2718 lines
72 KiB
C
2718 lines
72 KiB
C
/* Language-independent node constructors for parse phase of GNU compiler.
|
||
Copyright (C) 1987, 1988 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/* This file contains the low level primitives for operating on tree nodes,
|
||
including allocation, list operations, interning of identifiers,
|
||
construction of data type nodes and statement nodes,
|
||
and construction of type conversion nodes. It also contains
|
||
tables index by tree code that describe how to take apart
|
||
nodes of that code.
|
||
|
||
It is intended to be language-independent, but occasionally
|
||
calls language-dependent routines defined (for C) in typecheck.c.
|
||
|
||
The low-level allocation routines oballoc and permalloc
|
||
are used also for allocating many other kinds of objects
|
||
by all passes of the compiler. */
|
||
|
||
#include "config.h"
|
||
#include <stdio.h>
|
||
#include "tree.h"
|
||
#include "obstack.h"
|
||
#include "gvarargs.h"
|
||
#include "flags.h"
|
||
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
|
||
extern int xmalloc ();
|
||
extern void free ();
|
||
|
||
/* Tree nodes of permanent duration are allocated in this obstack.
|
||
They are the identifier nodes, and everything outside of
|
||
the bodies and parameters of function definitions. */
|
||
|
||
struct obstack permanent_obstack;
|
||
|
||
/* The initial RTL, and all ..._TYPE nodes, in a function
|
||
are allocated in this obstack. Usually they are freed at the
|
||
end of the function, but if the function is inline they are saved. */
|
||
|
||
struct obstack maybepermanent_obstack;
|
||
|
||
/* The contents of the current function definition are allocated
|
||
in this obstack, and all are freed at the end of the function. */
|
||
|
||
struct obstack temporary_obstack;
|
||
|
||
/* The tree nodes of an expression are allocated
|
||
in this obstack, and all are freed at the end of the expression. */
|
||
|
||
struct obstack momentary_obstack;
|
||
|
||
/* The tree nodes of a declarator are allocated
|
||
in this obstack, and all are freed when the declarator
|
||
has been parsed. */
|
||
|
||
static struct obstack temp_decl_obstack;
|
||
|
||
/* This points at either permanent_obstack or maybepermanent_obstack. */
|
||
|
||
struct obstack *saveable_obstack;
|
||
|
||
/* This is same as saveable_obstack during parse and expansion phase;
|
||
it points to temporary_obstack during optimization.
|
||
This is the obstack to be used for creating rtl objects. */
|
||
|
||
struct obstack *rtl_obstack;
|
||
|
||
/* This points at either permanent_obstack or temporary_obstack. */
|
||
|
||
struct obstack *current_obstack;
|
||
|
||
/* This points at either permanent_obstack or temporary_obstack
|
||
or momentary_obstack. */
|
||
|
||
struct obstack *expression_obstack;
|
||
|
||
/* Addresses of first objects in some obstacks.
|
||
This is for freeing their entire contents. */
|
||
char *maybepermanent_firstobj;
|
||
char *temporary_firstobj;
|
||
char *momentary_firstobj;
|
||
char *temp_decl_firstobj;
|
||
|
||
/* Nonzero means all ..._TYPE nodes should be allocated permanently. */
|
||
|
||
int all_types_permanent;
|
||
|
||
/* Stack of places to restore the momentary obstack back to. */
|
||
|
||
struct momentary_level
|
||
{
|
||
/* Pointer back to previous such level. */
|
||
struct momentary_level *prev;
|
||
/* First object allocated within this level. */
|
||
char *base;
|
||
/* Value of expression_obstack saved at entry to this level. */
|
||
struct obstack *obstack;
|
||
};
|
||
|
||
struct momentary_level *momentary_stack;
|
||
|
||
/* Table indexed by tree code giving a string containing a character
|
||
classifying the tree code. Possibilities are
|
||
t, d, s, c, r and e. See tree.def for details. */
|
||
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
|
||
|
||
char *standard_tree_code_type[] = {
|
||
#include "tree.def"
|
||
};
|
||
#undef DEFTREECODE
|
||
|
||
/* Table indexed by tree code giving number of expression
|
||
operands beyond the fixed part of the node structure.
|
||
Not used for types or decls. */
|
||
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
|
||
|
||
int standard_tree_code_length[] = {
|
||
#include "tree.def"
|
||
};
|
||
#undef DEFTREECODE
|
||
|
||
/* Names of tree components.
|
||
Used for printing out the tree and error messages. */
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
|
||
|
||
char *standard_tree_code_name[] = {
|
||
#include "tree.def"
|
||
};
|
||
#undef DEFTREECODE
|
||
|
||
/* Table indexed by tree code giving a string containing a character
|
||
classifying the tree code. Possibilities are
|
||
t, d, s, c, r and e. See tree.def for details. */
|
||
|
||
char **tree_code_type;
|
||
|
||
/* Table indexed by tree code giving number of expression
|
||
operands beyond the fixed part of the node structure.
|
||
Not used for types or decls. */
|
||
|
||
int *tree_code_length;
|
||
|
||
/* Table indexed by tree code giving name of tree code, as a string. */
|
||
|
||
char **tree_code_name;
|
||
|
||
/* Counter for assigning unique ids to all tree nodes. */
|
||
|
||
int tree_node_counter = 0;
|
||
|
||
/* Statistics-gathering stuff. */
|
||
typedef enum
|
||
{
|
||
d_kind, t_kind, s_kind, r_kind, e_kind, c_kind,
|
||
id_kind, op_id_kind, perm_list_kind, temp_list_kind,
|
||
x_kind, lang_decl, lang_type, all_kinds
|
||
} tree_node_kind;
|
||
int tree_node_kinds[(int)all_kinds];
|
||
int tree_node_sizes[(int)all_kinds];
|
||
int id_string_size = 0;
|
||
char *tree_node_kind_names[] = { "decls", "types", "stmts", "refs", "exprs", "constants",
|
||
"identifiers", "op_identifiers", "perm_tree_lists", "temp_tree_lists",
|
||
"random kinds", "lang_decl kinds", "lang_type kinds" };
|
||
|
||
/* Hash table for uniquizing IDENTIFIER_NODEs by name. */
|
||
|
||
#define MAX_HASH_TABLE 1009
|
||
static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
|
||
|
||
/* 0 while creating built-in identifiers. */
|
||
static int do_identifier_warnings;
|
||
|
||
/* Init data for node creation, at the beginning of compilation. */
|
||
|
||
void
|
||
init_tree ()
|
||
{
|
||
obstack_init (&permanent_obstack);
|
||
|
||
obstack_init (&temporary_obstack);
|
||
temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
|
||
obstack_init (&momentary_obstack);
|
||
momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
|
||
obstack_init (&maybepermanent_obstack);
|
||
maybepermanent_firstobj
|
||
= (char *) obstack_alloc (&maybepermanent_obstack, 0);
|
||
obstack_init (&temp_decl_obstack);
|
||
temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
|
||
|
||
current_obstack = &permanent_obstack;
|
||
expression_obstack = &permanent_obstack;
|
||
rtl_obstack = saveable_obstack = &permanent_obstack;
|
||
tree_node_counter = 1;
|
||
/* bzero (hash_table, sizeof hash_table); */
|
||
|
||
tree_code_type = (char **) xmalloc (sizeof (standard_tree_code_type));
|
||
tree_code_length = (int *) xmalloc (sizeof (standard_tree_code_length));
|
||
tree_code_name = (char **) xmalloc (sizeof (standard_tree_code_name));
|
||
bcopy (standard_tree_code_type, tree_code_type,
|
||
sizeof (standard_tree_code_type));
|
||
bcopy (standard_tree_code_length, tree_code_length,
|
||
sizeof (standard_tree_code_length));
|
||
bcopy (standard_tree_code_name, tree_code_name,
|
||
sizeof (standard_tree_code_name));
|
||
}
|
||
#if 0
|
||
/* Save all variables describing the current status into the structure *P.
|
||
This is used before starting a nested function. */
|
||
|
||
void
|
||
save_tree_status (p)
|
||
struct function *p;
|
||
{
|
||
p->all_types_permanent = all_types_permanent;
|
||
p->momentary_stack = momentary_stack;
|
||
p->maybepermanent_firstobj = maybepermanent_firstobj;
|
||
p->temporary_firstobj = temporary_firstobj;
|
||
p->momentary_firstobj = momentary_firstobj;
|
||
p->current_obstack = current_obstack;
|
||
p->expression_obstack = expression_obstack;
|
||
p->saveable_obstack = saveable_obstack;
|
||
p->rtl_obstack = rtl_obstack;
|
||
|
||
current_obstack = &permanent_obstack;
|
||
expression_obstack = &permanent_obstack;
|
||
rtl_obstack = saveable_obstack = &permanent_obstack;
|
||
|
||
maybepermanent_firstobj = (char *) obstack_finish (&maybepermanent_obstack);
|
||
temporary_firstobj = (char *) obstack_finish (&temporary_obstack);
|
||
momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
|
||
}
|
||
|
||
/* Restore all variables describing the current status from the structure *P.
|
||
This is used after a nested function. */
|
||
|
||
void
|
||
restore_tree_status (p)
|
||
struct function *p;
|
||
{
|
||
all_types_permanent = p->all_types_permanent;
|
||
momentary_stack = p->momentary_stack;
|
||
|
||
obstack_free (&maybepermanent_obstack, maybepermanent_firstobj);
|
||
obstack_free (&temporary_obstack, temporary_firstobj);
|
||
obstack_free (&momentary_obstack, momentary_firstobj);
|
||
|
||
maybepermanent_firstobj = p->maybepermanent_firstobj;
|
||
temporary_firstobj = p->temporary_firstobj;
|
||
momentary_firstobj = p->momentary_firstobj;
|
||
current_obstack = p->current_obstack;
|
||
expression_obstack = p->expression_obstack;
|
||
saveable_obstack = p->saveable_obstack;
|
||
rtl_obstack = p->rtl_obstack;
|
||
}
|
||
#endif
|
||
|
||
/* Start allocating on the temporary (per function) obstack.
|
||
This is done in start_function before parsing the function body,
|
||
and before each initialization at top level, and to go back
|
||
to temporary allocation after doing end_temporary_allocation. */
|
||
|
||
void
|
||
temporary_allocation ()
|
||
{
|
||
current_obstack = &temporary_obstack;
|
||
expression_obstack = &temporary_obstack;
|
||
rtl_obstack = saveable_obstack = &maybepermanent_obstack;
|
||
momentary_stack = 0;
|
||
}
|
||
|
||
/* Start allocating on the permanent obstack but don't
|
||
free the temporary data. After calling this, call
|
||
`permanent_allocation' to fully resume permanent allocation status. */
|
||
|
||
void
|
||
end_temporary_allocation ()
|
||
{
|
||
current_obstack = &permanent_obstack;
|
||
expression_obstack = &permanent_obstack;
|
||
rtl_obstack = saveable_obstack = &permanent_obstack;
|
||
}
|
||
|
||
/* Resume allocating on the temporary obstack, undoing
|
||
effects of `end_temporary_allocation'. */
|
||
|
||
void
|
||
resume_temporary_allocation ()
|
||
{
|
||
current_obstack = &temporary_obstack;
|
||
expression_obstack = &temporary_obstack;
|
||
rtl_obstack = saveable_obstack = &maybepermanent_obstack;
|
||
}
|
||
|
||
/* Nonzero if temporary allocation is currently in effect.
