NetBSD/sys/arch/sparc64/sparc64/clock.c

819 lines
21 KiB
C

/* $NetBSD: clock.c,v 1.1.1.1 1998/06/20 04:58:52 eeh Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 1994 Gordon W. Ross
* Copyright (c) 1993 Adam Glass
* Copyright (c) 1996 Paul Kranenburg
* Copyright (c) 1996
* The President and Fellows of Harvard College. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Harvard University.
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* This product includes software developed by Paul Kranenburg.
* This product includes software developed by Harvard University.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)clock.c 8.1 (Berkeley) 6/11/93
*
*/
/*
* Clock driver. This is the id prom and eeprom driver as well
* and includes the timer register functions too.
*/
/* Define this for a 1/4s clock to ease debugging */
/* #define INTR_DEBUG */
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#ifdef GPROF
#include <sys/gmon.h>
#endif
#include <vm/vm.h>
#include <machine/bus.h>
#include <machine/autoconf.h>
#include <machine/eeprom.h>
#include <machine/cpu.h>
#include <machine/ctlreg.h>
#include <sparc64/sparc64/vaddrs.h>
#include <sparc64/sparc64/clockreg.h>
#include <sparc64/sparc64/intreg.h>
#include <sparc64/sparc64/timerreg.h>
#include <sparc64/dev/sbusreg.h>
#include <sparc64/dev/sbusvar.h>
#include <sparc64/sparc64/asm.h>
#include "kbd.h"
/*
* Statistics clock interval and variance, in usec. Variance must be a
* power of two. Since this gives us an even number, not an odd number,
* we discard one case and compensate. That is, a variance of 1024 would
* give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
* This is symmetric about the point 512, or statvar/2, and thus averages
* to that value (assuming uniform random numbers).
*/
/* XXX fix comment to match value */
int statvar = 8192;
int statmin; /* statclock interval - 1/2*variance */
int timerok;
#include <dev/ic/intersil7170.h>
extern struct idprom idprom;
#define intersil_command(run, interrupt) \
(run | interrupt | INTERSIL_CMD_FREQ_32K | INTERSIL_CMD_24HR_MODE | \
INTERSIL_CMD_NORMAL_MODE)
#define intersil_disable(CLOCK) \
CLOCK->clk_cmd_reg = \
intersil_command(INTERSIL_CMD_RUN, INTERSIL_CMD_IDISABLE)
#define intersil_enable(CLOCK) \
CLOCK->clk_cmd_reg = \
intersil_command(INTERSIL_CMD_RUN, INTERSIL_CMD_IENABLE)
#define intersil_clear(CLOCK) CLOCK->clk_intr_reg
static struct intrhand level10 = { clockintr };
static struct intrhand level14 = { statintr };
static int clockmatch __P((struct device *, struct cfdata *, void *));
static void clockattach __P((struct device *, struct device *, void *));
static struct clockreg *clock_map __P((bus_space_handle_t, char *));
struct cfattach clock_ca = {
sizeof(struct device), clockmatch, clockattach
};
extern struct cfdriver clock_cd;
static int timermatch __P((struct device *, struct cfdata *, void *));
static void timerattach __P((struct device *, struct device *, void *));
struct timerreg_4u timerreg_4u; /* XXX - need more cleanup */
struct cfattach timer_ca = {
sizeof(struct device), timermatch, timerattach
};
struct chiptime;
void clk_wenable __P((int));
void myetheraddr __P((u_char *));
int chiptotime __P((int, int, int, int, int, int));
void timetochip __P((struct chiptime *));
void stopcounter __P((struct timer_4u *));
int timerblurb = 10; /* Guess a value; used before clock is attached */
/*
* The OPENPROM calls the clock the "eeprom", so we have to have our
* own special match function to call it the "clock".
*/
static int
clockmatch(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct mainbus_attach_args *ma = aux;
return (strcmp("eeprom", ma->ma_name) == 0);
}
static struct clockreg *
clock_map(bh, model)
bus_space_handle_t bh;
char *model;
{
struct clockreg *cl;
pmap_changeprot(pmap_kernel(), (vm_offset_t)bh, VM_PROT_READ, 1);
cl = (struct clockreg *)((int)bh + CLK_MK48T08_OFF);
return (cl);
}
/* ARGSUSED */
static void
clockattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct sbus_attach_args *sa = aux;
char *model;
int sz;
struct clockreg *cl;
struct idprom *idp;
bus_space_handle_t bh;
int h;
model = getpropstring(sa->sa_node, "model");
#ifdef DIAGNOSTIC
if (model == NULL)
panic("no model");
#endif
/*
* the MK48T08 is 8K; the MK48T02 is 2K
*/
/*
* the MK48T08 is 8K, and the MK48T59 is supposed to be identical to it
*/
sz = 8192;
printf(": %s (eeprom)\n", model);
/*
* We ignore any existing virtual address as we need to map
* this read-only and make it read-write only temporarily,
* whenever we read or write the clock chip. The clock also
* contains the ID ``PROM'', and I have already had the pleasure
* of reloading the cpu type, Ethernet address, etc, by hand from
* the console FORTH interpreter. I intend not to enjoy it again.
