NetBSD/sys/dev/ic/seeq8005.c

1504 lines
38 KiB
C

/* $NetBSD: seeq8005.c,v 1.35 2003/01/15 21:56:06 bouyer Exp $ */
/*
* Copyright (c) 2000, 2001 Ben Harris
* Copyright (c) 1995-1998 Mark Brinicombe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* seeq8005.c - SEEQ 8005 device driver
*/
/*
* This driver currently supports the following chips:
* SEEQ 8005 Advanced Ethernet Data Link Controller
* SEEQ 80C04 Ethernet Data Link Controller
* SEEQ 80C04A AutoDUPLEX CMOS Ethernet Data Link Controller
*/
/*
* More information on the 8004 and 8005 AEDLC controllers can be found in
* the SEEQ Technology Inc 1992 Data Comm Devices data book.
*
* This data book may no longer be available as these are rather old chips
* (1991 - 1993)
*/
/*
* This driver is based on the arm32 ea(4) driver, hence the names of many
* of the functions.
*/
/*
* Bugs/possible improvements:
* - Does not currently support DMA
* - Does not transmit multiple packets in one go
* - Does not support 8-bit busses
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: seeq8005.c,v 1.35 2003/01/15 21:56:06 bouyer Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include "bpfilter.h"
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include "rnd.h"
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/ic/seeq8005reg.h>
#include <dev/ic/seeq8005var.h>
/*#define SEEQ_DEBUG*/
/* for debugging convenience */
#ifdef SEEQ8005_DEBUG
#define SEEQ_DEBUG_MISC 1
#define SEEQ_DEBUG_TX 2
#define SEEQ_DEBUG_RX 4
#define SEEQ_DEBUG_PKT 8
#define SEEQ_DEBUG_TXINT 16
#define SEEQ_DEBUG_RXINT 32
int seeq8005_debug = 0;
#define DPRINTF(f, x) { if (seeq8005_debug & (f)) printf x; }
#else
#define DPRINTF(f, x)
#endif
#define SEEQ_TX_BUFFER_SIZE 0x800 /* (> ETHER_MAX_LEN) */
#define SEEQ_READ16(sc, iot, ioh, reg) \
((sc)->sc_flags & SF_8BIT ? \
(bus_space_read_1((iot), (ioh), (reg)) | \
(bus_space_read_1((iot), (ioh), (reg) + 1) << 8)) : \
(bus_space_read_2((iot), (ioh), (reg))))
#define SEEQ_WRITE16(sc, iot, ioh, reg, val) do { \
if ((sc)->sc_flags & SF_8BIT) { \
bus_space_write_1((iot), (ioh), (reg), (val) & 0xff); \
bus_space_write_1((iot), (ioh), (reg) + 1, (val) >> 8); \
} else \
bus_space_write_2((iot), (ioh), (reg), (val)); \
} while (/*CONSTCOND*/0)
/*
* prototypes
*/
static int ea_init(struct ifnet *);
static int ea_ioctl(struct ifnet *, u_long, caddr_t);
static void ea_start(struct ifnet *);
static void ea_watchdog(struct ifnet *);
static void ea_chipreset(struct seeq8005_softc *);
static void ea_ramtest(struct seeq8005_softc *);
static int ea_stoptx(struct seeq8005_softc *);
static int ea_stoprx(struct seeq8005_softc *);
static void ea_stop(struct ifnet *, int);
static void ea_await_fifo_empty(struct seeq8005_softc *);
static void ea_await_fifo_full(struct seeq8005_softc *);
static void ea_writebuf(struct seeq8005_softc *, u_char *, int, size_t);
static void ea_readbuf(struct seeq8005_softc *, u_char *, int, size_t);
static void ea_select_buffer(struct seeq8005_softc *, int);
static void ea_set_address(struct seeq8005_softc *, int, const u_int8_t *);
static void ea_read(struct seeq8005_softc *, int, int);
static struct mbuf *ea_get(struct seeq8005_softc *, int, int, struct ifnet *);
static void ea_txint(struct seeq8005_softc *);
static void ea_rxint(struct seeq8005_softc *);
static void eatxpacket(struct seeq8005_softc *);
static int ea_writembuf(struct seeq8005_softc *, struct mbuf *, int);
static void ea_mc_reset(struct seeq8005_softc *);
static void ea_mc_reset_8004(struct seeq8005_softc *);
static void ea_mc_reset_8005(struct seeq8005_softc *);
static int ea_mediachange(struct ifnet *);
static void ea_mediastatus(struct ifnet *, struct ifmediareq *);
static char* padbuf = NULL;
/*
* Attach chip.
