)
|
|
{
|
|
int val;
|
|
|
|
UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
|
|
|
|
/*
|
|
* try to keep 0.5% of available RAM free, but limit to between
|
|
* 128k and 1024k per-CPU. XXX: what are these values good for?
|
|
*/
|
|
val = uvmexp.npages / 200;
|
|
val = MAX(val, (128*1024) >> PAGE_SHIFT);
|
|
val = MIN(val, (1024*1024) >> PAGE_SHIFT);
|
|
val *= ncpu;
|
|
|
|
/* Make sure there's always a user page free. */
|
|
if (val < uvmexp.reserve_kernel + 1)
|
|
val = uvmexp.reserve_kernel + 1;
|
|
uvmexp.freemin = val;
|
|
|
|
/* Calculate free target. */
|
|
val = (uvmexp.freemin * 4) / 3;
|
|
if (val <= uvmexp.freemin)
|
|
val = uvmexp.freemin + 1;
|
|
uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
|
|
|
|
uvmexp.wiredmax = uvmexp.npages / 3;
|
|
UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
|
|
uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
|
|
}
|
|
|
|
/*
|
|
* uvm_pageout: the main loop for the pagedaemon
|
|
*/
|
|
|
|
void
|
|
uvm_pageout(void *arg)
|
|
{
|
|
int npages = 0;
|
|
int extrapages = 0;
|
|
int fpages;
|
|
|
|
UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
|
|
|
|
UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
|
|
|
|
mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
|
|
cv_init(&uvmpd_pool_drain_cv, "pooldrain");
|
|
|
|
/* Create the pool drainer kernel thread. */
|
|
if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
|
|
uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
|
|
panic("fork pooldrain");
|
|
|
|
/*
|
|
* ensure correct priority and set paging parameters...
|
|
*/
|
|
|
|
uvm.pagedaemon_lwp = curlwp;
|
|
npages = uvmexp.npages;
|
|
uvmpd_tune();
|
|
|
|
/*
|
|
* main loop
|
|
*/
|
|
|
|
for (;;) {
|
|
bool needsscan, needsfree, kmem_va_starved;
|
|
|
|
kmem_va_starved = uvm_km_va_starved_p();
|
|
|
|
mutex_spin_enter(&uvmpd_lock);
|
|
if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
|
|
!kmem_va_starved) {
|
|
UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
|
|
UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
|
|
&uvmpd_lock, false, "pgdaemon", 0);
|
|
uvmexp.pdwoke++;
|
|
UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
|
|
} else {
|
|
mutex_spin_exit(&uvmpd_lock);
|
|
}
|
|
|
|
/*
|
|
* now recompute inactive count
|
|
*/
|
|
|
|
if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
|
|
npages = uvmexp.npages;
|
|
extrapages = uvm_extrapages;
|
|
uvmpd_tune();
|
|
}
|
|
|
|
uvmpdpol_tune();
|
|
|
|
/*
|
|
* Estimate a hint. Note that bufmem are returned to
|
|
* system only when entire pool page is empty.
|
|
*/
|
|
fpages = uvm_availmem();
|
|
UVMHIST_LOG(pdhist," free/ftarg=%jd/%jd",
|
|
fpages, uvmexp.freetarg, 0,0);
|
|
|
|
needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
|
|
needsscan = needsfree || uvmpdpol_needsscan_p();
|
|
|
|
/*
|
|
* scan if needed
|
|
*/
|
|
if (needsscan) {
|
|
uvmpd_scan();
|
|
}
|
|
|
|
/*
|
|
* if there's any free memory to be had,
|
|
* wake up any waiters.
|
|
*/
|
|
if (uvm_availmem() > uvmexp.reserve_kernel ||
|
|
uvmexp.paging == 0) {
|
|
mutex_spin_enter(&uvmpd_lock);
|
|
wakeup(&uvmexp.free);
|
|
uvm_pagedaemon_waiters = 0;
|
|
mutex_spin_exit(&uvmpd_lock);
|
|
}
|
|
|
|
/*
|
|
* scan done. if we don't need free memory, we're done.