|
||
Zero if currently doing permanent allocation. */
|
||
|
||
int
|
||
allocation_temporary_p ()
|
||
{
|
||
return current_obstack == &temporary_obstack;
|
||
}
|
||
|
||
/* Go back to allocating on the permanent obstack
|
||
and free everything in the temporary obstack.
|
||
This is done in finish_function after fully compiling a function. */
|
||
|
||
void
|
||
permanent_allocation ()
|
||
{
|
||
/* Free up previous temporary obstack data */
|
||
obstack_free (&temporary_obstack, temporary_firstobj);
|
||
obstack_free (&momentary_obstack, momentary_firstobj);
|
||
obstack_free (&maybepermanent_obstack, maybepermanent_firstobj);
|
||
obstack_free (&temp_decl_obstack, temp_decl_firstobj);
|
||
|
||
current_obstack = &permanent_obstack;
|
||
expression_obstack = &permanent_obstack;
|
||
rtl_obstack = saveable_obstack = &permanent_obstack;
|
||
}
|
||
|
||
/* Save permanently everything on the maybepermanent_obstack. */
|
||
|
||
void
|
||
preserve_data ()
|
||
{
|
||
maybepermanent_firstobj
|
||
= (char *) obstack_alloc (&maybepermanent_obstack, 0);
|
||
}
|
||
|
||
void
|
||
preserve_initializer ()
|
||
{
|
||
temporary_firstobj
|
||
= (char *) obstack_alloc (&temporary_obstack, 0);
|
||
momentary_firstobj
|
||
= (char *) obstack_alloc (&momentary_obstack, 0);
|
||
maybepermanent_firstobj
|
||
= (char *) obstack_alloc (&maybepermanent_obstack, 0);
|
||
}
|
||
|
||
/* Allocate SIZE bytes in the current obstack
|
||
and return a pointer to them.
|
||
In practice the current obstack is always the temporary one. */
|
||
|
||
char *
|
||
oballoc (size)
|
||
int size;
|
||
{
|
||
return (char *) obstack_alloc (current_obstack, size);
|
||
}
|
||
|
||
/* Free the object PTR in the current obstack
|
||
as well as everything allocated since PTR.
|
||
In practice the current obstack is always the temporary one. */
|
||
|
||
void
|
||
obfree (ptr)
|
||
char *ptr;
|
||
{
|
||
obstack_free (current_obstack, ptr);
|
||
}
|
||
|
||
/* Allocate SIZE bytes in the permanent obstack
|
||
and return a pointer to them. */
|
||
|
||
char *
|
||
permalloc (size)
|
||
long size;
|
||
{
|
||
return (char *) obstack_alloc (&permanent_obstack, size);
|
||
}
|
||
|
||
/* Allocate SIZE bytes in the saveable obstack
|
||
and return a pointer to them. */
|
||
|
||
char *
|
||
savealloc (size)
|
||
int size;
|
||
{
|
||
return (char *) obstack_alloc (saveable_obstack, size);
|
||
}
|
||
|
||
/* Start a level of momentary allocation.
|
||
In C, each compound statement has its own level
|
||
and that level is freed at the end of each statement.
|
||
All expression nodes are allocated in the momentary allocation level. */
|
||
|
||
void
|
||
push_momentary ()
|
||
{
|
||
struct momentary_level *tem
|
||
= (struct momentary_level *) obstack_alloc (&momentary_obstack,
|
||
sizeof (struct momentary_level));
|
||
tem->prev = momentary_stack;
|
||
tem->base = (char *) obstack_base (&momentary_obstack);
|
||
tem->obstack = expression_obstack;
|
||
momentary_stack = tem;
|
||
expression_obstack = &momentary_obstack;
|
||
}
|
||
|
||
/* Free all the storage in the current momentary-allocation level.
|
||
In C, this happens at the end of each statement. */
|
||
|
||
void
|
||
clear_momentary ()
|
||
{
|
||
obstack_free (&momentary_obstack, momentary_stack->base);
|
||
}
|
||
|
||
/* Discard a level of momentary allocation.
|
||
In C, this happens at the end of each compound statement.
|
||
Restore the status of expression node allocation
|
||
that was in effect before this level was created. */
|
||
|
||
void
|
||
pop_momentary ()
|
||
{
|
||
struct momentary_level *tem = momentary_stack;
|
||
momentary_stack = tem->prev;
|
||
obstack_free (&momentary_obstack, tem);
|
||
expression_obstack = tem->obstack;
|
||
}
|
||
|
||
/* Call when starting to parse a declaration:
|
||
make expressions in the declaration last the length of the function.
|
||
Returns an argument that should be passed to resume_momentary later. */
|
||
|
||
int
|
||
suspend_momentary ()
|
||
{
|
||
register int tem = expression_obstack == &momentary_obstack;
|
||
expression_obstack = saveable_obstack;
|
||
return tem;
|
||
}
|
||
|
||
/* Call when finished parsing a declaration:
|
||
restore the treatment of node-allocation that was
|
||
in effect before the suspension.
|
||
YES should be the value previously returned by suspend_momentary. */
|
||
|
||
void
|
||
resume_momentary (yes)
|
||
int yes;
|
||
{
|
||
if (yes)
|
||
expression_obstack = &momentary_obstack;
|
||
}
|
||
|
||
/* Return a newly allocated node of code CODE.
|
||
Initialize the node's unique id and its TREE_PERMANENT flag.
|
||
For decl and type nodes, some other fields are initialized.
|
||
The rest of the node is initialized to zero.
|
||
|
||
Achoo! I got a code in the node. */
|
||
|
||
tree
|
||
make_node (code)
|
||
enum tree_code code;
|
||
{
|
||
register tree t;
|
||
register int type = *tree_code_type[(int) code];
|
||
register int length;
|
||
register struct obstack *obstack = current_obstack;
|
||
register int i;
|
||
register tree_node_kind kind;
|
||
|
||
switch (type)
|
||
{
|
||
case 'd': /* A decl node */
|
||
length = sizeof (struct tree_decl)
|
||
+ tree_code_length[(int) code] * sizeof (char *);
|
||
kind = d_kind;
|
||
/* All decls in an inline function need to be saved. */
|
||
if (obstack != &permanent_obstack)
|
||
obstack = saveable_obstack;
|
||
/* PARM_DECLs always go on the saveable_obstack, not permanent
|
||
even though we may make them before the function turns
|
||
on temporary allocation. */
|
||
else if (code == PARM_DECL)
|
||
obstack = &maybepermanent_obstack;
|
||
break;
|
||
|
||
case 't': /* a type node */
|
||
length = sizeof (struct tree_type);
|
||
kind = t_kind;
|
||
/* All data types are put where we can preserve them if nec. */
|
||
if (obstack != &permanent_obstack)
|
||
obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
|
||
break;
|
||
|
||
case 's': /* a stmt node */
|
||
length = sizeof (struct tree_common)
|
||
+ 2 * sizeof (int)
|
||
+ tree_code_length[(int) code] * sizeof (char *);
|
||
kind = s_kind;
|
||
/* All stmts are put where we can preserve them if nec. */
|
||
if (obstack != &permanent_obstack)
|
||
obstack = saveable_obstack;
|
||
break;
|
||
|
||
case 'r': /* a reference */
|
||
obstack = expression_obstack;
|
||
length = sizeof (struct tree_exp)
|
||
+ (tree_code_length[(int) code] - 1) * sizeof (char *);
|
||
kind = r_kind;
|
||
break;
|
||
|
||
case 'e': /* an expression */
|
||
obstack = expression_obstack;
|
||
length = sizeof (struct tree_exp)
|
||
+ (tree_code_length[(int) code] - 1) * sizeof (char *);
|
||
kind = e_kind;
|
||
break;
|
||
|
||
case 'c': /* a constant */
|
||
obstack = expression_obstack;
|
||
/* We can't use tree_code_length for this, since the number of words
|
||
is machine-dependent due to varying alignment of `double'. */
|
||
if (code == REAL_CST)
|
||
{
|
||
length = sizeof (struct tree_real_cst);
|
||
kind = c_kind;
|
||
break;
|
||
}
|
||
length = sizeof (struct tree_common)
|
||
+ tree_code_length[(int) code] * sizeof (char *);
|
||
kind = c_kind;
|
||
break;
|
||
|
||
case 'x': /* something random, like an identifier. */
|
||
length = sizeof (struct tree_common)
|
||
+ tree_code_length[(int) code] * sizeof (char *);
|
||
/* Identifier nodes are always permanent since they are
|
||
unique in a compiler run. */
|
||
if (code == IDENTIFIER_NODE)
|
||
{
|
||
kind = id_kind;
|
||
obstack = &permanent_obstack;
|
||
}
|
||
else if (code == OP_IDENTIFIER)
|
||
kind = op_id_kind;
|
||
else
|
||
kind = x_kind;
|
||
}
|
||
|
||
t = (tree) obstack_alloc (obstack, length);
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kinds[(int)kind]++;
|
||
tree_node_sizes[(int)kind] += length;
|
||
#endif
|
||
|
||
TREE_UID (t) = tree_node_counter++;
|
||
TREE_TYPE (t) = 0;
|
||
TREE_CHAIN (t) = 0;
|
||
for (i = (length / sizeof (int)) - 1;
|
||
i >= sizeof (struct tree_common) / sizeof (int) - 1;
|
||
i--)
|
||
((int *) t)[i] = 0;
|
||
|
||
TREE_SET_CODE (t, code);
|
||
if (obstack == &permanent_obstack)
|
||
TREE_PERMANENT (t) = 1;
|
||
|
||
if (type == 'd')
|
||
{
|
||
extern int lineno;
|
||
|
||
DECL_ALIGN (t) = 1;
|
||
DECL_SIZE_UNIT (t) = 1;
|
||
DECL_VOFFSET_UNIT (t) = 1;
|
||
if (code == PARM_DECL)
|
||
DECL_CONTEXT (t) = current_function_decl;
|
||
else
|
||
{
|
||
DECL_SOURCE_LINE (t) = lineno;
|
||
DECL_SOURCE_FILE (t)
|
||
= (input_filename) ? input_filename : "<built-in>";
|
||
}
|
||
}
|
||
|
||
if (type == 't')
|
||
{
|
||
TYPE_ALIGN (t) = 1;
|
||
TYPE_SIZE_UNIT (t) = 1;
|
||
TYPE_MAIN_VARIANT (t) = t;
|
||
}
|
||
|
||
if (type == 'c')
|
||
{
|
||
TREE_LITERAL (t) = 1;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a new node with the same contents as NODE
|
||
except that its TREE_CHAIN is zero and it has a fresh uid. */
|
||
|
||
tree
|
||
copy_node (node)
|
||
tree node;
|
||
{
|
||
register tree t;
|
||
register enum tree_code code = TREE_CODE (node);
|
||
register int length;
|
||
register int i;
|
||
|
||
switch (*tree_code_type[(int) code])
|
||
{
|
||
case 'd': /* A decl node */
|
||
length = sizeof (struct tree_decl)
|
||
+ tree_code_length[(int) code] * sizeof (char *);
|
||
break;
|
||
|
||
case 't': /* a type node */
|
||
length = sizeof (struct tree_type);
|
||
break;
|
||
|
||
case 's':
|
||
length = sizeof (struct tree_common)
|
||
+ 2 * sizeof (int)
|
||
+ tree_code_length[(int) code] * sizeof (char *);
|
||
break;
|
||
|
||
case 'r': /* a reference */
|
||
case 'e': /* a expression */
|
||
length = sizeof (struct tree_exp)
|
||
+ (tree_code_length[(int) code] - 1) * sizeof (char *);