*/
void
seeq8005_attach(struct seeq8005_softc *sc, const u_int8_t *myaddr, int *media,
int nmedia, int defmedia)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int id;
KASSERT(myaddr != NULL);
printf(" address %s", ether_sprintf(myaddr));
/* Stop the board. */
ea_chipreset(sc);
/* Work out data bus width. */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, 0x1234);
if (SEEQ_READ16(sc, iot, ioh, SEEQ_RX_PTR) != 0x1234) {
/* Try 8-bit mode */
sc->sc_flags |= SF_8BIT;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, 0x1234);
if (SEEQ_READ16(sc, iot, ioh, SEEQ_RX_PTR) != 0x1234) {
printf("\n%s: Cannot determine data bus width\n",
sc->sc_dev.dv_xname);
return;
}
}
printf(", %d-bit", sc->sc_flags & SF_8BIT ? 8 : 16);
/* Get the product ID */
ea_select_buffer(sc, SEEQ_BUFCODE_PRODUCTID);
id = SEEQ_READ16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN);
switch (id & SEEQ_PRODUCTID_MASK) {
case SEEQ_PRODUCTID_8004:
sc->sc_variant = SEEQ_8004;
switch (id & SEEQ_PRODUCTID_REV_MASK) {
case SEEQ_PRODUCTID_REV_80C04:
printf(", SEEQ 80C04\n");
break;
case SEEQ_PRODUCTID_REV_80C04A:
printf(", SEEQ 80C04A\n");
break;
default:
/* Unknown SEEQ 8004 variants */
printf(", SEEQ 8004 rev %x\n",
id & SEEQ_PRODUCTID_REV_MASK);
break;
}
break;
default: /* XXX */
sc->sc_variant = SEEQ_8005;
printf(", SEEQ 8005\n");
break;
}
/* Both the 8004 and 8005 are designed for 64K Buffer memory */
sc->sc_buffersize = SEEQ_MAX_BUFFER_SIZE;
/*
* Set up tx and rx buffers.
*
* We use approximately a quarter of the packet memory for TX
* buffers and the rest for RX buffers
*/
/* sc->sc_tx_bufs = sc->sc_buffersize / SEEQ_TX_BUFFER_SIZE / 4; */
sc->sc_tx_bufs = 1;
sc->sc_tx_bufsize = sc->sc_tx_bufs * SEEQ_TX_BUFFER_SIZE;
sc->sc_rx_bufsize = sc->sc_buffersize - sc->sc_tx_bufsize;
sc->sc_enabled = 0;
/* Test the RAM */
ea_ramtest(sc);
printf("%s: %dKB packet memory, txbuf=%dKB (%d buffers), rxbuf=%dKB",
sc->sc_dev.dv_xname, sc->sc_buffersize >> 10,
sc->sc_tx_bufsize >> 10, sc->sc_tx_bufs, sc->sc_rx_bufsize >> 10);
if (padbuf == NULL) {
padbuf = malloc(ETHER_MIN_LEN - ETHER_CRC_LEN, M_DEVBUF,
M_ZERO | M_NOWAIT);
if (padbuf == NULL) {
printf("%s: can't allocate pad buffer\n",
sc->sc_dev.dv_xname);
return;
}
}
/* Initialise ifnet structure. */
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_start = ea_start;
ifp->if_ioctl = ea_ioctl;
ifp->if_init = ea_init;
ifp->if_stop = ea_stop;
ifp->if_watchdog = ea_watchdog;
ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
if (sc->sc_variant == SEEQ_8004)
ifp->if_flags |= IFF_SIMPLEX;
IFQ_SET_READY(&ifp->if_snd);
/* Initialize media goo. */
ifmedia_init(&sc->sc_media, 0, ea_mediachange, ea_mediastatus);
if (media != NULL) {
int i;
for (i = 0; i < nmedia; i++)
ifmedia_add(&sc->sc_media, media[i], 0, NULL);
ifmedia_set(&sc->sc_media, defmedia);
} else {
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
}
/* We can support 802.1Q VLAN-sized frames. */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/* Now we can attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, myaddr);
printf("\n");
#if NRND > 0
/* After \n because it can print a line of its own. */
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
}
/*
* Media change callback.
*/
static int
ea_mediachange(struct ifnet *ifp)
{
struct seeq8005_softc *sc = ifp->if_softc;
if (sc->sc_mediachange)
return ((*sc->sc_mediachange)(sc));
return (EINVAL);
}
/*
* Media status callback.
*/
static void
ea_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct seeq8005_softc *sc = ifp->if_softc;
if (sc->sc_enabled == 0) {
ifmr->ifm_active = IFM_ETHER | IFM_NONE;
ifmr->ifm_status = 0;
return;
}
if (sc->sc_mediastatus)
(*sc->sc_mediastatus)(sc, ifmr);
}
/*
* Test the RAM on the ethernet card.
*/
void
ea_ramtest(struct seeq8005_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int loop;
u_int sum = 0;
/*
* Test the buffer memory on the board.
* Write simple pattens to it and read them back.