|
|
*/
|
|
|
|
if (!needsfree && !kmem_va_starved)
|
|
continue;
|
|
|
|
/*
|
|
* kick the pool drainer thread.
|
|
*/
|
|
|
|
uvmpd_pool_drain_wakeup();
|
|
}
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
void
|
|
uvm_pageout_start(int npages)
|
|
{
|
|
|
|
atomic_add_int(&uvmexp.paging, npages);
|
|
}
|
|
|
|
void
|
|
uvm_pageout_done(int npages)
|
|
{
|
|
|
|
KASSERT(uvmexp.paging >= npages);
|
|
atomic_add_int(&uvmexp.paging, -npages);
|
|
|
|
/*
|
|
* wake up either of pagedaemon or LWPs waiting for it.
|
|
*/
|
|
|
|
mutex_spin_enter(&uvmpd_lock);
|
|
if (uvm_availmem() <= uvmexp.reserve_kernel) {
|
|
wakeup(&uvm.pagedaemon);
|
|
} else if (uvm_pagedaemon_waiters != 0) {
|
|
wakeup(&uvmexp.free);
|
|
uvm_pagedaemon_waiters = 0;
|
|
}
|
|
mutex_spin_exit(&uvmpd_lock);
|
|
}
|
|
|
|
/*
|
|
* uvmpd_trylockowner: trylock the page's owner.
|
|
*
|
|
* => called with page interlock held.
|
|
* => resolve orphaned O->A loaned page.
|
|
* => return the locked mutex on success. otherwise, return NULL.
|
|
*/
|
|
|
|
krwlock_t *
|
|
uvmpd_trylockowner(struct vm_page *pg)
|
|
{
|
|
struct uvm_object *uobj = pg->uobject;
|
|
struct vm_anon *anon = pg->uanon;
|
|
int tries, count;
|
|
bool running;
|
|
krwlock_t *slock;
|
|
|
|
KASSERT(mutex_owned(&pg->interlock));
|
|
|
|
if (uobj != NULL) {
|
|
slock = uobj->vmobjlock;
|
|
KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
|
|
} else if (anon != NULL) {
|
|
slock = anon->an_lock;
|
|
KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
|
|
} else {
|
|
/* Page may be in state of flux - ignore. */
|
|
mutex_exit(&pg->interlock);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Now try to lock the objects. We'll try hard, but don't really
|
|
* plan on spending more than a millisecond or so here.
|
|
*/
|
|
tries = (curlwp == uvm.pagedaemon_lwp ? UVMPD_NUMTRYLOCKOWNER : 1);
|
|
for (;;) {
|
|
if (rw_tryenter(slock, RW_WRITER)) {
|
|
if (uobj == NULL) {
|
|
/*
|
|
* set PG_ANON if it isn't set already.
|
|
*/
|
|
if ((pg->flags & PG_ANON) == 0) {
|
|
KASSERT(pg->loan_count > 0);
|
|
pg->loan_count--;
|
|
pg->flags |= PG_ANON;
|
|
/* anon now owns it */
|
|
}
|
|
}
|
|
mutex_exit(&pg->interlock);
|
|
return slock;
|
|
}
|
|
running = rw_owner_running(slock);
|
|
if (!running || --tries <= 0) {
|
|
break;
|
|
}
|
|
count = SPINLOCK_BACKOFF_MAX;
|
|
SPINLOCK_BACKOFF(count);
|
|
}
|
|
|
|
/*
|
|
* We didn't get the lock; chances are the very next page on the
|
|
* queue also has the same lock, so if the lock owner is not running
|
|
* take a breather and allow them to make progress. There could be
|
|
* only 1 CPU in the system, or the pagedaemon could have preempted
|
|
* the owner in kernel, or any number of other things could be going
|
|
* on.