*/
/*
* This is *UGLY*! We probably have multiple mappings. But I do
* know that this all fits inside an 8K page, so I'll just map in
* once.
*/
if (sbus_bus_map(sa->sa_bustag,
sa->sa_slot,
(sa->sa_offset & ~NBPG),
sz,
BUS_SPACE_MAP_LINEAR,
0,
&bh) != 0) {
printf("%s: can't map register\n", self->dv_xname);
return;
}
cl = clock_map(bh, model);
/* cl = (struct clockreg *)bh; */
idp = &cl->cl_idprom;
h = idp->id_machine << 24;
h |= idp->id_hostid[0] << 16;
h |= idp->id_hostid[1] << 8;
h |= idp->id_hostid[2];
hostid = h;
clockreg = cl;
}
/*
* The sun4u OPENPROM calls the timer the "counter-timer".
*/
static int
timermatch(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct mainbus_attach_args *ma = aux;
return (strcmp("counter-timer", ma->ma_name) == 0);
}
static void
timerattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct mainbus_attach_args *ma = aux;
bus_space_handle_t bh;
struct upa_reg *ur = NULL;
int64_t *va = NULL;
int nreg;
volatile int64_t *cnt = NULL, *lim = NULL;
/* XXX: must init to NULL to avoid stupid gcc -Wall warning */
/* Get full-size register property */
if (getpropA(ma->ma_node, "reg", sizeof(*ur),
&nreg, (void **)&ur) != 0) {
printf("%s: can't map register\n", self->dv_xname);
return;
}
if (nreg < 2) {
printf("%s: only %d register sets\n", self->dv_xname,
nreg);
return;
}
/*
* What we should have are 3 sets of registers that reside on
* different parts of sysio. We'll use the prom mappings cause we
* can't get rid of them and set up appropriate pointers on the
* timerreg_4u structure.
*/
/* Get address property */
if (getpropA(ma->ma_node, "address", sizeof(*va),
&nreg, (void **)&va) == 0) {
printf("timerattach: using PROM mappings\n");
timerreg_4u.t_timer = (struct timer_4u *)(int)va[0];
timerreg_4u.t_clrintr = (int64_t *)(int)va[1];
timerreg_4u.t_mapintr = (int64_t *)(int)va[2];
} else {
printf("timerattach: using new mappings\n");
/* Map the system timer -- Not an SBUS device */
if (bus_space_map2(ma->ma_bustag, 0,
ur[0].ur_paddr,
NBPG,
BUS_SPACE_MAP_LINEAR,
TIMERREG_VA, &bh) != 0) {
printf("%s: can't map register\n", self->dv_xname);
return;
}
timerreg_4u.t_timer = (struct timer_4u *)
(TIMERREG_VA + (((int)ur[0].ur_paddr)&PGOFSET));
timerreg_4u.t_clrintr = (int64_t *)
(TIMERREG_VA + (((int)ur[1].ur_paddr)&PGOFSET));
timerreg_4u.t_mapintr = (int64_t *)
(TIMERREG_VA + (((int)ur[2].ur_paddr)&PGOFSET));
}
#ifdef DEBUG
printf("timerattach: timer=%x clrintr=%x mapintr=%x\n",
timerreg_4u.t_timer, timerreg_4u.t_clrintr, timerreg_4u.t_mapintr);
#endif
cnt = &(timerreg_4u.t_timer[0].t_count);
lim = &(timerreg_4u.t_timer[0].t_limit);
/* Install the appropriate interrupt vector here */
level10.ih_number = ma->ma_interrupts[0];
intr_establish(10, &level10);
level14.ih_number = ma->ma_interrupts[1];
intr_establish(14, &level14);
timerok = 1;
#if 0
/*
* Calibrate delay() by tweaking the magic constant
* until a delay(100) actually reads (at least) 100 us
* on the clock. Since we're using the %tick register
* which should be running at exactly the CPU clock rate, it
* has a period of somewhere between 7ns and 3ns.