*/
/* Set up the whole buffer RAM for writing */
ea_select_buffer(sc, SEEQ_BUFCODE_TX_EAP);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, (SEEQ_MAX_BUFFER_SIZE >> 8) - 1);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_TX_PTR, 0x0000);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, SEEQ_MAX_BUFFER_SIZE - 2);
#define SEEQ_RAMTEST_LOOP(value) \
do { \
/* Set the write start address and write a pattern */ \
ea_writebuf(sc, NULL, 0x0000, 0); \
for (loop = 0; loop < SEEQ_MAX_BUFFER_SIZE; loop += 2) \
SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, (value)); \
\
/* Set the read start address and verify the pattern */ \
ea_readbuf(sc, NULL, 0x0000, 0); \
for (loop = 0; loop < SEEQ_MAX_BUFFER_SIZE; loop += 2) \
if (SEEQ_READ16(sc, iot, ioh, SEEQ_BUFWIN) != (value)) \
++sum; \
} while (/*CONSTCOND*/0)
SEEQ_RAMTEST_LOOP(loop);
SEEQ_RAMTEST_LOOP(loop ^ (SEEQ_MAX_BUFFER_SIZE - 1));
SEEQ_RAMTEST_LOOP(0xaa55);
SEEQ_RAMTEST_LOOP(0x55aa);
/* Report */
if (sum > 0)
printf("%s: buffer RAM failed self test, %d faults\n",
sc->sc_dev.dv_xname, sum);
}
/*
* Stop the tx interface.
*
* Returns 0 if the tx was already stopped or 1 if it was active
*/
static int
ea_stoptx(struct seeq8005_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int timeout;
int status;
DPRINTF(SEEQ_DEBUG_TX, ("ea_stoptx()\n"));
sc->sc_enabled = 0;
status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
if (!(status & SEEQ_STATUS_TX_ON))
return 0;
/* Stop any tx and wait for confirmation */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_TX_OFF);
timeout = 20000;
do {
status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
delay(1);
} while ((status & SEEQ_STATUS_TX_ON) && --timeout > 0);
if (timeout == 0)
log(LOG_ERR, "%s: timeout waiting for tx termination\n",
sc->sc_dev.dv_xname);
/* Clear any pending tx interrupt */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_TX_INTACK);
return 1;
}
/*
* Stop the rx interface.
*
* Returns 0 if the tx was already stopped or 1 if it was active
*/
static int
ea_stoprx(struct seeq8005_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int timeout;
int status;
DPRINTF(SEEQ_DEBUG_RX, ("ea_stoprx()\n"));
status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
if (!(status & SEEQ_STATUS_RX_ON))
return 0;
/* Stop any rx and wait for confirmation */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_RX_OFF);
timeout = 20000;
do {
status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
} while ((status & SEEQ_STATUS_RX_ON) && --timeout > 0);
if (timeout == 0)
log(LOG_ERR, "%s: timeout waiting for rx termination\n",
sc->sc_dev.dv_xname);
/* Clear any pending rx interrupt */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_RX_INTACK);
return 1;
}
/*
* Stop interface.
* Stop all IO and shut the interface down
*/
/* ARGSUSED */
static void
ea_stop(struct ifnet *ifp, int disable)
{
struct seeq8005_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
DPRINTF(SEEQ_DEBUG_MISC, ("ea_stop()\n"));
/* Stop all IO */
ea_stoptx(sc);
ea_stoprx(sc);
/* Disable rx and tx interrupts */
sc->sc_command &= (SEEQ_CMD_RX_INTEN | SEEQ_CMD_TX_INTEN);
/* Clear any pending interrupts */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_RX_INTACK |
SEEQ_CMD_TX_INTACK | SEEQ_CMD_DMA_INTACK |
SEEQ_CMD_BW_INTACK);
if (sc->sc_variant == SEEQ_8004) {
/* Put the chip to sleep */
ea_select_buffer(sc, SEEQ_BUFCODE_CONFIG3);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN,
sc->sc_config3 | SEEQ_CFG3_SLEEP);
}
/* Cancel any watchdog timer */
sc->sc_ethercom.ec_if.if_timer = 0;
}
/*
* Reset the chip
* Following this the software registers are reset
*/
static void
ea_chipreset(struct seeq8005_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
DPRINTF(SEEQ_DEBUG_MISC, ("ea_chipreset()\n"));
/* Reset the controller. Min of 4us delay here */
/*
* This can be called before we know whether the chip is in 8- or
* 16-bit mode, so we do a reset in both modes. The 16-bit reset is
* harmless in 8-bit mode, so we do that second.
*/
/* In 16-bit mode, this will munge the PreamSelect bit. */
bus_space_write_1(iot, ioh, SEEQ_CONFIG2 + 1, SEEQ_CFG2_RESET >> 8);
delay(4);
/* In 8-bit mode, this will zero the bottom half of config reg 2. */
bus_space_write_2(iot, ioh, SEEQ_CONFIG2, SEEQ_CFG2_RESET);
delay(4);
sc->sc_command = 0;
sc->sc_config1 = 0;
sc->sc_config2 = 0;
sc->sc_config3 = 0;
}
/*
* If the DMA FIFO's in write mode, wait for it to empty. Needed when
* switching the FIFO from write to read. We also use it when changing
* the address for writes.