|
||
break;
|
||
|
||
case 'c': /* a constant */
|
||
/* We can't use tree_code_length for this, since the number of words
|
||
is machine-dependent due to varying alignment of `double'. */
|
||
if (code == REAL_CST)
|
||
{
|
||
length = sizeof (struct tree_real_cst);
|
||
break;
|
||
}
|
||
|
||
case 'x': /* something random, like an identifier. */
|
||
length = sizeof (struct tree_common)
|
||
+ tree_code_length[(int) code] * sizeof (char *);
|
||
if (code == TREE_VEC)
|
||
length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
|
||
}
|
||
|
||
t = (tree) obstack_alloc (current_obstack, length);
|
||
|
||
for (i = ((length + sizeof (int) - 1) / sizeof (int)) - 1;
|
||
i >= 0;
|
||
i--)
|
||
((int *) t)[i] = ((int *) node)[i];
|
||
|
||
TREE_UID (t) = tree_node_counter++;
|
||
TREE_CHAIN (t) = 0;
|
||
|
||
TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
|
||
For example, this can copy a list made of TREE_LIST nodes. */
|
||
|
||
tree
|
||
copy_list (list)
|
||
tree list;
|
||
{
|
||
tree head;
|
||
register tree prev, next;
|
||
|
||
if (list == 0)
|
||
return 0;
|
||
|
||
head = prev = copy_node (list);
|
||
next = TREE_CHAIN (list);
|
||
while (next)
|
||
{
|
||
TREE_CHAIN (prev) = copy_node (next);
|
||
prev = TREE_CHAIN (prev);
|
||
next = TREE_CHAIN (next);
|
||
}
|
||
return head;
|
||
}
|
||
|
||
#define HASHBITS 30
|
||
|
||
/* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
|
||
If an identifier with that name has previously been referred to,
|
||
the same node is returned this time. */
|
||
|
||
tree
|
||
get_identifier (text)
|
||
register char *text;
|
||
{
|
||
register int hi;
|
||
register int i;
|
||
register tree idp;
|
||
register int len, hash_len;
|
||
|
||
/* Compute length of text in len. */
|
||
for (len = 0; text[len]; len++);
|
||
|
||
/* Decide how much of that length to hash on */
|
||
hash_len = len;
|
||
if (warn_id_clash && len > id_clash_len)
|
||
hash_len = id_clash_len;
|
||
|
||
/* Compute hash code */
|
||
hi = 17 * (unsigned)(text[0]) + len;
|
||
for (i = 1; i < hash_len; i += 2)
|
||
hi = ((hi * 613) + (unsigned)(text[i]));
|
||
|
||
hi &= (1 << HASHBITS) - 1;
|
||
hi %= MAX_HASH_TABLE;
|
||
|
||
/* Search table for identifier */
|
||
for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
|
||
if (IDENTIFIER_LENGTH (idp) == len
|
||
&& IDENTIFIER_POINTER (idp)[0] == text[0]
|
||
&& !bcmp (IDENTIFIER_POINTER (idp), text, len))
|
||
return idp; /* <-- return if found */
|
||
|
||
/* Not found; optionally warn about a similar identifier */
|
||
if (warn_id_clash && do_identifier_warnings && len > id_clash_len)
|
||
for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
|
||
if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
|
||
{
|
||
warning ("`%s' and `%s' identical in first n characters",
|
||
IDENTIFIER_POINTER (idp), text);
|
||
break;
|
||
}
|
||
|
||
if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
|
||
abort (); /* set_identifier_size hasn't been called. */
|
||
|
||
/* Not found, create one, add to chain */
|
||
idp = make_node (IDENTIFIER_NODE);
|
||
IDENTIFIER_LENGTH (idp) = len;
|
||
id_string_size += len;
|
||
|
||
IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
|
||
|
||
TREE_CHAIN (idp) = hash_table[hi];
|
||
hash_table[hi] = idp;
|
||
return idp; /* <-- return if created */
|
||
}
|
||
|
||
/* Enable warnings on similar identifiers (if requested).
|
||
Done after the built-in identifiers are created. */
|
||
|
||
void
|
||
start_identifier_warnings ()
|
||
{
|
||
do_identifier_warnings = 1;
|
||
}
|
||
|
||
/* Record the size of an identifier node for the language in use.
|
||
SIZE is the total size in bytes.
|
||
This is called by the language-specific files. This must be
|
||
called before allocating any identifiers. */
|
||
|
||
void
|
||
set_identifier_size (size)
|
||
int size;
|
||
{
|
||
tree_code_length[(int) IDENTIFIER_NODE]
|
||
= (size - sizeof (struct tree_common)) / sizeof (tree);
|
||
}
|
||
|
||
/* Return a newly constructed INTEGER_CST node whose constant value
|
||
is specified by the two ints LOW and HI.
|
||
The TREE_TYPE is set to `int'. */
|
||
|
||
tree
|
||
build_int_2 (low, hi)
|
||
int low, hi;
|
||
{
|
||
register tree t = make_node (INTEGER_CST);
|
||
TREE_INT_CST_LOW (t) = low;
|
||
TREE_INT_CST_HIGH (t) = hi;
|
||
TREE_TYPE (t) = integer_type_node;
|
||
return t;
|
||
}
|
||
|
||
/* Return a new REAL_CST node whose type is TYPE and value is D. */
|
||
|
||
tree
|
||
build_real (type, d)
|
||
tree type;
|
||
REAL_VALUE_TYPE d;
|
||
{
|
||
tree v;
|
||
|
||
/* Check for valid float value for this type on this target machine;
|
||
if not, can print error message and store a valid value in D. */
|
||
#ifdef CHECK_FLOAT_VALUE
|
||
CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
|
||
#endif
|
||
|
||
v = make_node (REAL_CST);
|
||
TREE_TYPE (v) = type;
|
||
TREE_REAL_CST (v) = d;
|
||
return v;
|
||
}
|
||
|
||
/* Return a new REAL_CST node whose type is TYPE
|
||
and whose value is the integer value of the INTEGER_CST node I. */
|
||
|
||
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
|
||
REAL_VALUE_TYPE
|
||
real_value_from_int_cst (i)
|
||
tree i;
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
#ifdef REAL_ARITHMETIC
|
||
REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i));
|
||
#else /* not REAL_ARITHMETIC */
|
||
if (TREE_INT_CST_HIGH (i) < 0)
|
||
{
|
||
d = (double) (~ TREE_INT_CST_HIGH (i));
|
||
d *= ((double) (1 << (HOST_BITS_PER_INT / 2))
|
||
* (double) (1 << (HOST_BITS_PER_INT / 2)));
|
||
d += (double) (unsigned) (~ TREE_INT_CST_LOW (i));
|
||
d = (- d - 1.0);
|
||
}
|
||
else
|
||
{
|
||
d = (double) TREE_INT_CST_HIGH (i);
|
||
d *= ((double) (1 << (HOST_BITS_PER_INT / 2))
|
||
* (double) (1 << (HOST_BITS_PER_INT / 2)));
|
||
d += (double) (unsigned) TREE_INT_CST_LOW (i);
|
||
}
|
||
#endif /* not REAL_ARITHMETIC */
|
||
return d;
|
||
}
|
||
|
||
/* This function can't be implemented if we can't do arithmetic
|
||
on the float representation. */
|
||
|
||
tree
|
||
build_real_from_int_cst (type, i)
|
||
tree type;
|
||
tree i;
|
||
{
|
||
tree v;
|
||
REAL_VALUE_TYPE d;
|
||
|
||
v = make_node (REAL_CST);
|
||
TREE_TYPE (v) = type;
|
||
|
||
d = real_value_from_int_cst (i);
|
||
/* Check for valid float value for this type on this target machine;
|
||
if not, can print error message and store a valid value in D. */
|
||
#ifdef CHECK_FLOAT_VALUE
|
||
CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
|
||
#endif
|
||
|
||
TREE_REAL_CST (v) = d;
|
||
return v;
|
||
}
|
||
|
||
#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
|
||
|
||
/* Return a newly constructed STRING_CST node whose value is
|
||
the LEN characters at STR.
|
||
The TREE_TYPE is not initialized. */
|
||
|
||
tree
|
||
build_string (len, str)
|
||
int len;
|
||
char *str;
|
||
{
|
||
register tree s = make_node (STRING_CST);
|
||
TREE_STRING_LENGTH (s) = len;
|
||
TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
|
||
return s;
|
||
}
|
||
|
||
/* Return a newly constructed COMPLEX_CST node whose value is
|
||
specified by the real and imaginary parts REAL and IMAG.
|
||
Both REAL and IMAG should be constant nodes.
|
||
The TREE_TYPE is not initialized. */
|
||
|
||
tree
|
||
build_complex (real, imag)
|
||
tree real, imag;
|
||
{
|
||
register tree t = make_node (COMPLEX_CST);
|
||
TREE_REALPART (t) = real;
|
||
TREE_IMAGPART (t) = imag;
|
||
return t;
|
||
}
|
||
|
||
/* Build a newly constructed TREE_VEC node of length LEN. */
|
||
tree
|
||
make_tree_vec (len)
|
||
int len;
|
||
{
|
||
register tree t;
|
||
register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
|
||
register struct obstack *obstack = current_obstack;
|
||
register int i;
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kinds[(int)x_kind]++;
|
||
tree_node_sizes[(int)x_kind] += length;
|
||
#endif
|
||
|
||
t = (tree) obstack_alloc (obstack, length);
|
||
|
||
TREE_UID (t) = tree_node_counter++;
|
||
TREE_TYPE (t) = 0;
|
||
TREE_CHAIN (t) = 0;
|
||
for (i = (length / sizeof (int)) - 1;
|
||
i >= sizeof (struct tree_common) / sizeof (int) - 1;
|
||
i--)
|
||
((int *) t)[i] = 0;
|
||
TREE_SET_CODE (t, TREE_VEC);
|
||
TREE_VEC_LENGTH (t) = len;
|
||
if (obstack == &permanent_obstack)
|
||
TREE_PERMANENT (t) = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant zero. */
|
||
|
||
int
|
||
integer_zerop (expr)
|
||
tree expr;
|
||
{
|
||
return (TREE_CODE (expr) == INTEGER_CST
|
||
&& TREE_INT_CST_LOW (expr) == 0
|
||
&& TREE_INT_CST_HIGH (expr) == 0);
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant one. */
|
||
|
||
int
|
||
integer_onep (expr)
|
||
tree expr;
|
||
{
|
||
return (TREE_CODE (expr) == INTEGER_CST
|
||
&& TREE_INT_CST_LOW (expr) == 1
|
||
&& TREE_INT_CST_HIGH (expr) == 0);
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer containing all 1's
|
||
in as much precision as it contains. */
|
||
|
||
int
|
||
integer_all_onesp (expr)
|
||
tree expr;
|
||
{
|
||
register int prec;
|
||
register int uns;
|
||
|
||
if (TREE_CODE (expr) != INTEGER_CST)
|
||
return 0;
|
||
|
||
uns = TREE_UNSIGNED (TREE_TYPE (expr));
|
||
if (!uns)
|
||
return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
|
||
|
||
prec = TYPE_PRECISION (TREE_TYPE (expr));
|
||
if (prec >= HOST_BITS_PER_INT)
|
||
return TREE_INT_CST_LOW (expr) == -1
|
||
&& TREE_INT_CST_HIGH (expr) == (1 << (prec - HOST_BITS_PER_INT)) - 1;
|
||
else
|
||
return TREE_INT_CST_LOW (expr) == (1 << prec) - 1;
|
||
}
|
||
|
||
/* Return list element whose TREE_VALUE is ELEM.