*/
#ifdef DEBUG
printf("Delay calibrarion....\n");
#endif
for (timerblurb = 1; timerblurb>0; timerblurb++) {
volatile int discard;
register int t0, t1;
/* Reset counter register by writing some large limit value */
discard = *lim;
*lim = tmr_ustolim(TMR_MASK-1);
t0 = *cnt;
delay(100);
t1 = *cnt;
if (t1 & TMR_LIMIT)
panic("delay calibration");
t0 = (t0 >> TMR_SHIFT) & TMR_MASK;
t1 = (t1 >> TMR_SHIFT) & TMR_MASK;
if (t1 >= t0 + 100)
break;
}
printf(" delay constant %d\n", timerblurb);
timerok = 1;
#endif
#if 0 /* Done earlier */
/* link interrupt handlers */
intr_establish(10, &level10);
intr_establish(14, &level14);
#endif
}
/*
* Write en/dis-able clock registers. We coordinate so that several
* writers can run simultaneously.
*/
void
clk_wenable(onoff)
int onoff;
{
register int s;
register vm_prot_t prot;/* nonzero => change prot */
static int writers;
s = splhigh();
if (onoff)
prot = writers++ == 0 ? VM_PROT_READ|VM_PROT_WRITE : 0;
else
prot = --writers == 0 ? VM_PROT_READ : 0;
splx(s);
if (prot)
pmap_changeprot(pmap_kernel(),
(vm_offset_t)clockreg & ~(NBPG-1),
prot, 1);
}
void
stopcounter(creg)
struct timer_4u *creg;
{
/* Stop the clock */
volatile int discard;
discard = creg->t_limit;
creg->t_limit = 0;
}
/*
* XXX this belongs elsewhere
*/
void
myetheraddr(cp)
u_char *cp;
{
register struct clockreg *cl = clockreg;
register struct idprom *idp = &cl->cl_idprom;
cp[0] = idp->id_ether[0];
cp[1] = idp->id_ether[1];
cp[2] = idp->id_ether[2];
cp[3] = idp->id_ether[3];
cp[4] = idp->id_ether[4];
cp[5] = idp->id_ether[5];
}
/*
* Set up the real-time and statistics clocks. Leave stathz 0 only if
* no alternative timer is available.
*
* The frequencies of these clocks must be an even number of microseconds.
*/
void
cpu_initclocks()
{
register int statint, minint;
if (1000000 % hz) {
printf("cannot get %d Hz clock; using 100 Hz\n", hz);
hz = 100;
tick = 1000000 / hz;
}
#ifdef INTR_DEBUG
/* Set a 1/4s clock */
tick = 200000;
#endif
if (stathz == 0)
stathz = hz;
if (1000000 % stathz) {
printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
stathz = 100;
}
profhz = stathz; /* always */
statint = 1000000 / stathz;
minint = statint / 2 + 100;
while (statvar > minint)
statvar >>= 1;
/*
* Enable timers
*
* Also need to map the interrupts cause we're not a child of the sbus.
* N.B. By default timer[0] is disabled and timer[1] is enabled.
*/
#if 0
timerreg_4u.t_timer[0].t_limit = tmr_ustolim(tick)|TMR_LIM_IEN|TMR_LIM_PERIODIC|TMR_LIM_RELOAD;
timerreg_4u.t_mapintr[0] |= INTMAP_V;
timerreg_4u.t_timer[1].t_limit = tmr_ustolim(statint)|TMR_LIM_IEN|TMR_LIM_RELOAD;
timerreg_4u.t_mapintr[1] |= INTMAP_V;
#else
stxa(&timerreg_4u.t_timer[0].t_limit, ASI_NUCLEUS, tmr_ustolim(tick)|TMR_LIM_IEN|TMR_LIM_PERIODIC|TMR_LIM_RELOAD);
/* stxa(&timerreg_4u.t_timer[0].t_limit, ASI_NUCLEUS, tmr_ustolim(tick)|TMR_LIM_PERIODIC|TMR_LIM_RELOAD); */
stxa(&timerreg_4u.t_mapintr[0], ASI_NUCLEUS, timerreg_4u.t_mapintr[0]|INTMAP_V);
#ifdef INTR_DEBUG
/* Neglect to enable profile timer */
stxa(&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS, tmr_ustolim(statint)|TMR_LIM_RELOAD);
#else
stxa(&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS, tmr_ustolim(statint)|TMR_LIM_IEN|TMR_LIM_RELOAD);
#endif
stxa(&timerreg_4u.t_mapintr[1], ASI_NUCLEUS, timerreg_4u.t_mapintr[1]|INTMAP_V);
#endif
statmin = statint - (statvar >> 1);
/* Also zero out %tick which should be valid for at least 10 years */
__asm __volatile("wrpr %%g0, 0, %%tick" : : );
}
/*
* Dummy setstatclockrate(), since we know profhz==hz.