*/
static void
ea_await_fifo_empty(struct seeq8005_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int timeout;
timeout = 20000;
if ((SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS) &
SEEQ_STATUS_FIFO_DIR) != 0)
return; /* FIFO is reading anyway. */
while (--timeout > 0)
if (SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS) &
SEEQ_STATUS_FIFO_EMPTY)
return;
log(LOG_ERR, "%s: DMA FIFO failed to empty\n", sc->sc_dev.dv_xname);
}
/*
* Wait for the DMA FIFO to fill before reading from it.
*/
static void
ea_await_fifo_full(struct seeq8005_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int timeout;
timeout = 20000;
while (--timeout > 0)
if (SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS) &
SEEQ_STATUS_FIFO_FULL)
return;
log(LOG_ERR, "%s: DMA FIFO failed to fill\n", sc->sc_dev.dv_xname);
}
/*
* write to the buffer memory on the interface
*
* The buffer address is set to ADDR.
* If len != 0 then data is copied from the address starting at buf
* to the interface buffer.
* BUF must be usable as a u_int16_t *.
* If LEN is odd, it must be safe to overwrite one extra byte.
*/
static void
ea_writebuf(struct seeq8005_softc *sc, u_char *buf, int addr, size_t len)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
DPRINTF(SEEQ_DEBUG_MISC, ("writebuf: st=%04x\n",
SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS)));
#ifdef DIAGNOSTIC
if (__predict_false(!ALIGNED_POINTER(buf, u_int16_t)))
panic("%s: unaligned writebuf", sc->sc_dev.dv_xname);
if (__predict_false(addr >= SEEQ_MAX_BUFFER_SIZE))
panic("%s: writebuf out of range", sc->sc_dev.dv_xname);
#endif
if (addr != -1) {
ea_await_fifo_empty(sc);
ea_select_buffer(sc, SEEQ_BUFCODE_LOCAL_MEM);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_FIFO_WRITE);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_DMA_ADDR, addr);
}
if (len > 0) {
if (sc->sc_flags & SF_8BIT)
bus_space_write_multi_1(iot, ioh, SEEQ_BUFWIN,
(u_int8_t *)buf, len);
else
bus_space_write_multi_2(iot, ioh, SEEQ_BUFWIN,
/* LINTED: alignment checked above */
(u_int16_t *)buf, len / 2);
}
if (!(sc->sc_flags & SF_8BIT) && len % 2) {
/* Write the last byte */
bus_space_write_2(iot, ioh, SEEQ_BUFWIN, buf[len - 1]);
}
/* Leave FIFO to empty in the background */
}
/*
* read from the buffer memory on the interface
*
* The buffer address is set to ADDR.
* If len != 0 then data is copied from the interface buffer to the
* address starting at buf.
* BUF must be usable as a u_int16_t *.
* If LEN is odd, it must be safe to overwrite one extra byte.
*/
static void
ea_readbuf(struct seeq8005_softc *sc, u_char *buf, int addr, size_t len)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int runup;
DPRINTF(SEEQ_DEBUG_MISC, ("readbuf: st=%04x addr=%04x len=%d\n",
SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS), addr, len));
#ifdef DIAGNOSTIC
if (__predict_false(!ALIGNED_POINTER(buf, u_int16_t)))
panic("%s: unaligned readbuf", sc->sc_dev.dv_xname);
if (__predict_false(addr >= SEEQ_MAX_BUFFER_SIZE))
panic("%s: readbuf out of range", sc->sc_dev.dv_xname);
#endif
if (addr != -1) {
/*
* SEEQ 80C04 bug:
* Starting reading from certain addresses seems to cause
* us to get bogus results, so we avoid them.
*/
runup = 0;
if (sc->sc_variant == SEEQ_8004 &&
((addr & 0x00ff) == 0x00ea ||
(addr & 0x00ff) == 0x00ee ||
(addr & 0x00ff) == 0x00f0))
runup = (addr & 0x00ff) - 0x00e8;
ea_await_fifo_empty(sc);
ea_select_buffer(sc, SEEQ_BUFCODE_LOCAL_MEM);
/*
* 80C04 bug workaround. I found this in the old arm32 "eb"
* driver. I've no idea what it does, but it seems to stop
* the chip mangling data so often.