|
||
Return 0 if ELEM is not in LIST. */
|
||
tree
|
||
value_member (elem, list)
|
||
tree elem, list;
|
||
{
|
||
while (list)
|
||
{
|
||
if (elem == TREE_VALUE (list))
|
||
return list;
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return list element whose TREE_PURPOSE is ELEM.
|
||
Return 0 if ELEM is not in LIST. */
|
||
tree
|
||
purpose_member (elem, list)
|
||
tree elem, list;
|
||
{
|
||
while (list)
|
||
{
|
||
if (elem == TREE_PURPOSE (list))
|
||
return list;
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return the length of a chain of nodes chained through TREE_CHAIN.
|
||
We expect a null pointer to mark the end of the chain.
|
||
This is the Lisp primitive `length'. */
|
||
|
||
int
|
||
list_length (t)
|
||
tree t;
|
||
{
|
||
register tree tail;
|
||
register int len = 0;
|
||
|
||
for (tail = t; tail; tail = TREE_CHAIN (tail))
|
||
len++;
|
||
|
||
return len;
|
||
}
|
||
|
||
/* Concatenate two chains of nodes (chained through TREE_CHAIN)
|
||
by modifying the last node in chain 1 to point to chain 2.
|
||
This is the Lisp primitive `nconc'. */
|
||
|
||
tree
|
||
chainon (op1, op2)
|
||
tree op1, op2;
|
||
{
|
||
tree t;
|
||
|
||
if (op1)
|
||
{
|
||
for (t = op1; TREE_CHAIN (t); t = TREE_CHAIN (t))
|
||
if (t == op2) abort (); /* Circularity being created */
|
||
TREE_CHAIN (t) = op2;
|
||
return op1;
|
||
}
|
||
else return op2;
|
||
}
|
||
|
||
/* Return a newly created TREE_LIST node whose
|
||
purpose and value fields are PARM and VALUE. */
|
||
|
||
tree
|
||
build_tree_list (parm, value)
|
||
tree parm, value;
|
||
{
|
||
#if 0
|
||
register tree t = make_node (TREE_LIST);
|
||
#else
|
||
register tree t;
|
||
register struct obstack *obstack = current_obstack;
|
||
register int i;
|
||
|
||
t = (tree) obstack_alloc (obstack, sizeof (struct tree_list));
|
||
TREE_UID (t) = tree_node_counter++;
|
||
TREE_TYPE (t) = 0;
|
||
TREE_CHAIN (t) = 0;
|
||
((int *) t)[3] = 0;
|
||
|
||
TREE_SET_CODE (t, TREE_LIST);
|
||
if (obstack == &permanent_obstack)
|
||
{
|
||
TREE_PERMANENT (t) = 1;
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kinds[(int)perm_list_kind]++;
|
||
tree_node_sizes[(int)perm_list_kind] += sizeof (struct tree_list);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kinds[(int)temp_list_kind]++;
|
||
tree_node_sizes[(int)temp_list_kind] += sizeof (struct tree_list);
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
TREE_PURPOSE (t) = parm;
|
||
TREE_VALUE (t) = value;
|
||
return t;
|
||
}
|
||
|
||
/* Similar, but build on the temp_decl_obstack. */
|
||
tree
|
||
build_decl_list (parm, value)
|
||
tree parm, value;
|
||
{
|
||
register tree node;
|
||
register struct obstack *ambient_obstack = current_obstack;
|
||
current_obstack = &temp_decl_obstack;
|
||
node = build_tree_list (parm, value);
|
||
current_obstack = ambient_obstack;
|
||
return node;
|
||
}
|
||
|
||
/* Return a newly created TREE_LIST node whose
|
||
purpose and value fields are PARM and VALUE
|
||
and whose TREE_CHAIN is CHAIN. */
|
||
|
||
tree
|
||
tree_cons (purpose, value, chain)
|
||
tree purpose, value, chain;
|
||
{
|
||
#if 0
|
||
register tree t = make_node (TREE_LIST);
|
||
#else
|
||
register tree t;
|
||
register struct obstack *obstack = current_obstack;
|
||
register int i;
|
||
|
||
t = (tree) obstack_alloc (obstack, sizeof (struct tree_list));
|
||
TREE_UID (t) = tree_node_counter++;
|
||
TREE_TYPE (t) = 0;
|
||
((int *) t)[3] = 0;
|
||
|
||
TREE_SET_CODE (t, TREE_LIST);
|
||
if (obstack == &permanent_obstack)
|
||
{
|
||
TREE_PERMANENT (t) = 1;
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kinds[(int)perm_list_kind]++;
|
||
tree_node_sizes[(int)perm_list_kind] += sizeof (struct tree_list);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kinds[(int)temp_list_kind]++;
|
||
tree_node_sizes[(int)temp_list_kind] += sizeof (struct tree_list);
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
TREE_CHAIN (t) = chain;
|
||
TREE_PURPOSE (t) = purpose;
|
||
TREE_VALUE (t) = value;
|
||
return t;
|
||
}
|
||
|
||
/* Similar, but build on the temp_decl_obstack. */
|
||
tree
|
||
decl_tree_cons (purpose, value, chain)
|
||
tree purpose, value, chain;
|
||
{
|
||
register tree node;
|
||
register struct obstack *ambient_obstack = current_obstack;
|
||
current_obstack = &temp_decl_obstack;
|
||
|
||
node = tree_cons (purpose, value, chain);
|
||
current_obstack = ambient_obstack;
|
||
return node;
|
||
}
|
||
|
||
/* Same as `tree_cons' but make a permanent object. */
|
||
|
||
tree
|
||
perm_tree_cons (purpose, value, chain)
|
||
tree purpose, value, chain;
|
||
{
|
||
register tree node;
|
||
register struct obstack *ambient_obstack = current_obstack;
|
||
current_obstack = &permanent_obstack;
|
||
|
||
node = tree_cons (purpose, value, chain);
|
||
current_obstack = ambient_obstack;
|
||
return node;
|
||
}
|
||
|
||
/* Same as `tree_cons', but make this node temporary, regardless. */
|
||
|
||
tree
|
||
temp_tree_cons (purpose, value, chain)
|
||
tree purpose, value, chain;
|
||
{
|
||
register tree node;
|
||
register struct obstack *ambient_obstack = current_obstack;
|
||
current_obstack = &temporary_obstack;
|
||
|
||
node = tree_cons (purpose, value, chain);
|
||
current_obstack = ambient_obstack;
|
||
return node;
|
||
}
|
||
|
||
/* Same as `tree_cons', but save this node if the function's RTL is saved. */
|
||
|
||
tree
|
||
saveable_tree_cons (purpose, value, chain)
|
||
tree purpose, value, chain;
|
||
{
|
||
register tree node;
|
||
register struct obstack *ambient_obstack = current_obstack;
|
||
current_obstack = saveable_obstack;
|
||
|
||
node = tree_cons (purpose, value, chain);
|
||
current_obstack = ambient_obstack;
|
||
return node;
|
||
}
|
||
|
||
/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
|
||
|
||
tree
|
||
tree_last (chain)
|
||
register tree chain;
|
||
{
|
||
register tree next;
|
||
if (chain)
|
||
while (next = TREE_CHAIN (chain))
|
||
chain = next;
|
||
return chain;
|
||
}
|
||
|
||
/* Reverse the order of elements in the chain T,
|
||
and return the new head of the chain (old last element). */
|
||
|
||
tree
|
||
nreverse (t)
|
||
tree t;
|
||
{
|
||
register tree prev = 0, decl, next;
|
||
for (decl = t; decl; decl = next)
|
||
{
|
||
next = TREE_CHAIN (decl);
|
||
TREE_CHAIN (decl) = prev;
|
||
prev = decl;
|
||
}
|
||
return prev;
|
||
}
|
||
|
||
/* Given a chain CHAIN of tree nodes,
|
||
construct and return a list of those nodes. */
|
||
|
||
tree
|
||
listify (chain)
|
||
tree chain;
|
||
{
|
||
tree result = NULL_TREE;
|
||
tree in_tail = chain;
|
||
tree out_tail = NULL_TREE;
|
||
|
||
while (in_tail)
|
||
{
|
||
tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
|
||
if (out_tail)
|
||
TREE_CHAIN (out_tail) = next;
|
||
else
|
||
result = next;
|
||
out_tail = next;
|
||
in_tail = TREE_CHAIN (in_tail);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return the size nominally occupied by an object of type TYPE
|
||
when it resides in memory. The value is measured in units of bytes,
|
||
and its data type is that normally used for type sizes
|
||
(which is the first type created by make_signed_type or
|
||
make_unsigned_type). */
|
||
|
||
tree
|
||
size_in_bytes (type)
|
||
tree type;
|
||
{
|
||
if (type == error_mark_node)
|
||
return integer_zero_node;
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
if (TYPE_SIZE (type) == 0)
|
||
{
|
||
incomplete_type_error (0, type);
|
||
return integer_zero_node;
|
||
}
|
||
return convert_units (TYPE_SIZE (type), TYPE_SIZE_UNIT (type),
|
||
BITS_PER_UNIT);
|
||
}
|
||
|
||
/* Return the size of TYPE (in bytes) as an integer,
|
||
or return -1 if the size can vary. */
|
||
|
||
int
|
||
int_size_in_bytes (type)
|
||
tree type;
|
||
{
|
||
int size;
|
||
if (type == error_mark_node)
|
||
return 0;
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
if (TYPE_SIZE (type) == 0)
|
||
return -1;
|
||
if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
||
return -1;
|
||
size = TREE_INT_CST_LOW (TYPE_SIZE (type)) * TYPE_SIZE_UNIT (type);
|
||
return (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
|
||
}
|
||
|
||
/* Return, as an INTEGER_CST node, the number of elements for
|
||
TYPE (which is an ARRAY_TYPE). */
|
||
|
||
tree
|
||
array_type_nelts (type)
|
||
tree type;
|
||
{
|
||
tree index_type = TYPE_DOMAIN (type);
|
||
if (index_type == NULL_TREE)
|
||
{
|
||
incomplete_type_error (NULL_TREE, type);
|
||
return error_mark_node;
|
||
}
|
||
return (tree_int_cst_equal (TYPE_MIN_VALUE (index_type), integer_zero_node)
|
||
? TYPE_MAX_VALUE (index_type)
|
||
: fold (build (MINUS_EXPR, integer_type_node,
|
||
TYPE_MAX_VALUE (index_type),
|
||
TYPE_MIN_VALUE (index_type))));
|
||
}
|
||
|
||
/* Return nonzero if arg is static -- a reference to an object in
|
||
static storage. This is not the same as the C meaning of `static'. */
|
||
|
||
int
|
||
staticp (arg)
|
||
tree arg;
|
||
{
|
||
register enum tree_code code = TREE_CODE (arg);
|
||
|
||
if ((code == VAR_DECL || code == FUNCTION_DECL || code == CONSTRUCTOR)
|
||
&& (TREE_STATIC (arg) || TREE_EXTERNAL (arg)))
|
||
return 1;
|
||
|
||
if (code == STRING_CST)
|
||
return 1;
|
||
|
||
if (code == COMPONENT_REF)
|
||
return (DECL_VOFFSET (TREE_OPERAND (arg, 1)) == 0
|
||
&& staticp (TREE_OPERAND (arg, 0)));
|
||
|
||
if (code == INDIRECT_REF)
|
||
return TREE_LITERAL (TREE_OPERAND (arg, 0));
|
||
|
||
if (code == ARRAY_REF)
|
||
{
|
||
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
|
||
&& TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
|
||
return staticp (TREE_OPERAND (arg, 0));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This should be applied to any node which may be used in more than one place,
|
||
but must be evaluated only once. Normally, the code generator would
|
||
reevaluate the node each time; this forces it to compute it once and save
|
||
the result. This is done by encapsulating the node in a SAVE_EXPR. */
|
||
|
||
tree
|
||
save_expr (expr)
|
||
tree expr;
|
||
{
|
||
register tree t = fold (expr);
|
||
|
||
/* If the tree evaluates to a constant, then we don't want to hide that
|
||
fact (i.e. this allows further folding, and direct checks for constants).