*/
/* ARGSUSED */
void
setstatclockrate(newhz)
int newhz;
{
/* nothing */
}
/*
* Level 10 (clock) interrupts. If we are using the FORTH PROM for
* console input, we need to check for that here as well, and generate
* a software interrupt to read it.
*/
int
clockintr(cap)
void *cap;
{
int s;
#if NKBD > 0
extern int cnrom __P((void));
extern int rom_console_input;
#endif
#ifdef NOTDEF_DEBUG
static int deadman = 0;
if (deadman++ > 100) {
deadman = 0;
Debugger();
}
#endif
/*
* Protect the clearing of the clock interrupt. If we don't
* do this, and we're interrupted (by the zs, for example),
* the clock stops!
* XXX WHY DOES THIS HAPPEN?
*/
s = splhigh();
/* read the register to clear the interrupt */
#if 0
timerreg_4u.t_clrintr[0] = 0;
#else
stxa(&timerreg_4u.t_clrintr[0], ASI_NUCLEUS, 0LL);
#endif
#if 0
/* reset timer interrupt?!?!?! */
#if 0
timerreg_4u.t_timer[0].t_limit = tmr_ustolim(tick)|TMR_LIM_IEN|TMR_LIM_PERIODIC;
#else
stxa(&timerreg_4u.t_timer[0].t_limit, ASI_NUCLEUS, tmr_ustolim(tick)|TMR_LIM_IEN|TMR_LIM_PERIODIC);
#endif
#endif
splx(s);
hardclock((struct clockframe *)cap);
#if NKBD > 0
if (rom_console_input && cnrom())
setsoftint();
#endif
return (1);
}
/*
* Level 14 (stat clock) interrupt handler.
*/
int
statintr(cap)
void *cap;
{
register u_long newint, r, var;
/* read the limit register to clear the interrupt */
#ifdef NOT_DEBUG
printf("statclock: count %x:%x, limit %x:%x\n",
timerreg_4u.t_timer[1].t_count, timerreg_4u.t_timer[1].t_limit);
#endif
#ifdef NOT_DEBUG
prom_printf("!");
#endif
#if 0
timerreg_4u.t_clrintr[1]=0;
#else
stxa(&timerreg_4u.t_clrintr[1], ASI_NUCLEUS, 0LL);
#endif
statclock((struct clockframe *)cap);
#ifdef NOTDEF_DEBUG
/* Don't re-schedule the IRQ */
return 1;
#endif
/*
* Compute new randomized interval. The intervals are uniformly
* distributed on [statint - statvar / 2, statint + statvar / 2],
* and therefore have mean statint, giving a stathz frequency clock.
*/
var = statvar;
do {
r = random() & (var - 1);
} while (r == 0);
newint = statmin + r;
#if 0
timerreg_4u.t_timer[1].t_limit = tmr_ustolim(newint)|TMR_LIM_IEN|TMR_LIM_RELOAD;
#else
stxa(&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS, tmr_ustolim(newint)|TMR_LIM_IEN|TMR_LIM_RELOAD);
#ifdef NOT_DEBUG
/* Use normal clock instead */
stathz = 0;
stxa(&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS, tmr_ustolim(newint)|TMR_LIM_RELOAD);
#endif
#endif
return (1);
}
/*
* BCD to decimal and decimal to BCD.
*/
#define FROMBCD(x) (((x) >> 4) * 10 + ((x) & 0xf))
#define TOBCD(x) (((x) / 10 * 16) + ((x) % 10))
#define SECDAY (24 * 60 * 60)
#define SECYR (SECDAY * 365)
/*
* should use something like
* #define LEAPYEAR(y) ((((y) % 4) == 0 && ((y) % 100) != 0) || ((y) % 400) == 0)
* but it's unlikely that we'll still be around in 2100.
*/
#define LEAPYEAR(y) (((y) & 3) == 0)
/*
* This code is defunct after 2068.
* Will Unix still be here then??