*/
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_FIFO_WRITE);
ea_await_fifo_empty(sc);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_DMA_ADDR, addr - runup);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_FIFO_READ);
ea_await_fifo_full(sc);
while (runup > 0) {
/* LINTED: Reading a volatile _does_ have an effect */
(void)SEEQ_READ16(sc, iot, ioh, SEEQ_BUFWIN);
runup -= 2;
}
}
if (len > 0) {
if (sc->sc_flags & SF_8BIT)
bus_space_read_multi_1(iot, ioh, SEEQ_BUFWIN,
(u_int8_t *)buf, len);
else
bus_space_read_multi_2(iot, ioh, SEEQ_BUFWIN,
/* LINTED: pointer alignment checked above */
(u_int16_t *)buf, len / 2);
}
if (!(sc->sc_flags & SF_8BIT) && len % 2) {
/* Read the last byte */
buf[len - 1] = bus_space_read_2(iot, ioh, SEEQ_BUFWIN);
}
}
static void
ea_select_buffer(struct seeq8005_softc *sc, int bufcode)
{
SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_CONFIG1,
sc->sc_config1 | bufcode);
}
/* Must be called at splnet */
static void
ea_set_address(struct seeq8005_softc *sc, int which, u_int8_t const *ea)
{
int i;
ea_select_buffer(sc, SEEQ_BUFCODE_STATION_ADDR0 + which);
for (i = 0; i < ETHER_ADDR_LEN; ++i)
SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN,
ea[i]);
}
/*
* Initialize interface.
*
* This should leave the interface in a state for packet reception and
* transmission.
*/
static int
ea_init(struct ifnet *ifp)
{
struct seeq8005_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int s;
DPRINTF(SEEQ_DEBUG_MISC, ("ea_init()\n"));
s = splnet();
/* First, reset the board. */
ea_chipreset(sc);
/* Set up defaults for the registers */
sc->sc_command = 0;
sc->sc_config1 = 0;
#if BYTE_ORDER == BIG_ENDIAN
sc->sc_config2 = SEEQ_CFG2_BYTESWAP;
#else
sc->sc_config2 = 0;
#endif
sc->sc_config3 = 0;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND, sc->sc_command);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG1, sc->sc_config1);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
if (sc->sc_variant == SEEQ_8004) {
ea_select_buffer(sc, SEEQ_BUFCODE_CONFIG3);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, sc->sc_config3);
}
/* Write the station address - the receiver must be off */
ea_set_address(sc, 0, (u_int8_t *)LLADDR(ifp->if_sadl));
/* Split board memory into Rx and Tx. */
ea_select_buffer(sc, SEEQ_BUFCODE_TX_EAP);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, (sc->sc_tx_bufsize>> 8) - 1);
if (sc->sc_variant == SEEQ_8004) {
/* Make the interface IFF_SIMPLEX. */
sc->sc_config2 |= SEEQ_CFG2_RX_TX_DISABLE;
/* Enable reception of long packets (for vlan(4)). */
sc->sc_config2 |= SEEQ_CFG2_PASS_LONGSHORT;
}
/* Configure rx. */
ea_mc_reset(sc);
if (ifp->if_flags & IFF_PROMISC)
sc->sc_config1 = SEEQ_CFG1_PROMISCUOUS;
else if ((ifp->if_flags & IFF_ALLMULTI) || sc->sc_variant == SEEQ_8004)
sc->sc_config1 = SEEQ_CFG1_MULTICAST;
else
sc->sc_config1 = SEEQ_CFG1_BROADCAST;
sc->sc_config1 |= SEEQ_CFG1_STATION_ADDR0;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG1, sc->sc_config1);
/* Setup the Rx pointers */
sc->sc_rx_ptr = sc->sc_tx_bufsize;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, sc->sc_rx_ptr);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_END, sc->sc_rx_ptr >> 8);
/* Place a NULL header at the beginning of the receive area */
ea_writebuf(sc, NULL, sc->sc_rx_ptr, 0);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
/* Configure TX. */
DPRINTF(SEEQ_DEBUG_MISC, ("Configuring tx...\n"));
SEEQ_WRITE16(sc, iot, ioh, SEEQ_TX_PTR, 0x0000);
sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
/* Reset tx buffer pointers */
sc->sc_tx_cur = 0;
sc->sc_tx_used = 0;
sc->sc_tx_next = 0;
/* Place a NULL header at the beginning of the transmit area */
ea_writebuf(sc, NULL, 0x0000, 0);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
sc->sc_command |= SEEQ_CMD_TX_INTEN;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND, sc->sc_command);
/* Turn on Rx */
sc->sc_command |= SEEQ_CMD_RX_INTEN;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_RX_ON);
/* TX_ON gets set by ea_txpacket when there's something to transmit. */
/* Set flags appropriately. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->sc_enabled = 1;
/* And start output. */
ea_start(ifp);
splx(s);
return 0;
}
/*
* Start output on interface. Get datagrams from the queue and output them,
* giving the receiver a chance between datagrams. Call only from splnet or
* interrupt level!
*/
static void
ea_start(struct ifnet *ifp)
{
struct seeq8005_softc *sc = ifp->if_softc;
int s;
s = splnet();
DPRINTF(SEEQ_DEBUG_TX, ("ea_start()...\n"));
/*
* Don't do anything if output is active. seeq8005intr() will call
* us (actually eatxpacket()) back when the card's ready for more
* frames.
