NetBSD/external/gpl3/gdb/dist/opcodes/s12z-opc.c
christos 4559860ef2 May 11th, 2019: GDB 8.3 Released!
The latest version of GDB, version 8.3, is available for
          download.

          This version of GDB includes the following changes and
          enhancements:

          + Support for new native configurations (also available as a
            target configuration):
               o RISC-V GNU/Linux (riscv*-*-linux*)
               o RISC-V FreeBSD (riscv*-*-freebsd*)
          + Support for new target configurations:
               o CSKY ELF (csky*-*-elf)
               o CSKY GNU/Linux (csky*-*-linux)
               o NXP S12Z ELF (s12z-*-elf)
               o OpenRISC GNU/Linux (or1k*-*-linux*)
          + Native Windows debugging is only supported on Windows XP or
            later.
          + The Python API in GDB now requires Python 2.6 or later.
          + GDB now supports terminal styling for the CLI and TUI. Source
            highlighting is also supported by building GDB with GNU
            Highlight.
          + Experimental support for compilation and injection of C++
            source code into the inferior (requires GCC 7.1 or higher,
            built with libcp1.so).
          + GDB and GDBserver now support IPv6 connections.
          + Target description support on RISC-V targets.
          + Various enhancements to several commands:
               o "frame", "select-frame" and "info frame" commands
               o "info functions", "info types", "info variables"
               o "info thread"
               o "info proc"
               o System call alias catchpoint support on FreeBSD
               o "target remote" support for Unix Domain sockets.
          + Support for displaying all files opened by a process

         + DWARF index cache: GDB can now automatically save indices of
            DWARF symbols on disk to speed up further loading of the same
            binaries.
          + Various GDB/MI enhancements.
          + GDBserver on PowerPC GNU/Linux now supports access to the PPR,
            DSCR, TAR, EBB/PMU, and HTM registers.
          + Ada task switching support when debugging programs built with
            the Ravenscar profile added to aarch64-elf.
          + GDB in batch mode now exits with status 1 if the last executed
            command failed.
          + Support for building GDB with GCC's Undefined Behavior
            Sanitizer.

          See the NEWS file for a more complete and detailed list of what
          this release includes.

   February 27th, 2019: GDB 8.3 branch created
          The GDB 8.3 branch (gdb-8.3-branch) has been created. To check
          out a copy of the branch use:

git clone --branch gdb-8.3-branch ssh://sourceware.org/git/binutils-gdb.git

   December 23rd, 2018: GDB 8.2.1 Released!
          The latest version of GDB, version 8.2.1, is available for
          download.

          This is a minor corrective release over GDB 8.2, fixing the
          following issues:

          + PR build/23516 (gdb build error under msys+mingw: strip can't
            handle gdb-add-index.exe)
          + PR build/23623 (install-strip fails)
          + PR rust/23626 (gdb crashes in upstream rust nil-enum test)
          + PR rust/23650 (rust field name access error mentions "foo")
          + PR gdb/23663 (gdb 8.1.1: undefined rpl_stat function with musl
            toolchains)
          + PR python/23669 (gdb.execute("show commands") doesn't work)
          + PR python/23714 (Command repetition stops working after
            gdb.execute)
          + PR gdb/23838 (8.2 regression for invalid -data-directory)
          + PR gdb/23974 ("info os" crash when specifying invalid object)
          + PR gdb/23999 (SYMBOL_LANGUAGE assertion failure on AIX)
          + PR gdb/24003 (Error when binary searching CUs for a specific
            DIE when using DWZ)

   September 5th, 2018: GDB 8.2 Released!
          The latest version of GDB, version 8.2, is available for
          download.

          This version of GDB includes the following changes and
          enhancements:

          + Support for the following target has been added:
               o RiscV ELF (riscv*-*-elf)
          + Support for following targets and native configurations has
            been removed:
               o m88k running OpenBSD (m88*-*-openbsd*)
               o SH-5/SH64 ELF (sh64-*-elf*)
               o SH-5/SH64 (sh*)
               o SH-5/SH64 running GNU/Linux (sh*-*-linux*)
               o SH-5/SH64 running OpenBSD (sh*-*-openbsd*)
          + Various Python API enhancements
          + Aarch64/Linux enhancements:
               o SVE support.
               o Hardware watchpoints improvements for entities stored at
                 unaligned addresses.
                    # New "c" response to disable the pager for the rest
                      of the current command.
                    # C expressions can now use _Alignof, and C++
                      expressions can now use alignof.
                    # Improved flexibility for loading symbol files.
                    # The 'info proc' command nows works on running
                      processes on FreeBSD systems as well as core files
                      created on FreeBSD systems.
                    # A new --enable-codesign=CERT configure option to
                      automatically codesign GDB after build (useful on
                      MacOS X).
                 See the NEWS file for a more complete and detailed list
                 of what this release includes.

   July 31st, 2018: GDB 8.1.1 Released!
       The latest version of GDB, version 8.1.1, is available
       for download.
       This is a minor corrective release over GDB 8.1, fixing
       the following issues:
	  # PR gdb/22824 (misleading description of new rbreak
	    Python function in GDB 8.1 NEWS file)
	  # PR gdb/22849 (ctrl-c doesn't work in
	    extended-remote)
	  # PR gdb/22907 ([Regression] gdbserver doesn't work
	    with filename-only binaries)
	 # PR gdb/23028 (inconsistent disassemble of vcvtpd2dq)
	  # PR gdb/23053 (Fix -D_GLIBCXX_DEBUG gdb-add-index
	    regression)
	  # PR gdb/23127 ([AArch64] GDB cannot be used for
	    debugging software that uses high Virtual Addresses)
	  # PR server/23158 (gdbserver no longer functional on
	    Windows)
	  # PR breakpoints/23210 ([8.1/8.2 Regression] Bogus
	    Breakpoint address adjusted from 0xf7fe7dd3 to
	    0xfffffffff7fe7dd3)

   July 4th, 2018: GDB 8.2 branch created
       The GDB 8.2 branch (gdb-8.2-branch) has been created. To
       check out a copy of the branch use:
 git clone --branch gdb-8.2-branch ssh://sourceware.org/git/binutils-gdb.git

   January 31st, 2018: GDB 8.1 Released!
       The latest version of GDB, version 8.1, is available for
       download.
       Changes in this release include:
	  # Breakpoints on C++ functions are now set on all
	    scopes by default ("wild" matching);
	  # Support for inserting breakpoints on functions
	    marked with C++ ABI tags;
	  # Target floating-point arithmetic emulation during
	    expression evaluation (requires MPFR 3.1 or later);
	  # Various Python Scripting enhancements;
	  # Improved Rust support; in particular, Trait objects
	    can now be inspected when debugging Rust code;
	  # GDB no longer makes assumptions about the type of
	    symbols without debugging information to avoid
	    producing erroneous and often confusing results;
	  # The 'enable' and 'disable' commands now accept a
	    range of breakpoint locations;
	  # New 'starti' command to start the program at the
	    first instruction;
	  # New 'rbreak' command to insert a number of
	    breakpoints via a regular expression pattern
	    (requires Python);
	  # The 'ptype' command now supports printing the offset
	    and size of the fields in a struct;
	  # The 'gcore' command now supports dumping all the
	    memory mappings ('-a' command-line option);
	  # New shortcuts for TUI Single-Key mode: 'i' for
	    stepi, and 'o' for nexti;
	  # GDBserver enhancements:
	       @ Support for transmitting environment variables
		 to GDBserver;
	       @ Support for starting inferior processes with a
		 specified initial working directory;
	       @ On Unix systems, support for globbing expansion
		 and variable substitution of inferior
		 command-line arguments;
	  # Various completion enhancements;
	  # The command used to compile and inject code with the
	    'compile' command is now configurable;
	  # New '--readnever' command-line option to speed the
	    GDB startup when debugging information is not
	    needed;
	  # Support for the following new native configurations:
	       @ FreeBSD/aarch64 (aarch64*-*-freebsd*);
	       @ FreeBSD/arm (arm*-*-freebsd*);
	  # Support for the following new targets:
	       @ FreeBSD/aarch64 (aarch64*-*-freebsd*);
	       @ FreeBSD/arm (arm*-*-freebsd*);
	       @ OpenRISC ELF (or1k*-*-elf)
	  # Removed support for the following targets and native
	    configurations:
	       @ Solaris2/x86 (i?86-*-solaris2.[0-9]);
	       @ Solaris2/sparc (sparc*-*-solaris2.[0-9]);
       See the NEWS file for a more complete and detailed list
       of what this release includes.

   January 5th, 2018: GDB 8.1 branch created
       The GDB 8.1 branch (gdb-8.1-branch) has been created. To
       check out a copy of the branch use:
 git clone --branch gdb-8.1-branch ssh://sourceware.org/git/binutils-gdb.git

   November 1st, 2017: Debugging Tools Devroom at FOSDEM 2018
       We will have a Debugging Tools Devroom at FOSDEM 2018.
       The Call for Participation has recently been announced.
       The Devroom is on the first of the two FOSDEM days, on
       Saturday 3 Feb 2018. See you all at FOSDEM in Brussels!