|
|
*/
|
|
mutex_exit(&pg->interlock);
|
|
if (curlwp == uvm.pagedaemon_lwp) {
|
|
if (!running) {
|
|
(void)kpause("pdpglock", false, 1, NULL);
|
|
}
|
|
uvmexp.pdbusy++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#if defined(VMSWAP)
|
|
struct swapcluster {
|
|
int swc_slot;
|
|
int swc_nallocated;
|
|
int swc_nused;
|
|
struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
|
|
};
|
|
|
|
static void
|
|
swapcluster_init(struct swapcluster *swc)
|
|
{
|
|
|
|
swc->swc_slot = 0;
|
|
swc->swc_nused = 0;
|
|
}
|
|
|
|
static int
|
|
swapcluster_allocslots(struct swapcluster *swc)
|
|
{
|
|
int slot;
|
|
int npages;
|
|
|
|
if (swc->swc_slot != 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Even with strange MAXPHYS, the shift
|
|
implicitly rounds down to a page. */
|
|
npages = MAXPHYS >> PAGE_SHIFT;
|
|
slot = uvm_swap_alloc(&npages, true);
|
|
if (slot == 0) {
|
|
return ENOMEM;
|
|
}
|
|
swc->swc_slot = slot;
|
|
swc->swc_nallocated = npages;
|
|
swc->swc_nused = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
|
|
{
|
|
int slot;
|
|
struct uvm_object *uobj;
|
|
|
|
KASSERT(swc->swc_slot != 0);
|
|
KASSERT(swc->swc_nused < swc->swc_nallocated);
|
|
KASSERT((pg->flags & PG_SWAPBACKED) != 0);
|
|
|
|
slot = swc->swc_slot + swc->swc_nused;
|
|
uobj = pg->uobject;
|
|
if (uobj == NULL) {
|
|
KASSERT(rw_write_held(pg->uanon->an_lock));
|
|
pg->uanon->an_swslot = slot;
|
|
} else {
|
|
int result;
|
|
|
|
KASSERT(rw_write_held(uobj->vmobjlock));
|
|
result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
|
|
if (result == -1) {
|
|
return ENOMEM;
|
|
}
|
|
}
|
|
swc->swc_pages[swc->swc_nused] = pg;
|
|
swc->swc_nused++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
swapcluster_flush(struct swapcluster *swc, bool now)
|
|
{
|
|
int slot;
|
|
int nused;
|
|
int nallocated;
|
|
int error __diagused;
|
|
|
|
if (swc->swc_slot == 0) {
|
|
return;
|
|
}
|
|
KASSERT(swc->swc_nused <= swc->swc_nallocated);
|
|
|
|
slot = swc->swc_slot;
|
|
nused = swc->swc_nused;
|
|
nallocated = swc->swc_nallocated;
|
|
|
|
/*
|
|
* if this is the final pageout we could have a few
|
|
* unused swap blocks. if so, free them now.
|
|
*/
|
|
|
|
if (nused < nallocated) {
|
|
if (!now) {
|
|
return;
|
|
}
|
|
uvm_swap_free(slot + nused, nallocated - nused);
|
|
}
|
|
|
|
/*
|
|
* now start the pageout.
|
|
*/
|
|
|
|
if (nused > 0) {
|
|
uvmexp.pdpageouts++;
|
|
uvm_pageout_start(nused);
|
|
error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
|
|
KASSERT(error == 0 || error == ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* zero swslot to indicate that we are
|
|
* no longer building a swap-backed cluster.
|
|
*/
|
|
|
|
swc->swc_slot = 0;
|
|
swc->swc_nused = 0;
|
|
}
|
|
|
|
static int
|
|
swapcluster_nused(struct swapcluster *swc)
|
|
{
|
|
|
|
return swc->swc_nused;
|
|
}
|
|
|
|
/*
|
|
* uvmpd_dropswap: free any swap allocated to this page.