|
||
Since it is no problem to reevaluate literals, we just return the
|
||
literal node. */
|
||
|
||
if (TREE_LITERAL (t) || TREE_READONLY (t) || TREE_CODE (t) == SAVE_EXPR)
|
||
return t;
|
||
|
||
return build (SAVE_EXPR, TREE_TYPE (expr), t, NULL);
|
||
}
|
||
|
||
/* Stabilize a reference so that we can use it any number of times
|
||
without causing its operands to be evaluated more than once.
|
||
Returns the stabilized reference.
|
||
|
||
Also allows conversion expressions whose operands are references.
|
||
Any other kind of expression is returned unchanged. */
|
||
|
||
tree
|
||
stabilize_reference (ref)
|
||
tree ref;
|
||
{
|
||
register tree result;
|
||
register enum tree_code code = TREE_CODE (ref);
|
||
|
||
switch (code)
|
||
{
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
result = ref;
|
||
break;
|
||
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
case FLOAT_EXPR:
|
||
case FIX_TRUNC_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_ROUND_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
result = build_nt (INDIRECT_REF, save_expr (TREE_OPERAND (ref, 0)));
|
||
break;
|
||
|
||
case COMPONENT_REF:
|
||
result = build_nt (COMPONENT_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
TREE_OPERAND (ref, 1));
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
result = build_nt (ARRAY_REF, stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
save_expr (TREE_OPERAND (ref, 1)));
|
||
break;
|
||
|
||
/* If arg isn't a kind of lvalue we recognize, make no change.
|
||
Caller should recognize the error for an invalid lvalue. */
|
||
default:
|
||
return ref;
|
||
|
||
case ERROR_MARK:
|
||
return error_mark_node;
|
||
}
|
||
|
||
TREE_TYPE (result) = TREE_TYPE (ref);
|
||
TREE_READONLY (result) = TREE_READONLY (ref);
|
||
TREE_VOLATILE (result) = TREE_VOLATILE (ref);
|
||
TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
|
||
TREE_RAISES (result) = TREE_RAISES (ref);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Low-level constructors for expressions. */
|
||
|
||
/* Build an expression of code CODE, data type TYPE,
|
||
and operands as specified by the arguments ARG1 and following arguments.
|
||
Expressions and reference nodes can be created this way.
|
||
Constants, decls, types and misc nodes cannot be. */
|
||
|
||
tree
|
||
build (va_alist)
|
||
va_dcl
|
||
{
|
||
register va_list p;
|
||
enum tree_code code;
|
||
register tree t;
|
||
register int length;
|
||
register int i;
|
||
|
||
va_start (p);
|
||
|
||
code = va_arg (p, enum tree_code);
|
||
t = make_node (code);
|
||
length = tree_code_length[(int) code];
|
||
TREE_TYPE (t) = va_arg (p, tree);
|
||
|
||
if (length == 2)
|
||
{
|
||
/* This is equivalent to the loop below, but faster. */
|
||
register tree arg0 = va_arg (p, tree);
|
||
register tree arg1 = va_arg (p, tree);
|
||
TREE_OPERAND (t, 0) = arg0;
|
||
TREE_OPERAND (t, 1) = arg1;
|
||
TREE_VOLATILE (t)
|
||
= (arg0 && TREE_VOLATILE (arg0)) || (arg1 && TREE_VOLATILE (arg1));
|
||
TREE_RAISES (t)
|
||
= (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
register tree operand = va_arg (p, tree);
|
||
TREE_OPERAND (t, i) = operand;
|
||
if (operand)
|
||
{
|
||
if (TREE_VOLATILE (operand))
|
||
TREE_VOLATILE (t) = 1;
|
||
if (TREE_RAISES (operand))
|
||
TREE_RAISES (t) = 1;
|
||
}
|
||
}
|
||
}
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Same as above, but only builds for unary operators.
|
||
Saves lions share of calls to `build'; cuts down use
|
||
of varargs, which is expensive for RISC machines. */
|
||
tree
|
||
build1 (code, type, node)
|
||
enum tree_code code;
|
||
tree type;
|
||
tree node;
|
||
{
|
||
register struct obstack *obstack = current_obstack;
|
||
register int i, length;
|
||
register tree_node_kind kind;
|
||
register tree t;
|
||
|
||
if (*tree_code_type[(int) code] == 'r')
|
||
kind = r_kind;
|
||
else if (*tree_code_type[(int) code] == 'e')
|
||
kind = e_kind;
|
||
else
|
||
abort ();
|
||
|
||
obstack = expression_obstack;
|
||
length = sizeof (struct tree_exp);
|
||
|
||
t = (tree) obstack_alloc (obstack, length);
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kinds[(int)kind]++;
|
||
tree_node_sizes[(int)kind] += length;
|
||
#endif
|
||
|
||
TREE_UID (t) = tree_node_counter++;
|
||
TREE_TYPE (t) = type;
|
||
TREE_CHAIN (t) = 0;
|
||
|
||
for (i = (length / sizeof (int)) - 2;
|
||
i >= sizeof (struct tree_common) / sizeof (int) - 1;
|
||
i--)
|
||
((int *) t)[i] = 0;
|
||
TREE_SET_CODE (t, code);
|
||
|
||
if (obstack == &permanent_obstack)
|
||
TREE_PERMANENT (t) = 1;
|
||
|
||
TREE_OPERAND (t, 0) = node;
|
||
if (node)
|
||
{
|
||
if (TREE_VOLATILE (node))
|
||
TREE_VOLATILE (t) = 1;
|
||
if (TREE_RAISES (node))
|
||
TREE_RAISES (t) = 1;
|
||
}
|
||
return t;
|
||
}
|
||
|
||
/* Similar except don't specify the TREE_TYPE
|
||
and leave the TREE_VOLATILE as 0.
|
||
It is permissible for arguments to be null,
|
||
or even garbage if their values do not matter. */
|
||
|
||
tree
|
||
build_nt (va_alist)
|
||
va_dcl
|
||
{
|
||
register va_list p;
|
||
register enum tree_code code;
|
||
register tree t;
|
||
register int length;
|
||
register int i;
|
||
|
||
va_start (p);
|
||
|
||
code = va_arg (p, enum tree_code);
|
||
t = make_node (code);
|
||
length = tree_code_length[(int) code];
|
||
|
||
for (i = 0; i < length; i++)
|
||
TREE_OPERAND (t, i) = va_arg (p, tree);
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Similar to `build_nt', except we build
|
||
on the temp_decl_obstack, regardless. */
|
||
|
||
tree
|
||
build_parse_node (va_alist)
|
||
va_dcl
|
||
{
|
||
register struct obstack *ambient_obstack = expression_obstack;
|
||
register va_list p;
|
||
register enum tree_code code;
|
||
register tree t;
|
||
register int length;
|
||
register int i;
|
||
|
||
expression_obstack = &temp_decl_obstack;
|
||
|
||
va_start (p);
|
||
|
||
code = va_arg (p, enum tree_code);
|
||
t = make_node (code);
|
||
length = tree_code_length[(int) code];
|
||
|
||
for (i = 0; i < length; i++)
|
||
TREE_OPERAND (t, i) = va_arg (p, tree);
|
||
|
||
va_end (p);
|
||
expression_obstack = ambient_obstack;
|
||
return t;
|
||
}
|
||
|
||
#if 0
|
||
/* Commented out because this wants to be done very
|
||
differently. See cplus-lex.c. */
|
||
tree
|
||
build_op_identifier (op1, op2)
|
||
tree op1, op2;
|
||
{
|
||
register tree t = make_node (OP_IDENTIFIER);
|
||
TREE_PURPOSE (t) = op1;
|
||
TREE_VALUE (t) = op2;
|
||
return t;
|
||
}
|
||
#endif
|
||
|
||
/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
|
||
We do NOT enter this node in any sort of symbol table.
|
||
|
||
layout_decl is used to set up the decl's storage layout.
|
||
Other slots are initialized to 0 or null pointers. */
|
||
|
||
tree
|
||
build_decl (code, name, type)
|
||
enum tree_code code;
|
||
tree name, type;
|
||
{
|
||
register tree t;
|
||
|
||
t = make_node (code);
|
||
|
||
/* if (type == error_mark_node)
|
||
type = integer_type_node; */
|
||
/* That is not done, deliberately, so that having error_mark_node
|
||
as the type can suppress useless errors in the use of this variable. */
|
||
|
||
DECL_NAME (t) = name;
|
||
if (name)
|
||
{
|
||
#if 0
|
||
DECL_PRINT_NAME (t) = IDENTIFIER_POINTER (name);
|
||
#endif
|
||
if (code != PARM_DECL)
|
||
DECL_ASSEMBLER_NAME (t) = IDENTIFIER_POINTER (name);
|
||
}
|
||
TREE_TYPE (t) = type;
|
||
|
||
/* A freshly built node has these properties anyway. */
|
||
#if 0
|
||
DECL_ARGUMENTS (t) = NULL_TREE;
|
||
DECL_INITIAL (t) = NULL_TREE;
|
||
#endif /* 0 */
|
||
|
||
if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
|
||
layout_decl (t, 0);
|
||
else if (code == FUNCTION_DECL)
|
||
DECL_MODE (t) = FUNCTION_MODE;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Low-level constructors for statements.