   September 7th, 2017: GDB 8.0.1 Released!
       The latest version of GDB, version 8.0.1, is available
       for download.
       This is a minor corrective release over GDB 8.0, fixing
       the following issues:
	  # PR breakpoint/21886 (Compressed MIPS code debugging
	    impossible due to memory breakpoint misplacement)
	  # PR symtab/22002 (Assertion on debuggee built with
	    -gdwarf-5 -fdebug-types-section)
						  GDB News (p6 of 30)
	  # PR symtab/22003 (Incompatibility with -gdwarf-5 -
	    DW_FORM_implicit_const)
	  # PR gdb/22046 (Regression on older kernels for T
	    (stopped) processes)
	  # PR sim/20863 (gdb-7.12 powerpc-rtems4.12-gdb does
	    not build on FreeBSD)
	  # PR breakpoint/21555 ("error re-setting breakpoint"
	    on PIE executables)
	  # PR tdep/21717 ("print $fpscr" says "" until some VFP
	    data register is printed)
	  # PR exp/21827 (Regression: gdb command lookup became
	    case-sensitive; but definitions are forced into
	    lowercase)
	  # PR remote/22021 (Multi-arch exec fails with a remote
	    target)
2019-05-26 20:59:15 +00:00

2702 lines
78 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* s12z-decode.c -- Freescale S12Z disassembly
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of the GNU opcodes library.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
#include "opcode/s12z.h"
#include "bfd.h"
#include "s12z-opc.h"
typedef int (* insn_bytes_f) (struct mem_read_abstraction_base *);
typedef void (*operands_f) (struct mem_read_abstraction_base *,
int *n_operands, struct operand **operand);
typedef enum operator (*discriminator_f) (struct mem_read_abstraction_base *,
enum operator hint);
enum OPR_MODE
{
OPR_IMMe4,
OPR_REG,
OPR_OFXYS,
OPR_XY_PRE_INC,
OPR_XY_POST_INC,
OPR_XY_PRE_DEC,
OPR_XY_POST_DEC,
OPR_S_PRE_DEC,
OPR_S_POST_INC,
OPR_REG_DIRECT,
OPR_REG_INDIRECT,
OPR_IDX_DIRECT,
OPR_IDX_INDIRECT,
OPR_EXT1,
OPR_IDX2_REG,
OPR_IDX3_DIRECT,
OPR_IDX3_INDIRECT,
OPR_EXT18,
OPR_IDX3_DIRECT_REG,
OPR_EXT3_DIRECT,
OPR_EXT3_INDIRECT
};
struct opr_pb
{
uint8_t mask;
uint8_t value;
int n_operands;
enum OPR_MODE mode;
};
static const struct opr_pb opr_pb[] = {
{0xF0, 0x70, 1, OPR_IMMe4},
{0xF8, 0xB8, 1, OPR_REG},
{0xC0, 0x40, 1, OPR_OFXYS},
{0xEF, 0xE3, 1, OPR_XY_PRE_INC},
{0xEF, 0xE7, 1, OPR_XY_POST_INC},
{0xEF, 0xC3, 1, OPR_XY_PRE_DEC},
{0xEF, 0xC7, 1, OPR_XY_POST_DEC},
{0xFF, 0xFB, 1, OPR_S_PRE_DEC},
{0xFF, 0xFF, 1, OPR_S_POST_INC},
{0xC8, 0x88, 1, OPR_REG_DIRECT},
{0xE8, 0xC8, 1, OPR_REG_INDIRECT},
{0xCE, 0xC0, 2, OPR_IDX_DIRECT},
{0xCE, 0xC4, 2, OPR_IDX_INDIRECT},
{0xC0, 0x00, 2, OPR_EXT1},
{0xC8, 0x80, 3, OPR_IDX2_REG},
{0xFA, 0xF8, 3, OPR_EXT18},
{0xCF, 0xC2, 4, OPR_IDX3_DIRECT},
{0xCF, 0xC6, 4, OPR_IDX3_INDIRECT},
{0xF8, 0xE8, 4, OPR_IDX3_DIRECT_REG},
{0xFF, 0xFA, 4, OPR_EXT3_DIRECT},
{0xFF, 0xFE, 4, OPR_EXT3_INDIRECT},
};
/* Return the number of bytes in a OPR operand, including the XB postbyte.
It does not include any preceeding opcodes. */
static int
x_opr_n_bytes (struct mem_read_abstraction_base *mra, int offset)
{
bfd_byte xb;
int status = mra->read (mra, offset, 1, &xb);
if (status < 0)
return status;
size_t i;
for (i = 0; i < sizeof (opr_pb) / sizeof (opr_pb[0]); ++i)
{
const struct opr_pb *pb = opr_pb + i;
if ((xb & pb->mask) == pb->value)
{
return pb->n_operands;
}
}
return 1;
}
static int
opr_n_bytes_p1 (struct mem_read_abstraction_base *mra)
{
return 1 + x_opr_n_bytes (mra, 0);
}
static int
opr_n_bytes2 (struct mem_read_abstraction_base *mra)
{
int s = x_opr_n_bytes (mra, 0);
s += x_opr_n_bytes (mra, s);
return s + 1;
}
enum BB_MODE
{
BB_REG_REG_REG,
BB_REG_REG_IMM,
BB_REG_OPR_REG,
BB_OPR_REG_REG,
BB_REG_OPR_IMM,
BB_OPR_REG_IMM
};
struct opr_bb
{
uint8_t mask;
uint8_t value;
int n_operands;
bool opr;
enum BB_MODE mode;
};
static const struct opr_bb bb_modes[] =
{
{0x60, 0x00, 2, false, BB_REG_REG_REG},
{0x60, 0x20, 3, false, BB_REG_REG_IMM},
{0x70, 0x40, 2, true, BB_REG_OPR_REG},
{0x70, 0x50, 2, true, BB_OPR_REG_REG},
{0x70, 0x60, 3, true, BB_REG_OPR_IMM},
{0x70, 0x70, 3, true, BB_OPR_REG_IMM}
};
static int
bfextins_n_bytes (struct mem_read_abstraction_base *mra)
{
bfd_byte bb;
int status = mra->read (mra, 0, 1, &bb);
if (status < 0)
return status;
size_t i;
const struct opr_bb *bbs = 0;
for (i = 0; i < sizeof (bb_modes) / sizeof (bb_modes[0]); ++i)
{
bbs = bb_modes + i;
if ((bb & bbs->mask) == bbs->value)
{
break;
}
}
int n = bbs->n_operands;
if (bbs->opr)
n += x_opr_n_bytes (mra, n - 1);
return n;
}
static int
single (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
return 1;
}
static int
two (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
return 2;
}
static int
three (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
return 3;
}
static int
four (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
return 4;
}
static int
five (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
return 5;
}
static int
pcrel_15bit (struct mem_read_abstraction_base *mra)
{
bfd_byte byte;
int status = mra->read (mra, 0, 1, &byte);
if (status < 0)
return status;
return (byte & 0x80) ? 3 : 2;
}
static int
xysp_reg_from_postbyte (uint8_t postbyte)
{
int reg = -1;
switch ((postbyte & 0x30) >> 4)
{
case 0:
reg = REG_X;
break;
case 1:
reg = REG_Y;
break;
case 2:
reg = REG_S;
break;
default:
reg = REG_P;
}
return reg;
}
static struct operand * create_immediate_operand (int value)
{
struct immediate_operand *op = malloc (sizeof (*op));
((struct operand *)op)->cl = OPND_CL_IMMEDIATE;
op->value = value;
((struct operand *)op)->osize = -1;
return (struct operand *) op;
}
static struct operand * create_bitfield_operand (int width, int offset)
{
struct bitfield_operand *op = malloc (sizeof (*op));
((struct operand *)op)->cl = OPND_CL_BIT_FIELD;
op->width = width;
op->offset = offset;
((struct operand *)op)->osize = -1;
return (struct operand *) op;
}
static struct operand *
create_register_operand_with_size (int reg, short osize)
{
struct register_operand *op = malloc (sizeof (*op));
((struct operand *)op)->cl = OPND_CL_REGISTER;
op->reg = reg;
((struct operand *)op)->osize = osize;
return (struct operand *) op;
}
static struct operand *
create_register_operand (int reg)
{
return create_register_operand_with_size (reg, -1);
}
static struct operand * create_register_all_operand (void)
{
struct register_operand *op = malloc (sizeof (*op));
((struct operand *)op)->cl = OPND_CL_REGISTER_ALL;
((struct operand *)op)->osize = -1;
return (struct operand *) op;
}
static struct operand * create_register_all16_operand (void)
{
struct register_operand *op = malloc (sizeof (*op));
((struct operand *)op)->cl = OPND_CL_REGISTER_ALL16;
((struct operand *)op)->osize = -1;
return (struct operand *) op;
}
static struct operand *
create_simple_memory_operand (bfd_vma addr, bfd_vma base, bool relative)
{
struct simple_memory_operand *op = malloc (sizeof (*op));
((struct operand *)op)->cl = OPND_CL_SIMPLE_MEMORY;
op->addr = addr;
op->base = base;
op->relative = relative;
((struct operand *)op)->osize = -1;
assert (relative || base == 0);
return (struct operand *) op;
}
static struct operand *
create_memory_operand (bool indirect, int base, int n_regs, int reg0, int reg1)
{
struct memory_operand *op = malloc (sizeof (*op));
((struct operand *)op)->cl = OPND_CL_MEMORY;
op->indirect = indirect;
op->base_offset = base;
op->mutation = OPND_RM_NONE;
op->n_regs = n_regs;
op->regs[0] = reg0;
op->regs[1] = reg1;
((struct operand *)op)->osize = -1;
return (struct operand *) op;
}
static struct operand *
create_memory_auto_operand (enum op_reg_mutation mutation, int reg)
{
struct memory_operand *op = malloc (sizeof (*op));
((struct operand *)op)->cl = OPND_CL_MEMORY;
op->indirect = false;
op->base_offset = 0;
op->mutation = mutation;
op->n_regs = 1;
op->regs[0] = reg;
op->regs[1] = -1;
((struct operand *)op)->osize = -1;
return (struct operand *) op;
}
static void
z_ext24_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand)
{
uint8_t buffer[3];
int status = mra->read (mra, 0, 3, buffer);
if (status < 0)
return;
int i;
uint32_t addr = 0;
for (i = 0; i < 3; ++i)
{
addr <<= 8;
addr |= buffer[i];
}
operand[(*n_operands)++] = create_simple_memory_operand (addr, 0, false);
}
static uint32_t
z_decode_signed_value (struct mem_read_abstraction_base *mra, int offset, short size)
{
assert (size >0);
assert (size <= 4);
bfd_byte buffer[4];
if (0 > mra->read (mra, offset, size, buffer))
{
return 0;
}
int i;
uint32_t value = 0;
for (i = 0; i < size; ++i)
{
value |= buffer[i] << (8 * (size - i - 1));
}
if (buffer[0] & 0x80)
{
/* Deal with negative values */
value -= 0x1UL << (size * 8);
}
return value;
}
static uint32_t
decode_signed_value (struct mem_read_abstraction_base *mra, short size)
{
return z_decode_signed_value (mra, 0, size);
}
static void
x_imm1 (struct mem_read_abstraction_base *mra,
int offset,
int *n_operands, struct operand **operand)
{
bfd_byte byte;
int status = mra->read (mra, offset, 1, &byte);
if (status < 0)
return;
operand[(*n_operands)++] = create_immediate_operand (byte);
}
/* An eight bit immediate operand. */
static void
imm1_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
x_imm1 (mra, 0, n_operands, operand);
}
static void