*/
if (ifp->if_flags & IFF_OACTIVE)
return;
/* Mark interface as output active */
ifp->if_flags |= IFF_OACTIVE;
/* tx packets */
eatxpacket(sc);
splx(s);
}
/*
* Transfer a packet to the interface buffer and start transmission
*
* Called at splnet()
*/
void
eatxpacket(struct seeq8005_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct mbuf *m0;
struct ifnet *ifp;
ifp = &sc->sc_ethercom.ec_if;
/* Dequeue the next packet. */
IFQ_DEQUEUE(&ifp->if_snd, m0);
/* If there's nothing to send, return. */
if (!m0) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
DPRINTF(SEEQ_DEBUG_TX, ("tx finished\n"));
return;
}
#if NBPFILTER > 0
/* Give the packet to the bpf, if any. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
DPRINTF(SEEQ_DEBUG_TX, ("Tx new packet\n"));
sc->sc_config2 &= ~SEEQ_CFG2_OUTPUT;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
ea_writembuf(sc, m0, 0x0000);
m_freem(m0);
SEEQ_WRITE16(sc, iot, ioh, SEEQ_TX_PTR, 0x0000);
/* Now transmit the datagram. */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_TX_ON);
/* Make sure we notice if the chip goes silent on us. */
ifp->if_timer = 5;
DPRINTF(SEEQ_DEBUG_TX,
("st=%04x\n", SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS)));
DPRINTF(SEEQ_DEBUG_TX, ("tx: queued\n"));
}
/*
* Copy a packet from an mbuf to the transmit buffer on the card.
*
* Puts a valid Tx header at the start of the packet, and a null header at
* the end.
*/
static int
ea_writembuf(struct seeq8005_softc *sc, struct mbuf *m0, int bufstart)
{
struct mbuf *m;
int len, nextpacket;
u_int8_t hdr[4];
/*
* Copy the datagram to the packet buffer.
*/
len = 0;
for (m = m0; m; m = m->m_next) {
if (m->m_len == 0)
continue;
ea_writebuf(sc, mtod(m, u_char *), bufstart + 4 + len,
m->m_len);
len += m->m_len;
}
if (len < ETHER_MIN_LEN) {
ea_writebuf(sc, padbuf, bufstart + 4 + len,
ETHER_MIN_LEN - len);
len = ETHER_MIN_LEN;
}
/* Follow it with a NULL packet header */
memset(hdr, 0, 4);
ea_writebuf(sc, hdr, bufstart + 4 + len, 4);
SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN, 0x0000);
SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN, 0x0000);
/* Ok we now have a packet len bytes long in our packet buffer */
DPRINTF(SEEQ_DEBUG_TX, ("ea_writembuf: length=%d\n", len));
/* Write the packet header */
nextpacket = len + 4;
hdr[0] = (nextpacket >> 8) & 0xff;
hdr[1] = nextpacket & 0xff;
hdr[2] = SEEQ_PKTCMD_TX | SEEQ_PKTCMD_DATA_FOLLOWS |
SEEQ_TXCMD_XMIT_SUCCESS_INT | SEEQ_TXCMD_COLLISION_INT;
hdr[3] = 0; /* Status byte -- will be update by hardware. */
ea_writebuf(sc, hdr, 0x0000, 4);
return len;
}
/*
* Ethernet controller interrupt.
*/
int
seeq8005intr(void *arg)
{
struct seeq8005_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int status, handled;
handled = 0;
/* Get the controller status */
status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
/* Tx interrupt ? */
if (status & SEEQ_STATUS_TX_INT) {
handled = 1;
/* Acknowledge the interrupt */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_TX_INTACK);
ea_txint(sc);
}
/* Rx interrupt ? */
if (status & SEEQ_STATUS_RX_INT) {
handled = 1;
/* Acknowledge the interrupt */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_RX_INTACK);
/* Processes the received packets */
ea_rxint(sc);
}
#if NRND > 0
if (handled)
rnd_add_uint32(&sc->rnd_source, status);
#endif
return handled;
}
static void
ea_txint(struct seeq8005_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int8_t txhdr[4];
u_int txstatus;
ea_readbuf(sc, txhdr, 0x0000, 4);
DPRINTF(SEEQ_DEBUG_TX, ("txstatus=%02x %02x %02x %02x\n",
txhdr[0], txhdr[1], txhdr[2], txhdr[3]));
txstatus = txhdr[3];
/*
* If SEEQ_TXSTAT_COLLISION is set then we received at least
* one collision. On the 8004 we can find out exactly how many
* collisions occurred.
*
* The SEEQ_PKTSTAT_DONE will be set if the transmission has
* completed.
*
* If SEEQ_TXSTAT_COLLISION16 is set then 16 collisions
* occurred and the packet transmission was aborted.
* This situation is untested as present.