|
||
These constructors all expect source file name and line number
|
||
as arguments, as well as enough arguments to fill in the data
|
||
in the statement node. */
|
||
|
||
tree
|
||
build_goto (filename, line, label)
|
||
char *filename;
|
||
int line;
|
||
tree label;
|
||
{
|
||
register tree t = make_node (GOTO_STMT);
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_BODY (t) = label;
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_return (filename, line, arg)
|
||
char *filename;
|
||
int line;
|
||
tree arg;
|
||
{
|
||
register tree t = make_node (RETURN_STMT);
|
||
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_BODY (t) = arg;
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_expr_stmt (filename, line, expr)
|
||
char *filename;
|
||
int line;
|
||
tree expr;
|
||
{
|
||
register tree t = make_node (EXPR_STMT);
|
||
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_BODY (t) = expr;
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_if (filename, line, cond, thenclause, elseclause)
|
||
char *filename;
|
||
int line;
|
||
tree cond, thenclause, elseclause;
|
||
{
|
||
register tree t = make_node (IF_STMT);
|
||
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_COND (t) = cond;
|
||
STMT_THEN (t) = thenclause;
|
||
STMT_ELSE (t) = elseclause;
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_exit (filename, line, cond)
|
||
char *filename;
|
||
int line;
|
||
tree cond;
|
||
{
|
||
register tree t = make_node (EXIT_STMT);
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_BODY (t) = cond;
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_asm_stmt (filename, line, asmcode)
|
||
char *filename;
|
||
int line;
|
||
tree asmcode;
|
||
{
|
||
register tree t = make_node (ASM_STMT);
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_BODY (t) = asmcode;
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_case (filename, line, object, cases)
|
||
char *filename;
|
||
int line;
|
||
tree object, cases;
|
||
{
|
||
register tree t = make_node (CASE_STMT);
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_CASE_INDEX (t) = object;
|
||
STMT_CASE_LIST (t) = cases;
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_compound (filename, line, body)
|
||
char *filename;
|
||
int line;
|
||
tree body;
|
||
{
|
||
register tree t = make_node (COMPOUND_STMT);
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_BODY (t) = body;
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_loop (filename, line, vars, cond, body)
|
||
char *filename;
|
||
int line;
|
||
tree vars, cond, body;
|
||
{
|
||
register tree t = make_node (LOOP_STMT);
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_LOOP_VARS (t) = vars;
|
||
STMT_LOOP_COND (t) = cond;
|
||
STMT_LOOP_BODY (t) = body;
|
||
return t;
|
||
}
|
||
|
||
/* LET_STMT nodes are used to represent the structure of binding contours
|
||
and declarations, once those contours have been exited and their contents
|
||
compiled. This information is used for outputting debugging info. */
|
||
|
||
tree
|
||
build_let (filename, line, vars, subblocks, supercontext, tags)
|
||
char *filename;
|
||
int line;
|
||
tree vars, subblocks, supercontext, tags;
|
||
{
|
||
register tree t = make_node (LET_STMT);
|
||
STMT_SOURCE_FILE (t) = filename;
|
||
STMT_SOURCE_LINE (t) = line;
|
||
STMT_VARS (t) = vars;
|
||
STMT_SUBBLOCKS (t) = subblocks;
|
||
STMT_SUPERCONTEXT (t) = supercontext;
|
||
STMT_BIND_SIZE (t) = 0;
|
||
STMT_TYPE_TAGS (t) = tags;
|
||
return t;
|
||
}
|
||
|
||
/* Return a type like TYPE except that its TREE_READONLY is CONSTP
|
||
and its TREE_VOLATILE is VOLATILEP.
|
||
|
||
Such variant types already made are recorded so that duplicates
|
||
are not made.
|
||
|
||
A variant types should never be used as the type of an expression.
|
||
Always copy the variant information into the TREE_READONLY
|
||
and TREE_VOLATILE of the expression, and then give the expression
|
||
as its type the "main variant", the variant whose TREE_READONLY
|
||
and TREE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
|
||
main variant. */
|
||
|
||
tree
|
||
build_type_variant (type, constp, volatilep)
|
||
tree type;
|
||
int constp, volatilep;
|
||
{
|
||
register tree t, m = TYPE_MAIN_VARIANT (type);
|
||
register struct obstack *ambient_obstack = current_obstack;
|
||
|
||
/* Treat any nonzero argument as 1. */
|
||
constp = !!constp;
|
||
volatilep = !!volatilep;
|
||
|
||
/* First search the chain variants for one that is what we want. */
|
||
|
||
for (t = m; t; t = TYPE_NEXT_VARIANT (t))
|
||
if (constp == TREE_READONLY (t)
|
||
&& volatilep == TREE_VOLATILE (t))
|
||
return t;
|
||
|
||
/* We need a new one. */
|
||
current_obstack
|
||
= TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
|
||
|
||
t = copy_node (type);
|
||
TREE_READONLY (t) = constp;
|
||
TREE_VOLATILE (t) = volatilep;
|
||
TYPE_POINTER_TO (t) = 0;
|
||
TYPE_REFERENCE_TO (t) = 0;
|
||
|
||
/* Add this type to the chain of variants of TYPE. */
|
||
TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
|
||
TYPE_NEXT_VARIANT (m) = t;
|
||
|
||
current_obstack = ambient_obstack;
|
||
return t;
|
||
}
|
||
|
||
/* Hashing of types so that we don't make duplicates.
|
||
The entry point is `type_hash_canon'. */
|
||
|
||
/* Each hash table slot is a bucket containing a chain
|
||
of these structures. */
|
||
|
||
struct type_hash
|
||
{
|
||
struct type_hash *next; /* Next structure in the bucket. */
|
||
int hashcode; /* Hash code of this type. */
|
||
tree type; /* The type recorded here. */
|
||
};
|
||
|
||
/* Now here is the hash table. When recording a type, it is added
|
||
to the slot whose index is the hash code mod the table size.
|
||
Note that the hash table is used for several kinds of types
|
||
(function types, array types and array index range types, for now).
|
||
While all these live in the same table, they are completely independent,
|
||
and the hash code is computed differently for each of these. */
|
||
|
||
#define TYPE_HASH_SIZE 59
|
||
struct type_hash *type_hash_table[TYPE_HASH_SIZE];
|
||
|
||
/* Here is how primitive or already-canonicalized types' hash
|
||
codes are made. */
|
||
#define TYPE_HASH(TYPE) TREE_UID (TYPE)
|
||
|
||
/* Compute a hash code for a list of types (chain of TREE_LIST nodes
|
||
with types in the TREE_VALUE slots), by adding the hash codes
|
||
of the individual types. */
|
||
|
||
int
|
||
type_hash_list (list)
|
||
tree list;
|
||
{
|
||
register int hashcode;
|
||
register tree tail;
|
||
for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
|
||
hashcode += TYPE_HASH (TREE_VALUE (tail));
|
||
return hashcode;
|
||
}
|
||
|
||
/* Look in the type hash table for a type isomorphic to TYPE.
|
||
If one is found, return it. Otherwise return 0. */
|
||
|
||
tree
|
||
type_hash_lookup (hashcode, type)
|
||
int hashcode;
|
||
tree type;
|
||
{
|
||
register struct type_hash *h;
|
||
for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& TREE_CODE (h->type) == TREE_CODE (type)
|
||
&& TREE_TYPE (h->type) == TREE_TYPE (type)
|
||
&& (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
|
||
|| tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
|
||
TYPE_MAX_VALUE (type)))
|
||
&& (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
|
||
|| tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
|
||
TYPE_MIN_VALUE (type)))
|
||
&& (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
|
||
|| (TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
|
||
&& TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_DOMAIN (h->type), TYPE_DOMAIN (type)))))
|
||
return h->type;
|
||
return 0;
|
||
}
|
||
|
||
/* Add an entry to the type-hash-table
|
||
for a type TYPE whose hash code is HASHCODE. */
|
||
|
||
void
|
||
type_hash_add (hashcode, type)
|
||
int hashcode;
|
||
tree type;
|
||
{
|
||
register struct type_hash *h;
|
||
|
||
h = (struct type_hash *) oballoc (sizeof (struct type_hash));
|
||
h->hashcode = hashcode;
|
||
h->type = type;
|
||
h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
|
||
type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
|
||
}
|
||
|
||
/* Given TYPE, and HASHCODE its hash code, return the canonical
|
||
object for an identical type if one already exists.
|
||
Otherwise, return TYPE, and record it as the canonical object
|
||
if it is a permanent object.
|
||
|
||
To use this function, first create a type of the sort you want.
|
||
Then compute its hash code from the fields of the type that
|
||
make it different from other similar types.
|
||
Then call this function and use the value.
|
||
This function frees the type you pass in if it is a duplicate. */
|
||
|
||
/* Set to 1 to debug without canonicalization. Never set by program. */
|
||
int debug_no_type_hash = 0;
|
||
|
||
tree
|
||
type_hash_canon (hashcode, type)
|
||
int hashcode;
|
||
tree type;
|
||
{
|
||
tree t1;
|
||
|
||
if (debug_no_type_hash)
|
||
return type;
|
||
|
||
t1 = type_hash_lookup (hashcode, type);
|
||
if (t1 != 0)
|
||
{
|
||
struct obstack *o
|
||
= TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
|
||
obstack_free (o, type);
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kinds[(int)t_kind]--;
|
||
tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
|
||
#endif
|
||
return t1;
|
||
}
|
||
|
||
/* If this is a new type, record it for later reuse. */
|
||
if (current_obstack == &permanent_obstack)
|
||
type_hash_add (hashcode, type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Given two lists of types
|
||
(chains of TREE_LIST nodes with types in the TREE_VALUE slots)
|
||
return 1 if the lists contain the same types in the same order.