|
|
*
|
|
* => called with owner locked.
|
|
* => return true if a page had an associated slot.
|
|
*/
|
|
|
|
bool
|
|
uvmpd_dropswap(struct vm_page *pg)
|
|
{
|
|
bool result = false;
|
|
struct vm_anon *anon = pg->uanon;
|
|
|
|
if ((pg->flags & PG_ANON) && anon->an_swslot) {
|
|
uvm_swap_free(anon->an_swslot, 1);
|
|
anon->an_swslot = 0;
|
|
uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
|
|
result = true;
|
|
} else if (pg->flags & PG_AOBJ) {
|
|
int slot = uao_set_swslot(pg->uobject,
|
|
pg->offset >> PAGE_SHIFT, 0);
|
|
if (slot) {
|
|
uvm_swap_free(slot, 1);
|
|
uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
|
|
result = true;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#endif /* defined(VMSWAP) */
|
|
|
|
/*
|
|
* uvmpd_scan_queue: scan an replace candidate list for pages
|
|
* to clean or free.
|
|
*
|
|
* => we work on meeting our free target by converting inactive pages
|
|
* into free pages.
|
|
* => we handle the building of swap-backed clusters
|
|
*/
|
|
|
|
static void
|
|
uvmpd_scan_queue(void)
|
|
{
|
|
struct vm_page *p;
|
|
struct uvm_object *uobj;
|
|
struct vm_anon *anon;
|
|
#if defined(VMSWAP)
|
|
struct swapcluster swc;
|
|
#endif /* defined(VMSWAP) */
|
|
int dirtyreacts;
|
|
krwlock_t *slock;
|
|
UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
|
|
|
|
/*
|
|
* swslot is non-zero if we are building a swap cluster. we want
|
|
* to stay in the loop while we have a page to scan or we have
|
|
* a swap-cluster to build.
|
|
*/
|
|
|
|
#if defined(VMSWAP)
|
|
swapcluster_init(&swc);
|
|
#endif /* defined(VMSWAP) */
|
|
|
|
dirtyreacts = 0;
|
|
uvmpdpol_scaninit();
|
|
|
|
while (/* CONSTCOND */ 1) {
|
|
|
|
/*
|
|
* see if we've met the free target.
|
|
*/
|
|
|
|
if (uvm_availmem() + uvmexp.paging
|
|
#if defined(VMSWAP)
|
|
+ swapcluster_nused(&swc)
|
|
#endif /* defined(VMSWAP) */
|
|
>= uvmexp.freetarg << 2 ||
|
|
dirtyreacts == UVMPD_NUMDIRTYREACTS) {
|
|
UVMHIST_LOG(pdhist," met free target: "
|
|
"exit loop", 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* first we have the pdpolicy select a victim page
|
|
* and attempt to lock the object that the page
|
|
* belongs to. if our attempt fails we skip on to
|
|
* the next page (no harm done). it is important to
|
|
* "try" locking the object as we are locking in the
|
|
* wrong order (pageq -> object) and we don't want to
|
|
* deadlock.
|
|
*
|
|
* the only time we expect to see an ownerless page
|
|
* (i.e. a page with no uobject and !PG_ANON) is if an
|
|
* anon has loaned a page from a uvm_object and the
|
|
* uvm_object has dropped the ownership. in that
|
|
* case, the anon can "take over" the loaned page
|
|
* and make it its own.
|
|
*/
|
|
|
|
p = uvmpdpol_selectvictim(&slock);
|
|
if (p == NULL) {
|
|
break;
|
|
}
|
|
KASSERT(uvmpdpol_pageisqueued_p(p));
|
|
KASSERT(uvm_page_owner_locked_p(p, true));
|
|
KASSERT(p->wire_count == 0);
|
|
|
|
/*
|
|
* we are below target and have a new page to consider.