*/
const short dayyr[12] =
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
int
chiptotime(sec, min, hour, day, mon, year)
register int sec, min, hour, day, mon, year;
{
register int days, yr;
sec = FROMBCD(sec);
min = FROMBCD(min);
hour = FROMBCD(hour);
day = FROMBCD(day);
mon = FROMBCD(mon);
year = FROMBCD(year) + YEAR0;
/* simple sanity checks */
if (year < 70 || mon < 1 || mon > 12 || day < 1 || day > 31)
return (0);
days = 0;
for (yr = 70; yr < year; yr++)
days += LEAPYEAR(yr) ? 366 : 365;
days += dayyr[mon - 1] + day - 1;
if (LEAPYEAR(yr) && mon > 2)
days++;
/* now have days since Jan 1, 1970; the rest is easy... */
return (days * SECDAY + hour * 3600 + min * 60 + sec);
}
struct chiptime {
int sec;
int min;
int hour;
int wday;
int day;
int mon;
int year;
};
void
timetochip(c)
register struct chiptime *c;
{
register int t, t2, t3, now = time.tv_sec;
/* compute the year */
t2 = now / SECDAY;
t3 = (t2 + 2) % 7; /* day of week */
c->wday = TOBCD(t3 + 1);
t = 69;
while (t2 >= 0) { /* whittle off years */
t3 = t2;
t++;
t2 -= LEAPYEAR(t) ? 366 : 365;
}
c->year = t;
/* t3 = month + day; separate */
t = LEAPYEAR(t);
for (t2 = 1; t2 < 12; t2++)
if (t3 < dayyr[t2] + (t && t2 > 1))
break;
/* t2 is month */
c->mon = t2;
c->day = t3 - dayyr[t2 - 1] + 1;
if (t && t2 > 2)
c->day--;
/* the rest is easy */
t = now % SECDAY;
c->hour = t / 3600;
t %= 3600;
c->min = t / 60;
c->sec = t % 60;
c->sec = TOBCD(c->sec);
c->min = TOBCD(c->min);
c->hour = TOBCD(c->hour);
c->day = TOBCD(c->day);
c->mon = TOBCD(c->mon);
c->year = TOBCD(c->year - YEAR0);
}
/*
* Set up the system's time, given a `reasonable' time value.
*/
void
inittodr(base)
time_t base;
{
register struct clockreg *cl = clockreg;
int sec, min, hour, day, mon, year;
int badbase = 0, waszero = base == 0;
if (base < 5 * SECYR) {
/*
* If base is 0, assume filesystem time is just unknown
* in stead of preposterous. Don't bark.
*/
if (base != 0)
printf("WARNING: preposterous time in file system\n");
/* not going to use it anyway, if the chip is readable */
base = 21*SECYR + 186*SECDAY + SECDAY/2;
badbase = 1;
}
clk_wenable(1);
cl->cl_csr |= CLK_READ; /* enable read (stop time) */
sec = cl->cl_sec;
min = cl->cl_min;
hour = cl->cl_hour;
day = cl->cl_mday;
mon = cl->cl_month;
year = cl->cl_year;
cl->cl_csr &= ~CLK_READ; /* time wears on */
clk_wenable(0);
time.tv_sec = chiptotime(sec, min, hour, day, mon, year);
if (time.tv_sec == 0) {
printf("WARNING: bad date in battery clock");
/*
* Believe the time in the file system for lack of
* anything better, resetting the clock.
*/
time.tv_sec = base;
if (!badbase)
resettodr();
} else {
int deltat = time.tv_sec - base;
if (deltat < 0)
deltat = -deltat;
if (waszero || deltat < 2 * SECDAY)
return;
printf("WARNING: clock %s %d days",
time.tv_sec < base ? "lost" : "gained", deltat / SECDAY);
}
printf(" -- CHECK AND RESET THE DATE!\n");
}
/*
* Reset the clock based on the current time.
* Used when the current clock is preposterous, when the time is changed,
* and when rebooting. Do nothing if the time is not yet known, e.g.,
* when crashing during autoconfig.
*/
void
resettodr()
{
register struct clockreg *cl;
struct chiptime c;
if (!time.tv_sec || (cl = clockreg) == NULL)
return;
timetochip(&c);
clk_wenable(1);
cl->cl_csr |= CLK_WRITE; /* enable write */
cl->cl_sec = c.sec;
cl->cl_min = c.min;
cl->cl_hour = c.hour;
cl->cl_wday = c.wday;
cl->cl_mday = c.day;
cl->cl_month = c.mon;
cl->cl_year = c.year;
cl->cl_csr &= ~CLK_WRITE; /* load them up */
clk_wenable(0);
}
/*
* XXX: these may actually belong somewhere else, but since the
* EEPROM is so closely tied to the clock on some models, perhaps
* it needs to stay here...
*/
int
eeprom_uio(uio)
struct uio *uio;
{
return (ENODEV);
}