|
||
Also, the TREE_PURPOSEs must match. */
|
||
|
||
int
|
||
type_list_equal (l1, l2)
|
||
tree l1, l2;
|
||
{
|
||
register tree t1, t2;
|
||
for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
|
||
{
|
||
if (TREE_VALUE (t1) != TREE_VALUE (t2))
|
||
return 0;
|
||
if (TREE_PURPOSE (t1) != TREE_PURPOSE (t2))
|
||
{
|
||
int cmp = simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2));
|
||
if (cmp < 0)
|
||
abort ();
|
||
if (cmp == 0)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
return t1 == t2;
|
||
}
|
||
|
||
/* Nonzero if integer constants T1 and T2
|
||
represent the same constant value. */
|
||
|
||
int
|
||
tree_int_cst_equal (t1, t2)
|
||
tree t1, t2;
|
||
{
|
||
if (t1 == t2)
|
||
return 1;
|
||
if (t1 == 0 || t2 == 0)
|
||
return 0;
|
||
if (TREE_CODE (t1) == INTEGER_CST
|
||
&& TREE_CODE (t2) == INTEGER_CST
|
||
&& TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
||
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
|
||
The precise way of comparison depends on their data type. */
|
||
|
||
int
|
||
tree_int_cst_lt (t1, t2)
|
||
tree t1, t2;
|
||
{
|
||
if (t1 == t2)
|
||
return 0;
|
||
|
||
if (!TREE_UNSIGNED (TREE_TYPE (t1)))
|
||
return INT_CST_LT (t1, t2);
|
||
return INT_CST_LT_UNSIGNED (t1, t2);
|
||
}
|
||
|
||
/* Compare two constructor-element-type constants. */
|
||
int
|
||
simple_cst_list_equal (l1, l2)
|
||
tree l1, l2;
|
||
{
|
||
while (l1 != NULL_TREE && l2 != NULL_TREE)
|
||
{
|
||
int cmp = simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2));
|
||
if (cmp < 0)
|
||
abort ();
|
||
if (cmp == 0)
|
||
return 0;
|
||
l1 = TREE_CHAIN (l1);
|
||
l2 = TREE_CHAIN (l2);
|
||
}
|
||
return (l1 == l2);
|
||
}
|
||
|
||
/* Return truthvalue of whether T1 is the same tree structure as T2.
|
||
Return 1 if they are the same.
|
||
Return 0 if they are understandably different.
|
||
Return -1 if either contains tree structure not understood by
|
||
this function. */
|
||
int
|
||
simple_cst_equal (t1, t2)
|
||
tree t1, t2;
|
||
{
|
||
register enum tree_code code1, code2;
|
||
int cmp;
|
||
|
||
if (t1 == t2)
|
||
return 1;
|
||
if (t1 == 0 || t2 == 0)
|
||
return 0;
|
||
|
||
code1 = TREE_CODE (t1);
|
||
code2 = TREE_CODE (t2);
|
||
|
||
if (code1 == NOP_EXPR || code1 == CONVERT_EXPR)
|
||
if (code2 == NOP_EXPR || code2 == CONVERT_EXPR)
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
else
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
|
||
else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR)
|
||
return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
|
||
|
||
if (code1 != code2)
|
||
return 0;
|
||
|
||
switch (code1)
|
||
{
|
||
case INTEGER_CST:
|
||
return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
||
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
|
||
|
||
case REAL_CST:
|
||
return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
|
||
|
||
case STRING_CST:
|
||
return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
|
||
&& !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
|
||
TREE_STRING_LENGTH (t1));
|
||
|
||
case CONSTRUCTOR:
|
||
abort ();
|
||
|
||
case SAVE_EXPR:
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
case NEW_EXPR:
|
||
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case CALL_EXPR:
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case COMPONENT_REF:
|
||
if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
return 0;
|
||
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case CONST_DECL:
|
||
case FUNCTION_DECL:
|
||
return 0;
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
case LSHIFT_EXPR:
|
||
case RSHIFT_EXPR:
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case NEGATE_EXPR:
|
||
case ADDR_EXPR:
|
||
case REFERENCE_EXPR:
|
||
case INDIRECT_REF:
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
default:
|
||
return lang_simple_cst_equal (t1, t2);
|
||
}
|
||
}
|
||
|
||
/* Constructors for pointer, array and function types.
|
||
(RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
|
||
constructed by language-dependent code, not here.) */
|
||
|
||
/* Construct, lay out and return the type of pointers to TO_TYPE.
|
||
If such a type has already been constructed, reuse it. */
|
||
|
||
tree
|
||
build_pointer_type (to_type)
|
||
tree to_type;
|
||
{
|
||
register tree t = TYPE_POINTER_TO (to_type);
|
||
register struct obstack *ambient_obstack = current_obstack;
|
||
register struct obstack *ambient_saveable_obstack = saveable_obstack;
|
||
|
||
/* First, if we already have a type for pointers to TO_TYPE, use it. */
|
||
|
||
if (t)
|
||
return t;
|
||
|
||
/* We need a new one. If TO_TYPE is permanent, make this permanent too. */
|
||
if (TREE_PERMANENT (to_type))
|
||
{
|
||
current_obstack = &permanent_obstack;
|
||
saveable_obstack = &permanent_obstack;
|
||
}
|
||
|
||
t = make_node (POINTER_TYPE);
|
||
TREE_TYPE (t) = to_type;
|
||
|
||
/* Record this type as the pointer to TO_TYPE. */
|
||
TYPE_POINTER_TO (to_type) = t;
|
||
|
||
/* Lay out the type. This function has many callers that are concerned
|
||
with expression-construction, and this simplifies them all.
|
||
Also, it guarantees the TYPE_SIZE is permanent if the type is. */
|
||
layout_type (t);
|
||
|
||
current_obstack = ambient_obstack;
|
||
saveable_obstack = ambient_saveable_obstack;
|
||
return t;
|
||
}
|
||
|
||
/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
|
||
MAXVAL should be the maximum value in the domain
|
||
(one less than the length of the array). */
|
||
|
||
tree
|
||
build_index_type (maxval)
|
||
tree maxval;
|
||
{
|
||
register tree itype = make_node (INTEGER_TYPE);
|
||
int maxint = TREE_INT_CST_LOW (maxval);
|
||
TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
|
||
TYPE_MIN_VALUE (itype) = build_int_2 (0, 0);
|
||
TREE_TYPE (TYPE_MIN_VALUE (itype)) = sizetype;
|
||
TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
|
||
TYPE_MODE (itype) = SImode;
|
||
TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
|
||
TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
|
||
TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
|
||
return type_hash_canon (maxint > 0 ? maxint : - maxint, itype);
|
||
}
|
||
|
||
/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
|
||
and number of elements specified by the range of values of INDEX_TYPE.
|
||
If such a type has already been constructed, reuse it. */
|
||
|
||
tree
|
||
build_array_type (elt_type, index_type)
|
||
tree elt_type, index_type;
|
||
{
|
||
register tree t = make_node (ARRAY_TYPE);
|
||
int hashcode;
|
||
|
||
if (TREE_CODE (elt_type) == FUNCTION_TYPE)
|
||
{
|
||
error ("arrays of functions are not meaningful");
|
||
elt_type = integer_type_node;
|
||
}
|
||
|
||
TREE_TYPE (t) = elt_type;
|
||
TYPE_DOMAIN (t) = index_type;
|
||
|
||
/* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
|
||
build_pointer_type (elt_type);
|
||
|
||
if (index_type == 0)
|
||
return t;
|
||
|
||
hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (TYPE_SIZE (t) == 0)
|
||
layout_type (t);
|
||
return t;
|
||
}
|
||
|
||
/* Construct, lay out and return
|
||
the type of functions returning type VALUE_TYPE
|
||
given arguments of types ARG_TYPES.
|
||
ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
|
||
are data type nodes for the arguments of the function.
|
||
If such a type has already been constructed, reuse it. */
|
||
|
||
tree
|
||
build_function_type (value_type, arg_types)
|
||
tree value_type, arg_types;
|
||
{
|
||
register tree t;
|
||
int hashcode;
|
||
|
||
if (TREE_CODE (value_type) == FUNCTION_TYPE
|
||
|| TREE_CODE (value_type) == ARRAY_TYPE)
|
||
{
|
||
error ("function return type cannot be function or array");
|
||
value_type = integer_type_node;
|
||
}
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (FUNCTION_TYPE);
|
||
TREE_TYPE (t) = value_type;
|
||
TYPE_ARG_TYPES (t) = arg_types;
|
||
|
||
/* If we already have such a type, use the old one and free this one. */
|
||
hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (TYPE_SIZE (t) == 0)
|
||
layout_type (t);
|
||
return t;
|
||
}
|
||
|
||
/* Build the node for the type of references-to-TO_TYPE. */
|
||
|
||
tree
|
||
build_reference_type (to_type)
|
||
tree to_type;
|
||
{
|
||
register tree t = TYPE_REFERENCE_TO (to_type);
|
||
register struct obstack *ambient_obstack = current_obstack;
|
||
register struct obstack *ambient_saveable_obstack = saveable_obstack;
|
||
|
||
/* First, if we already have a type for pointers to TO_TYPE, use it. */
|
||
|
||
if (t)
|
||
return t;
|
||
|
||
/* We need a new one. If TO_TYPE is permanent, make this permanent too. */
|
||
if (TREE_PERMANENT (to_type))
|
||
{
|
||
current_obstack = &permanent_obstack;
|
||
saveable_obstack = &permanent_obstack;
|
||
}
|
||
|
||
t = make_node (REFERENCE_TYPE);
|
||
TREE_TYPE (t) = to_type;
|
||
|
||
/* Record this type as the pointer to TO_TYPE. */
|
||
TYPE_REFERENCE_TO (to_type) = t;
|
||
|
||
layout_type (t);
|
||
|
||
current_obstack = ambient_obstack;
|
||
saveable_obstack = ambient_saveable_obstack;
|
||
return t;
|
||
}
|
||
|
||
/* Construct, lay out and return the type of methods belonging to class
|
||
BASETYPE and whose arguments and values are described by TYPE.
|
||
If that type exists already, reuse it.
|
||
TYPE must be a FUNCTION_TYPE node. */
|
||
|
||
tree
|
||
build_method_type (basetype, type)
|
||
tree basetype, type;
|
||
{
|
||
register tree t;
|
||
int hashcode;
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (METHOD_TYPE);
|
||
|
||
if (TREE_CODE (type) != FUNCTION_TYPE)
|
||
abort ();
|
||
|
||
TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
|
||
TREE_TYPE (t) = TREE_TYPE (type);
|
||
|
||
/* The actual arglist for this function includes a "hidden" argument
|
||
which is "this". Put it into the list of argument types. */
|
||
|
||
TYPE_ARG_TYPES (t)
|
||
= tree_cons (NULL, build_pointer_type (basetype), TYPE_ARG_TYPES (type));
|
||
|
||
/* If we already have such a type, use the old one and free this one. */
|
||
hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (TYPE_SIZE (t) == 0)
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Construct, lay out and return the type of methods belonging to class
|
||
BASETYPE and whose arguments and values are described by TYPE.
|
||
If that type exists already, reuse it.
|
||
TYPE must be a FUNCTION_TYPE node. */
|
||
|
||
tree
|
||
build_offset_type (basetype, type)
|
||
tree basetype, type;
|
||
{
|
||
register tree t;
|
||
int hashcode;
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (OFFSET_TYPE);
|
||
|
||
TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
|
||
TREE_TYPE (t) = type;
|
||
|
||
/* If we already have such a type, use the old one and free this one. */
|
||
hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (TYPE_SIZE (t) == 0)
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return the innermost context enclosing FNDECL that is
|
||
a RECORD_TYPE or UNION_TYPE, or zero if none.