*
* The SEEQ_TXSTAT_BABBLE is untested as it should only be set
* when we deliberately transmit oversized packets (e.g. for
* 802.1Q).
*/
if (txstatus & SEEQ_TXSTAT_COLLISION) {
switch (sc->sc_variant) {
case SEEQ_8004: {
int colls;
/*
* The 8004 contains a 4 bit collision count
* in the status register.
*/
/* This appears to be broken on 80C04.AE */
/* ifp->if_collisions +=
(txstatus >> SEEQ_TXSTAT_COLLISIONS_SHIFT)
& SEEQ_TXSTAT_COLLISION_MASK;*/
/* Use the TX Collision register */
ea_select_buffer(sc, SEEQ_BUFCODE_TX_COLLS);
colls = bus_space_read_1(iot, ioh, SEEQ_BUFWIN);
ifp->if_collisions += colls;
break;
}
case SEEQ_8005:
/* We known there was at least 1 collision */
ifp->if_collisions++;
break;
}
} else if (txstatus & SEEQ_TXSTAT_COLLISION16) {
printf("seeq_intr: col16 %x\n", txstatus);
ifp->if_collisions += 16;
ifp->if_oerrors++;
}
/* Have we completed transmission on the packet ? */
if (txstatus & SEEQ_PKTSTAT_DONE) {
/* Clear watchdog timer. */
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
/* Update stats */
ifp->if_opackets++;
/* Tx next packet */
eatxpacket(sc);
}
}
void
ea_rxint(struct seeq8005_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int addr;
int len;
int ctrl;
int ptr;
int status;
u_int8_t rxhdr[4];
struct ifnet *ifp;
ifp = &sc->sc_ethercom.ec_if;
/* We start from the last rx pointer position */
addr = sc->sc_rx_ptr;
sc->sc_config2 &= ~SEEQ_CFG2_OUTPUT;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
do {
/* Read rx header */
ea_readbuf(sc, rxhdr, addr, 4);
/* Split the packet header */
ptr = (rxhdr[0] << 8) | rxhdr[1];
ctrl = rxhdr[2];
status = rxhdr[3];
DPRINTF(SEEQ_DEBUG_RX,
("addr=%04x ptr=%04x ctrl=%02x status=%02x\n",
addr, ptr, ctrl, status));
/* Zero packet ptr ? then must be null header so exit */
if (ptr == 0) break;
/* Sanity-check the next-packet pointer and flags. */
if (__predict_false(ptr < sc->sc_tx_bufsize ||
(ctrl & SEEQ_PKTCMD_TX))) {
++ifp->if_ierrors;
log(LOG_ERR,
"%s: Rx chain corrupt at %04x (ptr = %04x)\n",
sc->sc_dev.dv_xname, addr, ptr);
ea_init(ifp);
return;
}
/* Get packet length */
len = (ptr - addr) - 4;
if (len < 0)
len += sc->sc_rx_bufsize;
DPRINTF(SEEQ_DEBUG_RX, ("len=%04x\n", len));
/* Has the packet rx completed ? if not then exit */
if ((status & SEEQ_PKTSTAT_DONE) == 0)
break;
/*
* Did we have any errors? then note error and go to
* next packet
*/
if (__predict_false(status &
(SEEQ_RXSTAT_CRC_ERROR | SEEQ_RXSTAT_DRIBBLE_ERROR |
SEEQ_RXSTAT_SHORT_FRAME))) {
++ifp->if_ierrors;
log(LOG_WARNING,
"%s: rx packet error at %04x (err=%02x)\n",
sc->sc_dev.dv_xname, addr, status & 0x0f);
/* XXX shouldn't need to reset if it's genuine. */
ea_init(ifp);
return;
}
/*
* Is the packet too big? We allow slightly oversize packets
* for vlan(4) and tcpdump purposes, but the rest of the world
* wants incoming packets in a single mbuf cluster.
*/
if (__predict_false(len > MCLBYTES)) {
++ifp->if_ierrors;
log(LOG_ERR,
"%s: rx packet size error at %04x (len=%d)\n",
sc->sc_dev.dv_xname, addr, len);
sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2,
sc->sc_config2);
ea_init(ifp);
return;
}
ifp->if_ipackets++;
/* Pass data up to upper levels. */
ea_read(sc, addr + 4, len);
addr = ptr;
} while (len != 0);
sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
DPRINTF(SEEQ_DEBUG_RX, ("new rx ptr=%04x\n", addr));
/* Store new rx pointer */
sc->sc_rx_ptr = addr;
SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_END, sc->sc_rx_ptr >> 8);
/* Make sure the receiver is on */
SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
sc->sc_command | SEEQ_CMD_RX_ON);
}
/*
* Pass a packet up to the higher levels.