trap_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
x_imm1 (mra, -1, n_operands, operand);
}
static struct operand *
x_opr_decode_with_size (struct mem_read_abstraction_base *mra, int offset,
short osize)
{
bfd_byte postbyte;
int status = mra->read (mra, offset, 1, &postbyte);
if (status < 0)
return NULL;
offset++;
enum OPR_MODE mode = -1;
size_t i;
for (i = 0; i < sizeof (opr_pb) / sizeof (opr_pb[0]); ++i)
{
const struct opr_pb *pb = opr_pb + i;
if ((postbyte & pb->mask) == pb->value)
{
mode = pb->mode;
break;
}
}
struct operand *operand = NULL;
switch (mode)
{
case OPR_IMMe4:
{
int n;
uint8_t x = (postbyte & 0x0F);
if (x == 0)
n = -1;
else
n = x;
operand = create_immediate_operand (n);
break;
}
case OPR_REG:
{
uint8_t x = (postbyte & 0x07);
operand = create_register_operand (x);
break;
}
case OPR_OFXYS:
{
operand = create_memory_operand (false, postbyte & 0x0F, 1,
xysp_reg_from_postbyte (postbyte), -1);
break;
}
case OPR_REG_DIRECT:
{
operand = create_memory_operand (false, 0, 2, postbyte & 0x07,
xysp_reg_from_postbyte (postbyte));
break;
}
case OPR_REG_INDIRECT:
{
operand = create_memory_operand (true, 0, 2, postbyte & 0x07,
(postbyte & 0x10) ? REG_Y : REG_X);
break;
}
case OPR_IDX_INDIRECT:
{
uint8_t x1;
mra->read (mra, offset, 1, &x1);
int idx = x1;
if (postbyte & 0x01)
{
/* Deal with negative values */
idx -= 0x1UL << 8;
}
operand = create_memory_operand (true, idx, 1,
xysp_reg_from_postbyte (postbyte), -1);
break;
}
case OPR_IDX3_DIRECT:
{
uint8_t x[3];
mra->read (mra, offset, 3, x);
int idx = x[0] << 16 | x[1] << 8 | x[2];
if (x[0] & 0x80)
{
/* Deal with negative values */
idx -= 0x1UL << 24;
}
operand = create_memory_operand (false, idx, 1,
xysp_reg_from_postbyte (postbyte), -1);
break;
}
case OPR_IDX3_DIRECT_REG:
{
uint8_t x[3];
mra->read (mra, offset, 3, x);
int idx = x[0] << 16 | x[1] << 8 | x[2];
if (x[0] & 0x80)
{
/* Deal with negative values */
idx -= 0x1UL << 24;
}
operand = create_memory_operand (false, idx, 1, postbyte & 0x07, -1);
break;
}
case OPR_IDX3_INDIRECT:
{
uint8_t x[3];
mra->read (mra, offset, 3, x);
int idx = x[0] << 16 | x[1] << 8 | x[2];
if (x[0] & 0x80)
{
/* Deal with negative values */
idx -= 0x1UL << 24;
}
operand = create_memory_operand (true, idx, 1,
xysp_reg_from_postbyte (postbyte), -1);
break;
}
case OPR_IDX_DIRECT:
{
uint8_t x1;
mra->read (mra, offset, 1, &x1);
int idx = x1;
if (postbyte & 0x01)
{
/* Deal with negative values */
idx -= 0x1UL << 8;
}
operand = create_memory_operand (false, idx, 1,
xysp_reg_from_postbyte (postbyte), -1);
break;
}
case OPR_IDX2_REG:
{
uint8_t x[2];
mra->read (mra, offset, 2, x);
uint32_t idx = x[1] | x[0] << 8 ;
idx |= (postbyte & 0x30) << 12;
operand = create_memory_operand (false, idx, 1, postbyte & 0x07, -1);
break;
}
case OPR_XY_PRE_INC:
{
operand = create_memory_auto_operand (OPND_RM_PRE_INC,
(postbyte & 0x10) ? REG_Y: REG_X);
break;
}
case OPR_XY_POST_INC:
{
operand = create_memory_auto_operand (OPND_RM_POST_INC,
(postbyte & 0x10) ? REG_Y: REG_X);
break;
}
case OPR_XY_PRE_DEC:
{
operand = create_memory_auto_operand (OPND_RM_PRE_DEC,
(postbyte & 0x10) ? REG_Y: REG_X);
break;
}
case OPR_XY_POST_DEC:
{
operand = create_memory_auto_operand (OPND_RM_POST_DEC,
(postbyte & 0x10) ? REG_Y: REG_X);
break;
}
case OPR_S_PRE_DEC:
{
operand = create_memory_auto_operand (OPND_RM_PRE_DEC, REG_S);
break;
}
case OPR_S_POST_INC:
{
operand = create_memory_auto_operand (OPND_RM_POST_INC, REG_S);
break;
}
case OPR_EXT18:
{
const size_t size = 2;
bfd_byte buffer[4];
status = mra->read (mra, offset, size, buffer);
if (status < 0)
operand = NULL;
uint32_t ext18 = 0;
for (i = 0; i < size; ++i)
{
ext18 <<= 8;
ext18 |= buffer[i];
}
ext18 |= (postbyte & 0x01) << 16;
ext18 |= (postbyte & 0x04) << 15;
operand = create_simple_memory_operand (ext18, 0, false);
break;
}
case OPR_EXT1:
{
uint8_t x1 = 0;
mra->read (mra, offset, 1, &x1);
int16_t addr;
addr = x1;
addr |= (postbyte & 0x3f) << 8;
operand = create_simple_memory_operand (addr, 0, false);
break;
}
case OPR_EXT3_DIRECT:
{
const size_t size = 3;
bfd_byte buffer[4];
status = mra->read (mra, offset, size, buffer);
if (status < 0)
operand = NULL;
uint32_t ext24 = 0;
for (i = 0; i < size; ++i)
{
ext24 |= buffer[i] << (8 * (size - i - 1));
}
operand = create_simple_memory_operand (ext24, 0, false);
break;
}
case OPR_EXT3_INDIRECT:
{
const size_t size = 3;
bfd_byte buffer[4];
status = mra->read (mra, offset, size, buffer);
if (status < 0)
operand = NULL;
uint32_t ext24 = 0;
for (i = 0; i < size; ++i)
{
ext24 |= buffer[i] << (8 * (size - i - 1));
}
operand = create_memory_operand (true, ext24, 0, -1, -1);
break;
}
default:
printf ("Unknown OPR mode #0x%x (%d)", postbyte, mode);
abort ();
}
operand->osize = osize;
return operand;
}
static struct operand *
x_opr_decode (struct mem_read_abstraction_base *mra, int offset)
{
return x_opr_decode_with_size (mra, offset, -1);
}
static void
z_opr_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
operand[(*n_operands)++] = x_opr_decode (mra, 0);
}
static void
z_opr_decode2 (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
int n = x_opr_n_bytes (mra, 0);
operand[(*n_operands)++] = x_opr_decode (mra, 0);
operand[(*n_operands)++] = x_opr_decode (mra, n);
}
static void
imm1234 (struct mem_read_abstraction_base *mra, int base,
int *n_operands, struct operand **operand)
{
bfd_byte opcode;
int status = mra->read (mra, -1, 1, &opcode);
if (status < 0)
return;
opcode -= base;
int size = registers[opcode & 0xF].bytes;
uint32_t imm = decode_signed_value (mra, size);
operand[(*n_operands)++] = create_immediate_operand (imm);
}
/* Special case of LD and CMP with register S and IMM operand */
static void
reg_s_imm (struct mem_read_abstraction_base *mra, int *n_operands,
struct operand **operand)
{
operand[(*n_operands)++] = create_register_operand (REG_S);
uint32_t imm = decode_signed_value (mra, 3);
operand[(*n_operands)++] = create_immediate_operand (imm);
}
/* Special case of LD, CMP and ST with register S and OPR operand */
static void
reg_s_opr (struct mem_read_abstraction_base *mra, int *n_operands,
struct operand **operand)
{
operand[(*n_operands)++] = create_register_operand (REG_S);
operand[(*n_operands)++] = x_opr_decode (mra, 0);
}
static void
z_imm1234_8base (struct mem_read_abstraction_base *mra, int *n_operands,
struct operand **operand)
{
imm1234 (mra, 8, n_operands, operand);
}
static void
z_imm1234_0base (struct mem_read_abstraction_base *mra, int *n_operands,
struct operand **operand)
{
imm1234 (mra, 0, n_operands, operand);
}
static void
z_tfr (struct mem_read_abstraction_base *mra, int *n_operands,
struct operand **operand)
{
bfd_byte byte;
int status = mra->read (mra, 0, 1, &byte);
if (status < 0)
return;
operand[(*n_operands)++] = create_register_operand (byte >> 4);
operand[(*n_operands)++] = create_register_operand (byte & 0x0F);
}
static void
z_reg (struct mem_read_abstraction_base *mra, int *n_operands,
struct operand **operand)
{
bfd_byte byte;
int status = mra->read (mra, -1, 1, &byte);
if (status < 0)
return;
operand[(*n_operands)++] = create_register_operand (byte & 0x07);
}
static void
reg_xy (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
bfd_byte byte;
int status = mra->read (mra, -1, 1, &byte);
if (status < 0)
return;
operand[(*n_operands)++] =
create_register_operand ((byte & 0x01) ? REG_Y : REG_X);
}
static void
lea_reg_xys_opr (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
bfd_byte byte;
int status = mra->read (mra, -1, 1, &byte);
if (status < 0)
return;
int reg_xys = -1;
switch (byte & 0x03)
{
case 0x00:
reg_xys = REG_X;
break;
case 0x01:
reg_xys = REG_Y;
break;
case 0x02:
reg_xys = REG_S;
break;
}
operand[(*n_operands)++] = create_register_operand (reg_xys);
operand[(*n_operands)++] = x_opr_decode (mra, 0);
}
static void
lea_reg_xys (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
bfd_byte byte;
int status = mra->read (mra, -1, 1, &byte);
if (status < 0)
return;
int reg_n = -1;
switch (byte & 0x03)
{
case 0x00:
reg_n = REG_X;
break;
case 0x01:
reg_n = REG_Y;
break;
case 0x02:
reg_n = REG_S;
break;
}
status = mra->read (mra, 0, 1, &byte);
if (status < 0)
return;
operand[(*n_operands)++] = create_register_operand (reg_n);
operand[(*n_operands)++] = create_memory_operand (false, (int8_t) byte,
1, reg_n, -1);
}
/* PC Relative offsets of size 15 or 7 bits */
static void
rel_15_7 (struct mem_read_abstraction_base *mra, int offset,
int *n_operands, struct operand **operands)
{
bfd_byte upper;
int status = mra->read (mra, offset - 1, 1, &upper);
if (status < 0)
return;
bool rel_size = (upper & 0x80);
int16_t addr = upper;
if (rel_size)
{
/* 15 bits. Get the next byte */
bfd_byte lower;
status = mra->read (mra, offset, 1, &lower);
if (status < 0)
return;
addr <<= 8;
addr |= lower;
addr &= 0x7FFF;
bool negative = (addr & 0x4000);
addr &= 0x3FFF;
if (negative)
addr = addr - 0x4000;
}
else
{
/* 7 bits. */
bool negative = (addr & 0x40);
addr &= 0x3F;
if (negative)
addr = addr - 0x40;
}
operands[(*n_operands)++] =
create_simple_memory_operand (addr, mra->posn (mra) - 1, true);
}
/* PC Relative offsets of size 15 or 7 bits */
static void
decode_rel_15_7 (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