|
||
TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
|
||
|
||
tree
|
||
decl_type_context (fndecl)
|
||
tree fndecl;
|
||
{
|
||
tree context = DECL_CONTEXT (fndecl);
|
||
|
||
while (context)
|
||
{
|
||
if (TREE_CODE (context) == RECORD_TYPE
|
||
|| TREE_CODE (context) == UNION_TYPE)
|
||
return context;
|
||
if (TREE_CODE (context) == TYPE_DECL
|
||
|| TREE_CODE (context) == FUNCTION_DECL)
|
||
context = DECL_CONTEXT (context);
|
||
else if (TREE_CODE (context) == LET_STMT)
|
||
context = STMT_SUPERCONTEXT (context);
|
||
else
|
||
/* Unhandled CONTEXT!? */
|
||
abort ();
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return OP, stripped of any conversions to wider types as much as is safe.
|
||
Converting the value back to OP's type makes a value equivalent to OP.
|
||
|
||
If FOR_TYPE is nonzero, we return a value which, if converted to
|
||
type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
|
||
|
||
If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
|
||
narrowest type that can hold the value, even if they don't exactly fit.
|
||
Otherwise, bit-field references are changed to a narrower type
|
||
only if they can be fetched directly from memory in that type.
|
||
|
||
OP must have integer, real or enumeral type. Pointers are not allowed!
|
||
|
||
There are some cases where the obvious value we could return
|
||
would regenerate to OP if converted to OP's type,
|
||
but would not extend like OP to wider types.
|
||
If FOR_TYPE indicates such extension is contemplated, we eschew such values.
|
||
For example, if OP is (unsigned short)(signed char)-1,
|
||
we avoid returning (signed char)-1 if FOR_TYPE is int,
|
||
even though extending that to an unsigned short would regenerate OP,
|
||
since the result of extending (signed char)-1 to (int)
|
||
is different from (int) OP. */
|
||
|
||
tree
|
||
get_unwidened (op, for_type)
|
||
register tree op;
|
||
tree for_type;
|
||
{
|
||
/* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
|
||
/* TYPE_PRECISION is safe in place of type_precision since
|
||
pointer types are not allowed. */
|
||
register tree type = TREE_TYPE (op);
|
||
register int final_prec = TYPE_PRECISION (for_type != 0 ? for_type : type);
|
||
register int uns
|
||
= (for_type != 0 && for_type != type
|
||
&& final_prec > TYPE_PRECISION (type)
|
||
&& TREE_UNSIGNED (type));
|
||
register tree win = op;
|
||
|
||
while (TREE_CODE (op) == NOP_EXPR)
|
||
{
|
||
register int bitschange
|
||
= TYPE_PRECISION (TREE_TYPE (op))
|
||
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
|
||
|
||
/* Truncations are many-one so cannot be removed.
|
||
Unless we are later going to truncate down even farther. */
|
||
if (bitschange < 0
|
||
&& final_prec > TYPE_PRECISION (TREE_TYPE (op)))
|
||
break;
|
||
|
||
/* See what's inside this conversion. If we decide to strip it,
|
||
we will set WIN. */
|
||
op = TREE_OPERAND (op, 0);
|
||
|
||
/* If we have not stripped any zero-extensions (uns is 0),
|
||
we can strip any kind of extension.
|
||
If we have previously stripped a zero-extension,
|
||
only zero-extensions can safely be stripped.
|
||
Any extension can be stripped if the bits it would produce
|
||
are all going to be discarded later by truncating to FOR_TYPE. */
|
||
|
||
if (bitschange > 0)
|
||
{
|
||
if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
|
||
win = op;
|
||
/* TREE_UNSIGNED says whether this is a zero-extension.
|
||
Let's avoid computing it if it does not affect WIN
|
||
and if UNS will not be needed again. */
|
||
if ((uns || TREE_CODE (op) == NOP_EXPR)
|
||
&& TREE_UNSIGNED (TREE_TYPE (op)))
|
||
{
|
||
uns = 1;
|
||
win = op;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (op) == COMPONENT_REF
|
||
/* Since type_for_size always gives an integer type. */
|
||
&& TREE_CODE (type) != REAL_TYPE)
|
||
{
|
||
int innerprec = (TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)))
|
||
* DECL_SIZE_UNIT (TREE_OPERAND (op, 1)));
|
||
type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
|
||
|
||
/* We can get this structure field in the narrowest type it fits in.
|
||
If FOR_TYPE is 0, do this only for a field that matches the
|
||
narrower type exactly and is aligned for it (i.e. mode isn't BI).
|
||
The resulting extension to its nominal type (a fullword type)
|
||
must fit the same conditions as for other extensions. */
|
||
|
||
if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
|
||
&& (for_type || DECL_MODE (TREE_OPERAND (op, 1)) != BImode)
|
||
&& (! uns || final_prec <= innerprec
|
||
|| TREE_UNSIGNED (TREE_OPERAND (op, 1)))
|
||
&& type != 0)
|
||
{
|
||
win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
|
||
TREE_OPERAND (op, 1));
|
||
TREE_VOLATILE (win) = TREE_VOLATILE (op);
|
||
TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
|
||
TREE_RAISES (win) = TREE_RAISES (op);
|
||
}
|
||
}
|
||
return win;
|
||
}
|
||
|
||
/* Return OP or a simpler expression for a narrower value
|
||
which can be sign-extended or zero-extended to give back OP.
|
||
Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
|
||
or 0 if the value should be sign-extended. */
|
||
|
||
tree
|
||
get_narrower (op, unsignedp_ptr)
|
||
register tree op;
|
||
int *unsignedp_ptr;
|
||
{
|
||
register int uns = 0;
|
||
int first = 1;
|
||
register tree win = op;
|
||
|
||
while (TREE_CODE (op) == NOP_EXPR)
|
||
{
|
||
register int bitschange
|
||
= TYPE_PRECISION (TREE_TYPE (op))
|
||
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
|
||
|
||
/* Truncations are many-one so cannot be removed. */
|
||
if (bitschange < 0)
|
||
break;
|
||
|
||
/* See what's inside this conversion. If we decide to strip it,
|
||
we will set WIN. */
|
||
op = TREE_OPERAND (op, 0);
|
||
|
||
if (bitschange > 0)
|
||
{
|
||
/* An extension: the outermost one can be stripped,
|
||
but remember whether it is zero or sign extension. */
|
||
if (first)
|
||
uns = TREE_UNSIGNED (TREE_TYPE (op));
|
||
/* Otherwise, if a sign extension has been stripped,
|
||
only sign extensions can now be stripped;
|
||
if a zero extension has been stripped, only zero-extensions. */
|
||
else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
|
||
break;
|
||
first = 0;
|
||
}
|
||
/* A change in nominal type can always be stripped. */
|
||
|
||
win = op;
|
||
}
|
||
|
||
if (TREE_CODE (op) == COMPONENT_REF
|
||
/* Since type_for_size always gives an integer type. */
|
||
&& TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
|
||
{
|
||
int innerprec = (TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)))
|
||
* DECL_SIZE_UNIT (TREE_OPERAND (op, 1)));
|
||
tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
|
||
|
||
/* We can get this structure field in a narrower type that fits it,
|
||
but the resulting extension to its nominal type (a fullword type)
|
||
must satisfy the same conditions as for other extensions.
|
||
|
||
Do this only for fields that are aligned (not BImode),
|
||
because when bit-field insns will be used there is no
|
||
advantage in doing this. */
|
||
|
||
if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
|
||
&& DECL_MODE (TREE_OPERAND (op, 1)) != BImode
|
||
&& (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
|
||
&& type != 0)
|
||
{
|
||
if (first)
|
||
uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
|
||
win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
|
||
TREE_OPERAND (op, 1));
|
||
TREE_VOLATILE (win) = TREE_VOLATILE (op);
|
||
TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
|
||
TREE_RAISES (win) = TREE_RAISES (op);
|
||
}
|
||
}
|
||
*unsignedp_ptr = uns;
|
||
return win;
|
||
}
|
||
|
||
/* Return the precision of a type, for arithmetic purposes.
|
||
Supports all types on which arithmetic is possible
|
||
(including pointer types).
|
||
It's not clear yet what will be right for complex types. */
|
||
|
||
int
|
||
type_precision (type)
|
||
register tree type;
|
||
{
|
||
return ((TREE_CODE (type) == INTEGER_TYPE
|
||
|| TREE_CODE (type) == ENUMERAL_TYPE
|
||
|| TREE_CODE (type) == REAL_TYPE)
|
||
? TYPE_PRECISION (type) : POINTER_SIZE);
|
||
}
|
||
|
||
/* Nonzero if integer constant C has a value that is permissible
|
||
for type TYPE (an INTEGER_TYPE). */
|
||
|
||
int
|
||
int_fits_type_p (c, type)
|
||
tree c, type;
|
||
{
|
||
if (TREE_UNSIGNED (type))
|
||
return (!INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
|
||
&& !INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)));
|
||
else
|
||
return (!INT_CST_LT (TYPE_MAX_VALUE (type), c)
|
||
&& !INT_CST_LT (c, TYPE_MIN_VALUE (type)));
|
||
}
|
||
|
||
void
|
||
print_obstack_statistics (str, o)
|
||
char *str;
|
||
struct obstack *o;
|
||
{
|
||
struct _obstack_chunk *chunk = o->chunk;
|
||
int n_chunks = 0;
|
||
int n_alloc = 0;
|
||
|
||
while (chunk)
|
||
{
|
||
n_chunks += 1;
|
||
n_alloc += chunk->limit - &chunk->contents[0];
|
||
chunk = chunk->prev;
|
||
}
|
||
fprintf (stderr, "obstack %s: %d bytes, %d chunks\n",
|
||
str, n_alloc, n_chunks);
|
||
}
|
||
|
||
void
|
||
dump_tree_statistics ()
|
||
{
|
||
int i;
|
||
int total_nodes, total_bytes;
|
||
extern struct obstack class_obstack;
|
||
|
||
fprintf (stderr, "\n%d tree nodes created\n\n", tree_node_counter);
|
||
#ifdef GATHER_STATISTICS
|
||
fprintf (stderr, "Kind Nodes Bytes\n");
|
||
fprintf (stderr, "-------------------------------------\n");
|
||
total_nodes = total_bytes = 0;
|
||
for (i = 0; i < (int) all_kinds; i++)
|
||
{
|
||
fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
|
||
tree_node_kinds[i], tree_node_sizes[i]);
|
||
total_nodes += tree_node_kinds[i];
|
||
total_bytes += tree_node_sizes[i];
|
||
}
|
||
fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
|
||
fprintf (stderr, "-------------------------------------\n");
|
||
fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
|
||
fprintf (stderr, "-------------------------------------\n");
|
||
#else
|
||
fprintf (stderr, "(No per-node statistics)\n");
|
||
#endif
|
||
print_obstack_statistics ("class_obstack", &class_obstack);
|
||
print_obstack_statistics ("permanent_obstack", &permanent_obstack);
|
||
print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
|
||
print_search_statistics ();
|
||
print_class_statistics ();
|
||
}
|