|
|
*/
|
|
|
|
anon = p->uanon;
|
|
uobj = p->uobject;
|
|
|
|
if (p->flags & PG_BUSY) {
|
|
rw_exit(slock);
|
|
uvmexp.pdbusy++;
|
|
continue;
|
|
}
|
|
|
|
/* does the page belong to an object? */
|
|
if (uobj != NULL) {
|
|
uvmexp.pdobscan++;
|
|
} else {
|
|
#if defined(VMSWAP)
|
|
KASSERT(anon != NULL);
|
|
uvmexp.pdanscan++;
|
|
#else /* defined(VMSWAP) */
|
|
panic("%s: anon", __func__);
|
|
#endif /* defined(VMSWAP) */
|
|
}
|
|
|
|
|
|
/*
|
|
* we now have the object locked.
|
|
* if the page is not swap-backed, call the object's
|
|
* pager to flush and free the page.
|
|
*/
|
|
|
|
#if defined(READAHEAD_STATS)
|
|
if ((p->flags & PG_READAHEAD) != 0) {
|
|
p->flags &= ~PG_READAHEAD;
|
|
uvm_ra_miss.ev_count++;
|
|
}
|
|
#endif /* defined(READAHEAD_STATS) */
|
|
|
|
if ((p->flags & PG_SWAPBACKED) == 0) {
|
|
KASSERT(uobj != NULL);
|
|
(void) (uobj->pgops->pgo_put)(uobj, p->offset,
|
|
p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* the page is swap-backed. remove all the permissions
|
|
* from the page so we can sync the modified info
|
|
* without any race conditions. if the page is clean
|
|
* we can free it now and continue.
|
|
*/
|
|
|
|
pmap_page_protect(p, VM_PROT_NONE);
|
|
if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
|
|
if (pmap_clear_modify(p)) {
|
|
uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
|
|
} else {
|
|
uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
|
|
}
|
|
}
|
|
if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
|
|
int slot;
|
|
int pageidx;
|
|
|
|
pageidx = p->offset >> PAGE_SHIFT;
|
|
uvm_pagefree(p);
|
|
atomic_inc_uint(&uvmexp.pdfreed);
|
|
|
|
/*
|
|
* for anons, we need to remove the page
|
|
* from the anon ourselves. for aobjs,
|
|
* pagefree did that for us.
|
|
*/
|
|
|
|
if (anon) {
|
|
KASSERT(anon->an_swslot != 0);
|
|
anon->an_page = NULL;
|
|
slot = anon->an_swslot;
|
|
} else {
|
|
slot = uao_find_swslot(uobj, pageidx);
|
|
}
|
|
if (slot > 0) {
|
|
/* this page is now only in swap. */
|
|
KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
|
|
atomic_inc_uint(&uvmexp.swpgonly);
|
|
}
|
|
rw_exit(slock);
|
|
continue;
|
|
}
|
|
|
|
#if defined(VMSWAP)
|
|
/*
|
|
* this page is dirty, skip it if we'll have met our
|
|
* free target when all the current pageouts complete.
|
|
*/
|
|
|
|
if (uvm_availmem() + uvmexp.paging > uvmexp.freetarg << 2) {
|
|
rw_exit(slock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* free any swap space allocated to the page since
|
|
* we'll have to write it again with its new data.
|
|
*/
|
|
|
|
uvmpd_dropswap(p);
|
|
|
|
/*
|
|
* start new swap pageout cluster (if necessary).
|
|
*
|
|
* if swap is full reactivate this page so that
|
|
* we eventually cycle all pages through the
|
|
* inactive queue.
|
|
*/
|
|
|
|
if (swapcluster_allocslots(&swc)) {
|
|
dirtyreacts++;
|
|
uvm_pagelock(p);
|
|
uvm_pageactivate(p);
|
|
uvm_pageunlock(p);
|
|
rw_exit(slock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* at this point, we're definitely going reuse this
|
|
* page. mark the page busy and delayed-free.
|
|
* we should remove the page from the page queues
|
|
* so we don't ever look at it again.