rel_15_7 (mra, 1, n_operands, operand);
}
static int shift_n_bytes (struct mem_read_abstraction_base *);
static int mov_imm_opr_n_bytes (struct mem_read_abstraction_base *);
static int loop_prim_n_bytes (struct mem_read_abstraction_base *);
static int bm_rel_n_bytes (struct mem_read_abstraction_base *);
static int mul_n_bytes (struct mem_read_abstraction_base *);
static int bm_n_bytes (struct mem_read_abstraction_base *);
static void psh_pul_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static void shift_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static void mul_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static void bm_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static void bm_rel_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static void mov_imm_opr (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static void loop_primitive_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands);
static void bit_field_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands);
static void exg_sex_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands);
static enum operator shift_discrim (struct mem_read_abstraction_base *mra, enum operator hint);
static enum operator psh_pul_discrim (struct mem_read_abstraction_base *mra, enum operator hint);
static enum operator mul_discrim (struct mem_read_abstraction_base *mra, enum operator hint);
static enum operator loop_primitive_discrim (struct mem_read_abstraction_base *mra, enum operator hint);
static enum operator bit_field_discrim (struct mem_read_abstraction_base *mra, enum operator hint);
static enum operator exg_sex_discrim (struct mem_read_abstraction_base *mra, enum operator hint);
static void
cmp_xy (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED,
int *n_operands, struct operand **operand)
{
operand[(*n_operands)++] = create_register_operand (REG_X);
operand[(*n_operands)++] = create_register_operand (REG_Y);
}
static void
sub_d6_x_y (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED,
int *n_operands, struct operand **operand)
{
operand[(*n_operands)++] = create_register_operand (REG_D6);
operand[(*n_operands)++] = create_register_operand (REG_X);
operand[(*n_operands)++] = create_register_operand (REG_Y);
}
static void
sub_d6_y_x (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED,
int *n_operands, struct operand **operand)
{
operand[(*n_operands)++] = create_register_operand (REG_D6);
operand[(*n_operands)++] = create_register_operand (REG_Y);
operand[(*n_operands)++] = create_register_operand (REG_X);
}
static void ld_18bit_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static enum operator
mul_discrim (struct mem_read_abstraction_base *mra, enum operator hint)
{
uint8_t mb;
int status = mra->read (mra, 0, 1, &mb);
if (status < 0)
return OP_INVALID;
bool signed_op = (mb & 0x80);
switch (hint)
{
case OPBASE_mul:
return signed_op ? OP_muls : OP_mulu;
break;
case OPBASE_div:
return signed_op ? OP_divs : OP_divu;
break;
case OPBASE_mod:
return signed_op ? OP_mods : OP_modu;
break;
case OPBASE_mac:
return signed_op ? OP_macs : OP_macu;
break;
case OPBASE_qmul:
return signed_op ? OP_qmuls : OP_qmulu;
break;
default:
abort ();
}
return OP_INVALID;
}
struct opcode
{
/* The operation that this opcode performs. */
enum operator operator;
/* The size of this operation. May be -1 if it is implied
in the operands or if size is not applicable. */
short osize;
/* Some operations need this function to work out which operation
is intended. */
discriminator_f discriminator;
/* A function returning the number of bytes in this instruction. */
insn_bytes_f insn_bytes;
operands_f operands;
operands_f operands2;
};
static const struct opcode page2[] =
{
[0x00] = {OP_ld, -1, 0, opr_n_bytes_p1, reg_s_opr, 0},
[0x01] = {OP_st, -1, 0, opr_n_bytes_p1, reg_s_opr, 0},
[0x02] = {OP_cmp, -1, 0, opr_n_bytes_p1, reg_s_opr, 0},
[0x03] = {OP_ld, -1, 0, four, reg_s_imm, 0},
[0x04] = {OP_cmp, -1, 0, four, reg_s_imm, 0},
[0x05] = {OP_stop, -1, 0, single, 0, 0},
[0x06] = {OP_wai, -1, 0, single, 0, 0},
[0x07] = {OP_sys, -1, 0, single, 0, 0},
[0x08] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0}, /* BFEXT / BFINS */
[0x09] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
[0x0a] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
[0x0b] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
[0x0c] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
[0x0d] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
[0x0e] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
[0x0f] = {0xFFFF, -1, bit_field_discrim, bfextins_n_bytes, bit_field_decode, 0},
[0x10] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x11] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x12] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x13] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x14] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x15] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x16] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x17] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x18] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x19] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x1a] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x1b] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x1c] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x1d] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x1e] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x1f] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x20] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x21] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x22] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x23] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x24] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x25] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x26] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x27] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x28] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x29] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x2a] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x2b] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x2c] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x2d] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x2e] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x2f] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x30] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x31] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x32] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x33] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x34] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x35] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x36] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x37] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x38] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x39] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x3a] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x3b] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x3c] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x3d] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x3e] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x3f] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x40] = {OP_abs, -1, 0, single, z_reg, 0},
[0x41] = {OP_abs, -1, 0, single, z_reg, 0},
[0x42] = {OP_abs, -1, 0, single, z_reg, 0},
[0x43] = {OP_abs, -1, 0, single, z_reg, 0},
[0x44] = {OP_abs, -1, 0, single, z_reg, 0},
[0x45] = {OP_abs, -1, 0, single, z_reg, 0},
[0x46] = {OP_abs, -1, 0, single, z_reg, 0},
[0x47] = {OP_abs, -1, 0, single, z_reg, 0},
[0x48] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x49] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4a] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4b] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4c] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4d] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4e] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4f] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x50] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
[0x51] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
[0x52] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
[0x53] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
[0x54] = {OP_adc, -1, 0, two, z_reg, z_imm1234_0base},
[0x55] = {OP_adc, -1, 0, two, z_reg, z_imm1234_0base},
[0x56] = {OP_adc, -1, 0, five, z_reg, z_imm1234_0base},
[0x57] = {OP_adc, -1, 0, five, z_reg, z_imm1234_0base},
[0x58] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
[0x59] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
[0x5a] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
[0x5b] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
[0x5c] = {OP_bit, -1, 0, two, z_reg, z_imm1234_8base},
[0x5d] = {OP_bit, -1, 0, two, z_reg, z_imm1234_8base},
[0x5e] = {OP_bit, -1, 0, five, z_reg, z_imm1234_8base},
[0x5f] = {OP_bit, -1, 0, five, z_reg, z_imm1234_8base},