*/
static void
ea_read(struct seeq8005_softc *sc, int addr, int len)
{
struct mbuf *m;
struct ifnet *ifp;
ifp = &sc->sc_ethercom.ec_if;
/* Pull packet off interface. */
m = ea_get(sc, addr, len, ifp);
if (m == 0)
return;
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to bpf.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
(*ifp->if_input)(ifp, m);
}
/*
* Pull read data off a interface. Len is length of data, with local net
* header stripped. We copy the data into mbufs. When full cluster sized
* units are present we copy into clusters.
*/
struct mbuf *
ea_get(struct seeq8005_softc *sc, int addr, int totlen, struct ifnet *ifp)
{
struct mbuf *top, **mp, *m;
int len;
u_int cp, epkt;
cp = addr;
epkt = cp + totlen;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return 0;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
m->m_len = MHLEN;
top = 0;
mp = &top;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return 0;
}
m->m_len = MLEN;
}
len = min(totlen, epkt - cp);
if (len >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
m->m_len = len = min(len, MCLBYTES);
else
len = m->m_len;
} else {
/*
* Place initial small packet/header at end of mbuf.
*/
if (len < m->m_len) {
if (top == 0 && len + max_linkhdr <= m->m_len)
m->m_data += max_linkhdr;
m->m_len = len;
} else
len = m->m_len;
}
if (top == 0) {
/* Make sure the payload is aligned */
caddr_t newdata = (caddr_t)
ALIGN(m->m_data + sizeof(struct ether_header)) -
sizeof(struct ether_header);
len -= newdata - m->m_data;
m->m_len = len;
m->m_data = newdata;
}
ea_readbuf(sc, mtod(m, u_char *),
cp < SEEQ_MAX_BUFFER_SIZE ? cp : cp - sc->sc_rx_bufsize,
len);
cp += len;
*mp = m;
mp = &m->m_next;
totlen -= len;
if (cp == epkt)
cp = addr;
}
return top;
}
/*
* Process an ioctl request. Mostly boilerplate.
*/
static int
ea_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct seeq8005_softc *sc = ifp->if_softc;
int s, error = 0;
s = splnet();
switch (cmd) {
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
ea_mc_reset(sc);
error = 0;
}
break;
}
splx(s);
return error;
}
/* Must be called at splnet() */
static void
ea_mc_reset(struct seeq8005_softc *sc)
{
switch (sc->sc_variant) {
case SEEQ_8004:
ea_mc_reset_8004(sc);
return;
case SEEQ_8005:
ea_mc_reset_8005(sc);
return;
}
}
static void
ea_mc_reset_8004(struct seeq8005_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
u_int32_t crc;
int i;
struct ether_multistep step;
u_int8_t af[8];
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using bits 2 - 7 as an index
* into the 64 bit logical address filter. The high order bits
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if (ifp->if_flags & IFF_PROMISC) {
ifp->if_flags |= IFF_ALLMULTI;
for (i = 0; i < 8; i++)
af[i] = 0xff;
return;
}
for (i = 0; i < 8; i++)
af[i] = 0;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
for (i = 0; i < 8; i++)
af[i] = 0xff;
break;
}
crc = ether_crc32_be(enm->enm_addrlo, sizeof(enm->enm_addrlo));
/* Just want the 6 most significant bits. */
crc = (crc >> 2) & 0x3f;
/* Turn on the corresponding bit in the filter. */
af[crc >> 3] |= 1 << (crc & 0x7);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
ea_select_buffer(sc, SEEQ_BUFCODE_MULTICAST);
for (i = 0; i < 8; ++i)
bus_space_write_1(sc->sc_iot, sc->sc_ioh,
SEEQ_BUFWIN, af[i]);
}
static void
ea_mc_reset_8005(struct seeq8005_softc *sc)
{
struct ether_multi *enm;
struct ether_multistep step;
int naddr, maxaddrs;
naddr = 0;
maxaddrs = 5;
ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
while (enm != NULL) {
/* Have we got space? */
if (naddr >= maxaddrs ||
memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
sc->sc_ethercom.ec_if.if_flags |= IFF_ALLMULTI;
ea_ioctl(&sc->sc_ethercom.ec_if, SIOCSIFFLAGS, NULL);
return;
}
ea_set_address(sc, 1 + naddr, enm->enm_addrlo);
sc->sc_config1 |= SEEQ_CFG1_STATION_ADDR1 << naddr;
naddr++;
ETHER_NEXT_MULTI(step, enm);
}
for (; naddr < maxaddrs; naddr++)
sc->sc_config1 &= ~(SEEQ_CFG1_STATION_ADDR1 << naddr);
SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_CONFIG1,
sc->sc_config1);
}
/*
* Device timeout routine.
*/
static void
ea_watchdog(struct ifnet *ifp)
{
struct seeq8005_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: lost Tx interrupt (status = 0x%04x)\n",
sc->sc_dev.dv_xname,
SEEQ_READ16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_STATUS));
ifp->if_oerrors++;
/* Kick the interface */
ea_init(ifp);
ifp->if_timer = 0;
}
/* End of if_ea.c */