|
|
* adjust counters and such.
|
|
*/
|
|
|
|
p->flags |= PG_BUSY;
|
|
UVM_PAGE_OWN(p, "scan_queue");
|
|
p->flags |= PG_PAGEOUT;
|
|
uvmexp.pgswapout++;
|
|
|
|
uvm_pagelock(p);
|
|
uvm_pagedequeue(p);
|
|
uvm_pageunlock(p);
|
|
|
|
/*
|
|
* add the new page to the cluster.
|
|
*/
|
|
|
|
if (swapcluster_add(&swc, p)) {
|
|
p->flags &= ~(PG_BUSY|PG_PAGEOUT);
|
|
UVM_PAGE_OWN(p, NULL);
|
|
dirtyreacts++;
|
|
uvm_pagelock(p);
|
|
uvm_pageactivate(p);
|
|
uvm_pageunlock(p);
|
|
rw_exit(slock);
|
|
continue;
|
|
}
|
|
rw_exit(slock);
|
|
|
|
swapcluster_flush(&swc, false);
|
|
|
|
/*
|
|
* the pageout is in progress. bump counters and set up
|
|
* for the next loop.
|
|
*/
|
|
|
|
atomic_inc_uint(&uvmexp.pdpending);
|
|
|
|
#else /* defined(VMSWAP) */
|
|
uvm_pagelock(p);
|
|
uvm_pageactivate(p);
|
|
uvm_pageunlock(p);
|
|
rw_exit(slock);
|
|
#endif /* defined(VMSWAP) */
|
|
}
|
|
|
|
uvmpdpol_scanfini();
|
|
|
|
#if defined(VMSWAP)
|
|
swapcluster_flush(&swc, true);
|
|
#endif /* defined(VMSWAP) */
|
|
}
|
|
|
|
/*
|
|
* uvmpd_scan: scan the page queues and attempt to meet our targets.
|
|
*/
|
|
|
|
static void
|
|
uvmpd_scan(void)
|
|
{
|
|
int swap_shortage, pages_freed, fpages;
|
|
UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
|
|
|
|
uvmexp.pdrevs++;
|
|
|
|
/*
|
|
* work on meeting our targets. first we work on our free target
|
|
* by converting inactive pages into free pages. then we work on
|
|
* meeting our inactive target by converting active pages to
|
|
* inactive ones.
|
|
*/
|
|
|
|
UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
|
|
|
|
pages_freed = uvmexp.pdfreed;
|
|
uvmpd_scan_queue();
|
|
pages_freed = uvmexp.pdfreed - pages_freed;
|
|
|
|
/*
|
|
* detect if we're not going to be able to page anything out
|
|
* until we free some swap resources from active pages.
|
|
*/
|
|
|
|
swap_shortage = 0;
|
|
fpages = uvm_availmem();
|
|
if (fpages < uvmexp.freetarg &&
|
|
uvmexp.swpginuse >= uvmexp.swpgavail &&
|
|
!uvm_swapisfull() &&
|
|
pages_freed == 0) {
|
|
swap_shortage = uvmexp.freetarg - fpages;
|
|
}
|
|
|
|
uvmpdpol_balancequeue(swap_shortage);
|
|
|
|
/*
|
|
* if still below the minimum target, try unloading kernel
|
|
* modules.
|
|
*/
|
|
|
|
if (uvm_availmem() < uvmexp.freemin) {
|
|
module_thread_kick();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvm_reclaimable: decide whether to wait for pagedaemon.
|
|
*
|
|
* => return true if it seems to be worth to do uvm_wait.
|
|
*
|
|
* XXX should be tunable.
|
|
* XXX should consider pools, etc?
|
|
*/
|
|
|
|
bool
|
|
uvm_reclaimable(void)
|
|
{
|
|
int filepages;
|
|
int active, inactive;
|
|
|
|
/*
|
|
* if swap is not full, no problem.