[0x60] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x61] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x62] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x63] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x64] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x65] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x66] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x67] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x68] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x69] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6a] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6b] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6c] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6d] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6e] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6f] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x70] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
[0x71] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
[0x72] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
[0x73] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
[0x74] = {OP_sbc, -1, 0, two, z_reg, z_imm1234_0base},
[0x75] = {OP_sbc, -1, 0, two, z_reg, z_imm1234_0base},
[0x76] = {OP_sbc, -1, 0, five, z_reg, z_imm1234_0base},
[0x77] = {OP_sbc, -1, 0, five, z_reg, z_imm1234_0base},
[0x78] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
[0x79] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
[0x7a] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
[0x7b] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
[0x7c] = {OP_eor, -1, 0, two, z_reg, z_imm1234_8base},
[0x7d] = {OP_eor, -1, 0, two, z_reg, z_imm1234_8base},
[0x7e] = {OP_eor, -1, 0, five, z_reg, z_imm1234_8base},
[0x7f] = {OP_eor, -1, 0, five, z_reg, z_imm1234_8base},
[0x80] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x81] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x82] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x83] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x84] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x85] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x86] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x87] = {OP_sbc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x88] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x89] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8a] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8b] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8c] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8d] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8e] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8f] = {OP_eor, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x90] = {OP_rti, -1, 0, single, 0, 0},
[0x91] = {OP_clb, -1, 0, two, z_tfr, 0},
[0x92] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x93] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x94] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x95] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x96] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x97] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x98] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x99] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x9a] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x9b] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x9c] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x9d] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x9e] = {OP_trap, -1, 0, single, trap_decode, 0},
[0x9f] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xa0] = {OP_sat, -1, 0, single, z_reg, 0},
[0xa1] = {OP_sat, -1, 0, single, z_reg, 0},
[0xa2] = {OP_sat, -1, 0, single, z_reg, 0},
[0xa3] = {OP_sat, -1, 0, single, z_reg, 0},
[0xa4] = {OP_sat, -1, 0, single, z_reg, 0},
[0xa5] = {OP_sat, -1, 0, single, z_reg, 0},
[0xa6] = {OP_sat, -1, 0, single, z_reg, 0},
[0xa7] = {OP_sat, -1, 0, single, z_reg, 0},
[0xa8] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xa9] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xaa] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xab] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xac] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xad] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xae] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xaf] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xb0] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0xb1] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0xb2] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0xb3] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0xb4] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0xb5] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0xb6] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0xb7] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0xb8] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xb9] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xba] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xbb] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xbc] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xbd] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xbe] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xbf] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc0] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc1] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc2] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc3] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc4] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc5] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc6] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc7] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc8] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xc9] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xca] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xcb] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xcc] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xcd] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xce] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xcf] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd0] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd1] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd2] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd3] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd4] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd5] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd6] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd7] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd8] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xd9] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xda] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xdb] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xdc] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xdd] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xde] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xdf] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe0] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe1] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe2] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe3] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe4] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe5] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe6] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe7] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe8] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xe9] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xea] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xeb] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xec] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xed] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xee] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xef] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf0] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf1] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf2] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf3] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf4] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf5] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf6] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf7] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf8] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xf9] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xfa] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xfb] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xfc] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xfd] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xfe] = {OP_trap, -1, 0, single, trap_decode, 0},
[0xff] = {OP_trap, -1, 0, single, trap_decode, 0},
};
static const struct opcode page1[] =
{
[0x00] = {OP_bgnd, -1, 0, single, 0, 0},
[0x01] = {OP_nop, -1, 0, single, 0, 0},
[0x02] = {OP_brclr, -1, 0, bm_rel_n_bytes, bm_rel_decode, 0},
[0x03] = {OP_brset, -1, 0, bm_rel_n_bytes, bm_rel_decode, 0},
[0x04] = {0xFFFF, -1, psh_pul_discrim, two, psh_pul_decode, 0}, /* psh/pul */
[0x05] = {OP_rts, -1, 0, single, 0, 0},
[0x06] = {OP_lea, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x07] = {OP_lea, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x08] = {OP_lea, -1, 0, opr_n_bytes_p1, lea_reg_xys_opr, 0},
[0x09] = {OP_lea, -1, 0, opr_n_bytes_p1, lea_reg_xys_opr, 0},
[0x0a] = {OP_lea, -1, 0, opr_n_bytes_p1, lea_reg_xys_opr, 0},
[0x0b] = {0xFFFF, -1, loop_primitive_discrim, loop_prim_n_bytes, loop_primitive_decode, 0}, /* Loop primitives TBcc / DBcc */
[0x0c] = {OP_mov, 0, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
[0x0d] = {OP_mov, 1, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
[0x0e] = {OP_mov, 2, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
[0x0f] = {OP_mov, 3, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
[0x10] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0}, /* lsr/lsl/asl/asr/rol/ror */
[0x11] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
[0x12] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
[0x13] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
[0x14] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
[0x15] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
[0x16] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
[0x17] = {0xFFFF, -1, shift_discrim, shift_n_bytes, shift_decode, 0},
[0x18] = {OP_lea, -1, 0, two, lea_reg_xys, NULL},
[0x19] = {OP_lea, -1, 0, two, lea_reg_xys, NULL},
[0x1a] = {OP_lea, -1, 0, two, lea_reg_xys, NULL},
/* 0x1b PG2 */
[0x1c] = {OP_mov, 0, 0, opr_n_bytes2, z_opr_decode2, 0},
[0x1d] = {OP_mov, 1, 0, opr_n_bytes2, z_opr_decode2, 0},
[0x1e] = {OP_mov, 2, 0, opr_n_bytes2, z_opr_decode2, 0},
[0x1f] = {OP_mov, 3, 0, opr_n_bytes2, z_opr_decode2, 0},
[0x20] = {OP_bra, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x21] = {OP_bsr, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x22] = {OP_bhi, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x23] = {OP_bls, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x24] = {OP_bcc, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x25] = {OP_bcs, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x26] = {OP_bne, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x27] = {OP_beq, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x28] = {OP_bvc, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x29] = {OP_bvs, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x2a] = {OP_bpl, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x2b] = {OP_bmi, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x2c] = {OP_bge, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x2d] = {OP_blt, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x2e] = {OP_bgt, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x2f] = {OP_ble, -1, 0, pcrel_15bit, decode_rel_15_7, 0},
[0x30] = {OP_inc, -1, 0, single, z_reg, 0},
[0x31] = {OP_inc, -1, 0, single, z_reg, 0},
[0x32] = {OP_inc, -1, 0, single, z_reg, 0},
[0x33] = {OP_inc, -1, 0, single, z_reg, 0},
[0x34] = {OP_inc, -1, 0, single, z_reg, 0},
[0x35] = {OP_inc, -1, 0, single, z_reg, 0},
[0x36] = {OP_inc, -1, 0, single, z_reg, 0},
[0x37] = {OP_inc, -1, 0, single, z_reg, 0},
[0x38] = {OP_clr, -1, 0, single, z_reg, 0},
[0x39] = {OP_clr, -1, 0, single, z_reg, 0},
[0x3a] = {OP_clr, -1, 0, single, z_reg, 0},
[0x3b] = {OP_clr, -1, 0, single, z_reg, 0},
[0x3c] = {OP_clr, -1, 0, single, z_reg, 0},
[0x3d] = {OP_clr, -1, 0, single, z_reg, 0},
[0x3e] = {OP_clr, -1, 0, single, z_reg, 0},
[0x3f] = {OP_clr, -1, 0, single, z_reg, 0},
[0x40] = {OP_dec, -1, 0, single, z_reg, 0},
[0x41] = {OP_dec, -1, 0, single, z_reg, 0},
[0x42] = {OP_dec, -1, 0, single, z_reg, 0},
[0x43] = {OP_dec, -1, 0, single, z_reg, 0},
[0x44] = {OP_dec, -1, 0, single, z_reg, 0},
[0x45] = {OP_dec, -1, 0, single, z_reg, 0},
[0x46] = {OP_dec, -1, 0, single, z_reg, 0},
[0x47] = {OP_dec, -1, 0, single, z_reg, 0},
[0x48] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x49] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4a] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4b] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4c] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4d] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4e] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x4f] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
[0x50] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
[0x51] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
[0x52] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
[0x53] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
[0x54] = {OP_add, -1, 0, two, z_reg, z_imm1234_0base},
[0x55] = {OP_add, -1, 0, two, z_reg, z_imm1234_0base},
[0x56] = {OP_add, -1, 0, five, z_reg, z_imm1234_0base},
[0x57] = {OP_add, -1, 0, five, z_reg, z_imm1234_0base},
[0x58] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
[0x59] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
[0x5a] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
[0x5b] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
[0x5c] = {OP_and, -1, 0, two, z_reg, z_imm1234_8base},
[0x5d] = {OP_and, -1, 0, two, z_reg, z_imm1234_8base},
[0x5e] = {OP_and, -1, 0, five, z_reg, z_imm1234_8base},
[0x5f] = {OP_and, -1, 0, five, z_reg, z_imm1234_8base},
[0x60] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x61] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x62] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x63] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x64] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x65] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x66] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x67] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x68] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x69] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6a] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6b] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6c] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6d] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6e] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x6f] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x70] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
[0x71] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
[0x72] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
[0x73] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
[0x74] = {OP_sub, -1, 0, two, z_reg, z_imm1234_0base},
[0x75] = {OP_sub, -1, 0, two, z_reg, z_imm1234_0base},
[0x76] = {OP_sub, -1, 0, five, z_reg, z_imm1234_0base},
[0x77] = {OP_sub, -1, 0, five, z_reg, z_imm1234_0base},
[0x78] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
[0x79] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
[0x7a] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
[0x7b] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
[0x7c] = {OP_or, -1, 0, two, z_reg, z_imm1234_8base},
[0x7d] = {OP_or, -1, 0, two, z_reg, z_imm1234_8base},
[0x7e] = {OP_or, -1, 0, five, z_reg, z_imm1234_8base},
[0x7f] = {OP_or, -1, 0, five, z_reg, z_imm1234_8base},
[0x80] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x81] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x82] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x83] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x84] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x85] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x86] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x87] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x88] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x89] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8a] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8b] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8c] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8d] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8e] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x8f] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0x90] = {OP_ld, -1, 0, three, z_reg, z_imm1234_0base},
[0x91] = {OP_ld, -1, 0, three, z_reg, z_imm1234_0base},
[0x92] = {OP_ld, -1, 0, three, z_reg, z_imm1234_0base},
[0x93] = {OP_ld, -1, 0, three, z_reg, z_imm1234_0base},
[0x94] = {OP_ld, -1, 0, two, z_reg, z_imm1234_0base},
[0x95] = {OP_ld, -1, 0, two, z_reg, z_imm1234_0base},
[0x96] = {OP_ld, -1, 0, five, z_reg, z_imm1234_0base},
[0x97] = {OP_ld, -1, 0, five, z_reg, z_imm1234_0base},
[0x98] = {OP_ld, -1, 0, four, reg_xy, z_imm1234_0base},
[0x99] = {OP_ld, -1, 0, four, reg_xy, z_imm1234_0base},
[0x9a] = {OP_clr, -1, 0, single, reg_xy, 0},
[0x9b] = {OP_clr, -1, 0, single, reg_xy, 0},
[0x9c] = {OP_inc, 0, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0x9d] = {OP_inc, 1, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0x9e] = {OP_tfr, -1, 0, two, z_tfr, NULL},