|
|
*/
|
|
|
|
if (!uvm_swapisfull()) {
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* file-backed pages can be reclaimed even when swap is full.
|
|
* if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
|
|
*
|
|
* XXX assume the worst case, ie. all wired pages are file-backed.
|
|
*
|
|
* XXX should consider about other reclaimable memory.
|
|
* XXX ie. pools, traditional buffer cache.
|
|
*/
|
|
|
|
cpu_count_sync_all();
|
|
filepages = (int)cpu_count_get(CPU_COUNT_FILEPAGES) +
|
|
(int)cpu_count_get(CPU_COUNT_EXECPAGES) - uvmexp.wired;
|
|
uvm_estimatepageable(&active, &inactive);
|
|
if (filepages >= MIN((active + inactive) >> 4,
|
|
5 * 1024 * 1024 >> PAGE_SHIFT)) {
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* kill the process, fail allocation, etc..
|
|
*/
|
|
|
|
return false;
|
|
}
|
|
|
|
void
|
|
uvm_estimatepageable(int *active, int *inactive)
|
|
{
|
|
|
|
uvmpdpol_estimatepageable(active, inactive);
|
|
}
|
|
|
|
|
|
/*
|
|
* Use a separate thread for draining pools.
|
|
* This work can't done from the main pagedaemon thread because
|
|
* some pool allocators need to take vm_map locks.
|
|
*/
|
|
|
|
static void
|
|
uvmpd_pool_drain_thread(void *arg)
|
|
{
|
|
struct pool *firstpool, *curpool;
|
|
int bufcnt, lastslept;
|
|
bool cycled;
|
|
|
|
firstpool = NULL;
|
|
cycled = true;
|
|
for (;;) {
|
|
/*
|
|
* sleep until awoken by the pagedaemon.
|
|
*/
|
|
mutex_enter(&uvmpd_lock);
|
|
if (!uvmpd_pool_drain_run) {
|
|
lastslept = hardclock_ticks;
|
|
cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
|
|
if (hardclock_ticks != lastslept) {
|
|
cycled = false;
|
|
firstpool = NULL;
|
|
}
|
|
}
|
|
uvmpd_pool_drain_run = false;
|
|
mutex_exit(&uvmpd_lock);
|
|
|
|
/*
|
|
* rate limit draining, otherwise in desperate circumstances
|
|
* this can totally saturate the system with xcall activity.
|
|
*/
|
|
if (cycled) {
|
|
kpause("uvmpdlmt", false, 1, NULL);
|
|
cycled = false;
|
|
firstpool = NULL;
|
|
}
|
|
|
|
/*
|
|
* drain and temporarily disable the freelist cache.
|
|
*/
|
|
uvm_pgflcache_pause();
|
|
|
|
/*
|
|
* kill unused metadata buffers.
|
|
*/
|
|
bufcnt = uvmexp.freetarg - uvm_availmem();
|
|
if (bufcnt < 0)
|
|
bufcnt = 0;
|
|
|
|
mutex_enter(&bufcache_lock);
|
|
buf_drain(bufcnt << PAGE_SHIFT);
|
|
mutex_exit(&bufcache_lock);
|
|
|
|
/*
|
|
* drain a pool, and then re-enable the freelist cache.
|
|
*/
|
|
(void)pool_drain(&curpool);
|
|
KASSERT(curpool != NULL);
|
|
if (firstpool == NULL) {
|
|
firstpool = curpool;
|
|
} else if (firstpool == curpool) {
|
|
cycled = true;
|
|
}
|
|
uvm_pgflcache_resume();
|
|
}
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
static void
|
|
uvmpd_pool_drain_wakeup(void)
|
|
{
|
|
|
|
mutex_enter(&uvmpd_lock);
|
|
uvmpd_pool_drain_run = true;
|
|
cv_signal(&uvmpd_pool_drain_cv);
|
|
mutex_exit(&uvmpd_lock);
|
|
}
|