[0x9f] = {OP_inc, 3, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0xa0] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xa1] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xa2] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xa3] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xa4] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xa5] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xa6] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xa7] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xa8] = {OP_ld, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
[0xa9] = {OP_ld, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
[0xaa] = {OP_jmp, -1, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0xab] = {OP_jsr, -1, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0xac] = {OP_dec, 0, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0xad] = {OP_dec, 1, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0xae] = {0xFFFF, -1, exg_sex_discrim, two, exg_sex_decode, 0}, /* EXG / SEX */
[0xaf] = {OP_dec, 3, 0, opr_n_bytes_p1, 0, z_opr_decode},
[0xb0] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
[0xb1] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
[0xb2] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
[0xb3] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
[0xb4] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
[0xb5] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
[0xb6] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
[0xb7] = {OP_ld, -1, 0, four, z_reg, z_ext24_decode},
[0xb8] = {OP_ld, -1, 0, four, reg_xy, z_ext24_decode},
[0xb9] = {OP_ld, -1, 0, four, reg_xy, z_ext24_decode},
[0xba] = {OP_jmp, -1, 0, four, z_ext24_decode, 0},
[0xbb] = {OP_jsr, -1, 0, four, z_ext24_decode, 0},
[0xbc] = {OP_clr, 0, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0xbd] = {OP_clr, 1, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0xbe] = {OP_clr, 2, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0xbf] = {OP_clr, 3, 0, opr_n_bytes_p1, z_opr_decode, 0},
[0xc0] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xc1] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xc2] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xc3] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xc4] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xc5] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xc6] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xc7] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xc8] = {OP_st, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
[0xc9] = {OP_st, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
[0xca] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
[0xcb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
[0xcc] = {OP_com, 0, 0, opr_n_bytes_p1, NULL, z_opr_decode},
[0xcd] = {OP_com, 1, 0, opr_n_bytes_p1, NULL, z_opr_decode},
[0xce] = {OP_andcc, -1, 0, two, imm1_decode, 0},
[0xcf] = {OP_com, 3, 0, opr_n_bytes_p1, NULL, z_opr_decode},
[0xd0] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
[0xd1] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
[0xd2] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
[0xd3] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
[0xd4] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
[0xd5] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
[0xd6] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
[0xd7] = {OP_st, -1, 0, four, z_reg, z_ext24_decode},
[0xd8] = {OP_st, -1, 0, four, reg_xy, z_ext24_decode},
[0xd9] = {OP_st, -1, 0, four, reg_xy, z_ext24_decode},
[0xda] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
[0xdb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
[0xdc] = {OP_neg, 0, 0, opr_n_bytes_p1, NULL, z_opr_decode},
[0xdd] = {OP_neg, 1, 0, opr_n_bytes_p1, NULL, z_opr_decode},
[0xde] = {OP_orcc, -1, 0, two, imm1_decode, 0},
[0xdf] = {OP_neg, 3, 0, opr_n_bytes_p1, NULL, z_opr_decode},
[0xe0] = {OP_cmp, -1, 0, three, z_reg, z_imm1234_0base},
[0xe1] = {OP_cmp, -1, 0, three, z_reg, z_imm1234_0base},
[0xe2] = {OP_cmp, -1, 0, three, z_reg, z_imm1234_0base},
[0xe3] = {OP_cmp, -1, 0, three, z_reg, z_imm1234_0base},
[0xe4] = {OP_cmp, -1, 0, two, z_reg, z_imm1234_0base},
[0xe5] = {OP_cmp, -1, 0, two, z_reg, z_imm1234_0base},
[0xe6] = {OP_cmp, -1, 0, five, z_reg, z_imm1234_0base},
[0xe7] = {OP_cmp, -1, 0, five, z_reg, z_imm1234_0base},
[0xe8] = {OP_cmp, -1, 0, four, reg_xy, z_imm1234_0base},
[0xe9] = {OP_cmp, -1, 0, four, reg_xy, z_imm1234_0base},
[0xea] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
[0xeb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
[0xec] = {OP_bclr, -1, 0, bm_n_bytes, bm_decode, 0},
[0xed] = {OP_bset, -1, 0, bm_n_bytes, bm_decode, 0},
[0xee] = {OP_btgl, -1, 0, bm_n_bytes, bm_decode, 0},
[0xef] = {OP_INVALID, -1, 0, NULL, NULL, NULL}, /* SPARE */
[0xf0] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xf1] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xf2] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xf3] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xf4] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xf5] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xf6] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xf7] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
[0xf8] = {OP_cmp, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
[0xf9] = {OP_cmp, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
[0xfa] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
[0xfb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
[0xfc] = {OP_cmp, -1, 0, single, cmp_xy, 0},
[0xfd] = {OP_sub, -1, 0, single, sub_d6_x_y, 0},
[0xfe] = {OP_sub, -1, 0, single, sub_d6_y_x, 0},
[0xff] = {OP_swi, -1, 0, single, 0, 0}
};
static const int oprregs1[] =
{
REG_D3, REG_D2, REG_D1, REG_D0, REG_CCL, REG_CCH
};
static const int oprregs2[] =
{
REG_Y, REG_X, REG_D7, REG_D6, REG_D5, REG_D4
};
enum MUL_MODE
{
MUL_REG_REG,
MUL_REG_OPR,
MUL_REG_IMM,
MUL_OPR_OPR
};
struct mb
{
uint8_t mask;
uint8_t value;
enum MUL_MODE mode;
};
static const struct mb mul_table[] = {
{0x40, 0x00, MUL_REG_REG},
{0x47, 0x40, MUL_REG_OPR},
{0x47, 0x41, MUL_REG_OPR},
{0x47, 0x43, MUL_REG_OPR},
{0x47, 0x44, MUL_REG_IMM},
{0x47, 0x45, MUL_REG_IMM},
{0x47, 0x47, MUL_REG_IMM},
{0x43, 0x42, MUL_OPR_OPR},
};
static void
mul_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
uint8_t mb;
int status = mra->read (mra, 0, 1, &mb);
if (status < 0)
return;
uint8_t byte;
status = mra->read (mra, -1, 1, &byte);
if (status < 0)
return;
enum MUL_MODE mode = -1;
size_t i;
for (i = 0; i < sizeof (mul_table) / sizeof (mul_table[0]); ++i)
{
const struct mb *mm = mul_table + i;
if ((mb & mm->mask) == mm->value)
{
mode = mm->mode;
break;
}
}
operand[(*n_operands)++] = create_register_operand (byte & 0x07);
switch (mode)
{
case MUL_REG_IMM:
{
int size = (mb & 0x3);
operand[(*n_operands)++] =
create_register_operand_with_size ((mb & 0x38) >> 3, size);
uint32_t imm = z_decode_signed_value (mra, 1, size + 1);
operand[(*n_operands)++] = create_immediate_operand (imm);
}
break;
case MUL_REG_REG:
operand[(*n_operands)++] = create_register_operand ((mb & 0x38) >> 3);
operand[(*n_operands)++] = create_register_operand (mb & 0x07);
break;
case MUL_REG_OPR:
operand[(*n_operands)++] = create_register_operand ((mb & 0x38) >> 3);
operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, mb & 0x3);
break;
case MUL_OPR_OPR:
{
int first = x_opr_n_bytes (mra, 1);
operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1,
(mb & 0x30) >> 4);
operand[(*n_operands)++] = x_opr_decode_with_size (mra, first + 1,
(mb & 0x0c) >> 2);
break;
}
}
}
static int
mul_n_bytes (struct mem_read_abstraction_base *mra)
{
int nx = 2;
uint8_t mb;
int status = mra->read (mra, 0, 1, &mb);
if (status < 0)
return 0;
enum MUL_MODE mode = -1;
size_t i;
for (i = 0; i < sizeof (mul_table) / sizeof (mul_table[0]); ++i)
{
const struct mb *mm = mul_table + i;
if ((mb & mm->mask) == mm->value)
{
mode = mm->mode;
break;
}
}
int size = (mb & 0x3) + 1;
switch (mode)
{
case MUL_REG_IMM:
nx += size;
break;
case MUL_REG_REG:
break;
case MUL_REG_OPR:
nx += x_opr_n_bytes (mra, 1);
break;
case MUL_OPR_OPR:
{
int first = x_opr_n_bytes (mra, nx - 1);
nx += first;
int second = x_opr_n_bytes (mra, nx - 1);
nx += second;
}
break;
}
return nx;
}
/* The NXP documentation is vague about BM_RESERVED0 and BM_RESERVED1,
and contains obvious typos.
However the Freescale tools and experiments with the chip itself
seem to indicate that they behave like BM_REG_IMM and BM_OPR_REG
respectively. */
enum BM_MODE
{
BM_REG_IMM,
BM_RESERVED0,
BM_OPR_B,
BM_OPR_W,
BM_OPR_L,
BM_OPR_REG,
BM_RESERVED1
};
struct bm
{
uint8_t mask;
uint8_t value;
enum BM_MODE mode;
};
static const struct bm bm_table[] = {
{ 0xC6, 0x04, BM_REG_IMM},
{ 0x84, 0x00, BM_REG_IMM},
{ 0x06, 0x06, BM_REG_IMM},
{ 0xC6, 0x44, BM_RESERVED0},
// 00
{ 0x8F, 0x80, BM_OPR_B},
{ 0x8E, 0x82, BM_OPR_W},
{ 0x8C, 0x88, BM_OPR_L},
{ 0x83, 0x81, BM_OPR_REG},
{ 0x87, 0x84, BM_RESERVED1},
};
static void
bm_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
uint8_t bm;
int status = mra->read (mra, 0, 1, &bm);
if (status < 0)
return;
size_t i;
enum BM_MODE mode = -1;
for (i = 0; i < sizeof (bm_table) / sizeof (bm_table[0]); ++i)
{
const struct bm *bme = bm_table + i;
if ((bm & bme->mask) == bme->value)
{
mode = bme->mode;
break;
}
}
switch (mode)
{
case BM_REG_IMM:
case BM_RESERVED0:
operand[(*n_operands)++] = create_register_operand (bm & 0x07);
break;
case BM_OPR_B:
operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 0);
break;
case BM_OPR_W:
operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 1);
break;
case BM_OPR_L:
operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 3);
break;
case BM_OPR_REG:
case BM_RESERVED1:
{
uint8_t xb;
mra->read (mra, 1, 1, &xb);
/* Don't emit a size suffix for register operands */
if ((xb & 0xF8) != 0xB8)
operand[(*n_operands)++] =
x_opr_decode_with_size (mra, 1, (bm & 0x0c) >> 2);
else
operand[(*n_operands)++] = x_opr_decode (mra, 1);
}
break;
}
uint8_t imm = 0;
switch (mode)
{
case BM_REG_IMM:
imm = (bm & 0x38) >> 3;
operand[(*n_operands)++] = create_immediate_operand (imm);
break;
case BM_OPR_L:
imm |= (bm & 0x03) << 3;
/* fallthrough */
case BM_OPR_W:
imm |= (bm & 0x01) << 3;
/* fallthrough */
case BM_OPR_B:
imm |= (bm & 0x70) >> 4;
operand[(*n_operands)++] = create_immediate_operand (imm);
break;
case BM_OPR_REG:
case BM_RESERVED1:
operand[(*n_operands)++] = create_register_operand ((bm & 0x70) >> 4);
break;
case BM_RESERVED0:
assert (0);
break;
}
}
static void
bm_rel_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
uint8_t bm;
int status = mra->read (mra, 0, 1, &bm);
if (status < 0)
return;
size_t i;
enum BM_MODE mode = -1;
for (i = 0; i < sizeof (bm_table) / sizeof (bm_table[0]); ++i)
{
const struct bm *bme = bm_table + i;
if ((bm & bme->mask) == bme->value)
{
mode = bme->mode;
break;
}
}
int n = 1;
switch (mode)
{
case BM_REG_IMM:
case BM_RESERVED0:
operand[(*n_operands)++] = create_register_operand (bm & 0x07);
break;
case BM_OPR_B:
operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 0);
n = 1 + x_opr_n_bytes (mra, 1);
break;
case BM_OPR_W:
operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 1);
n = 1 + x_opr_n_bytes (mra, 1);
break;
case BM_OPR_L:
operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, 3);
n = 1 + x_opr_n_bytes (mra, 1);
break;
case BM_OPR_REG:
case BM_RESERVED1:
{
uint8_t xb;
mra->read (mra, +1, 1, &xb);
/* Don't emit a size suffix for register operands */
if ((xb & 0xF8) != 0xB8)
{
short os = (bm & 0x0c) >> 2;
operand[(*n_operands)++] = x_opr_decode_with_size (mra, 1, os);
}
else
operand[(*n_operands)++] = x_opr_decode (mra, 1);
}
break;
}
int imm = 0;
switch (mode)
{
case BM_OPR_L:
imm |= (bm & 0x02) << 3;
/* fall through */
case BM_OPR_W:
imm |= (bm & 0x01) << 3;
/* fall through */
case BM_OPR_B:
imm |= (bm & 0x70) >> 4;
operand[(*n_operands)++] = create_immediate_operand (imm);
break;
case BM_RESERVED0:
imm = (bm & 0x38) >> 3;
operand[(*n_operands)++] = create_immediate_operand (imm);
break;
case BM_REG_IMM:
imm = (bm & 0xF8) >> 3;
operand[(*n_operands)++] = create_immediate_operand (imm);
break;
case BM_OPR_REG:
case BM_RESERVED1:
operand[(*n_operands)++] = create_register_operand ((bm & 0x70) >> 4);
n += x_opr_n_bytes (mra, 1);
break;
}
rel_15_7 (mra, n + 1, n_operands, operand);
}
static int
bm_n_bytes (struct mem_read_abstraction_base *mra)
{
uint8_t bm;
int status = mra->read (mra, 0, 1, &bm);
if (status < 0)
return status;
size_t i;
enum BM_MODE mode = -1;
for (i = 0; i < sizeof (bm_table) / sizeof (bm_table[0]); ++i)
{
const struct bm *bme = bm_table + i;
if ((bm & bme->mask) == bme->value)
{
mode = bme->mode;
break;
}
}
int n = 2;
switch (mode)
{
case BM_REG_IMM:
case BM_RESERVED0:
break;
case BM_OPR_B:
case BM_OPR_W:
case BM_OPR_L:
n += x_opr_n_bytes (mra, 1);
break;
case BM_OPR_REG:
case BM_RESERVED1:
n += x_opr_n_bytes (mra, 1);
break;
}
return n;
}
static int
bm_rel_n_bytes (struct mem_read_abstraction_base *mra)
{
int n = 1 + bm_n_bytes (mra);
bfd_byte rb;
int status = mra->read (mra, n - 2, 1, &rb);
if (status != 0)
return status;
if (rb & 0x80)
n++;
return n;
}
/* shift direction */
enum SB_DIR
{
SB_LEFT,
SB_RIGHT
};
enum SB_TYPE
{
SB_ARITHMETIC,
SB_LOGICAL
};
enum SB_MODE
{
SB_REG_REG_N_EFF,
SB_REG_REG_N,
SB_REG_OPR_EFF,
SB_ROT,
SB_REG_OPR_OPR,
SB_OPR_N
};
struct sb
{
uint8_t mask;
uint8_t value;
enum SB_MODE mode;
};
static const struct sb sb_table[] = {
{0x30, 0x00, SB_REG_REG_N_EFF},
{0x30, 0x10, SB_REG_REG_N},
{0x34, 0x20, SB_REG_OPR_EFF},
{0x34, 0x24, SB_ROT},
{0x34, 0x30, SB_REG_OPR_OPR},
{0x34, 0x34, SB_OPR_N},
};
static int
shift_n_bytes (struct mem_read_abstraction_base *mra)
{
bfd_byte sb;
int status = mra->read (mra, 0, 1, &sb);
if (status != 0)
return status;
size_t i;
enum SB_MODE mode = -1;
for (i = 0; i < sizeof (sb_table) / sizeof (sb_table[0]); ++i)
{
const struct sb *sbe = sb_table + i;
if ((sb & sbe->mask) == sbe->value)
mode = sbe->mode;
}
switch (mode)
{
case SB_REG_REG_N_EFF:
return 2;
break;
case SB_REG_OPR_EFF:
case SB_ROT:
return 2 + x_opr_n_bytes (mra, 1);
break;
case SB_REG_OPR_OPR:
{
int opr1 = x_opr_n_bytes (mra, 1);
int opr2 = 0;
if ((sb & 0x30) != 0x20)
opr2 = x_opr_n_bytes (mra, opr1 + 1);
return 2 + opr1 + opr2;
}
break;
default:
return 3;
}
/* not reached */
return -1;
}
static int
mov_imm_opr_n_bytes (struct mem_read_abstraction_base *mra)
{
bfd_byte byte;
int status = mra->read (mra, -1, 1, &byte);
if (status < 0)
return status;
int size = byte - 0x0c + 1;
return size + x_opr_n_bytes (mra, size) + 1;
}
static void
mov_imm_opr (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
bfd_byte byte;
int status = mra->read (mra, -1, 1, &byte);
if (status < 0)
return ;
int size = byte - 0x0c + 1;
uint32_t imm = decode_signed_value (mra, size);
operand[(*n_operands)++] = create_immediate_operand (imm);
operand[(*n_operands)++] = x_opr_decode (mra, size);
}
static void
ld_18bit_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
size_t size = 3;
bfd_byte buffer[3];
int status = mra->read (mra, 0, 2, buffer + 1);
if (status < 0)
return ;
status = mra->read (mra, -1, 1, buffer);
if (status < 0)
return ;
buffer[0] = (buffer[0] & 0x30) >> 4;
size_t i;
uint32_t imm = 0;
for (i = 0; i < size; ++i)
{
imm |= buffer[i] << (8 * (size - i - 1));
}
operand[(*n_operands)++] = create_immediate_operand (imm);
}
/* Loop Primitives */
enum LP_MODE {
LP_REG,
LP_XY,
LP_OPR
};
struct lp
{
uint8_t mask;
uint8_t value;
enum LP_MODE mode;
};
static const struct lp lp_mode[] = {
{0x08, 0x00, LP_REG},
{0x0C, 0x08, LP_XY},
{0x0C, 0x0C, LP_OPR},
};
static int
loop_prim_n_bytes (struct mem_read_abstraction_base *mra)
{
int mx = 0;
uint8_t lb;
mra->read (mra, mx++, 1, &lb);
enum LP_MODE mode = -1;
size_t i;
for (i = 0; i < sizeof (lp_mode) / sizeof (lp_mode[0]); ++i)
{
const struct lp *pb = lp_mode + i;
if ((lb & pb->mask) == pb->value)
{
mode = pb->mode;
break;
}
}
if (mode == LP_OPR)
{
mx += x_opr_n_bytes (mra, mx) ;
}
uint8_t rb;
mra->read (mra, mx++, 1, &rb);
if (rb & 0x80)
mx++;
return mx + 1;
}
static enum operator
exg_sex_discrim (struct mem_read_abstraction_base *mra, enum operator hint ATTRIBUTE_UNUSED)
{
uint8_t eb;
int status = mra->read (mra, 0, 1, &eb);
if (status < 0)
return OP_INVALID;
struct operand *op0 = create_register_operand ((eb & 0xf0) >> 4);
struct operand *op1 = create_register_operand (eb & 0xf);
const struct reg *r0 = registers + ((struct register_operand *) op0)->reg;
const struct reg *r1 = registers + ((struct register_operand *) op1)->reg;
enum operator operator = (r0->bytes < r1->bytes) ? OP_sex : OP_exg;
free (op0);
free (op1);
return operator;
}
static void
exg_sex_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operands)
{
uint8_t eb;
int status = mra->read (mra, 0, 1, &eb);
if (status < 0)
return;
/* Ship out the operands. */
operands[(*n_operands)++] = create_register_operand ((eb & 0xf0) >> 4);
operands[(*n_operands)++] = create_register_operand (eb & 0xf);
}
static enum operator
loop_primitive_discrim (struct mem_read_abstraction_base *mra,
enum operator hint ATTRIBUTE_UNUSED)
{
uint8_t lb;
int status = mra->read (mra, 0, 1, &lb);
if (status < 0)
return OP_INVALID;
enum operator opbase = (lb & 0x80) ? OP_dbNE : OP_tbNE;
return opbase + ((lb & 0x70) >> 4);
}
static void
loop_primitive_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operands)
{
int offs = 1;
uint8_t lb;
int status = mra->read (mra, 0, 1, &lb);
if (status < 0)
return ;
enum LP_MODE mode = -1;
size_t i;
for (i = 0; i < sizeof (lp_mode) / sizeof (lp_mode[0]); ++i)
{
const struct lp *pb = lp_mode + i;
if ((lb & pb->mask) == pb->value)
{
mode = pb->mode;
break;
}
}
switch (mode)
{
case LP_REG:
operands[(*n_operands)++] = create_register_operand (lb & 0x07);
break;
case LP_XY:
operands[(*n_operands)++] =
create_register_operand ((lb & 0x01) + REG_X);
break;
case LP_OPR:
offs += x_opr_n_bytes (mra, 1);
operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1, lb & 0x03);
break;
}
rel_15_7 (mra, offs + 1, n_operands, operands);
}
static enum operator
shift_discrim (struct mem_read_abstraction_base *mra, enum operator hint ATTRIBUTE_UNUSED)
{
size_t i;
uint8_t sb;
int status = mra->read (mra, 0, 1, &sb);
if (status < 0)
return status;
enum SB_DIR dir = (sb & 0x40) ? SB_LEFT : SB_RIGHT;
enum SB_TYPE type = (sb & 0x80) ? SB_ARITHMETIC : SB_LOGICAL;
enum SB_MODE mode = -1;
for (i = 0; i < sizeof (sb_table) / sizeof (sb_table[0]); ++i)
{
const struct sb *sbe = sb_table + i;
if ((sb & sbe->mask) == sbe->value)
mode = sbe->mode;
}
if (mode == SB_ROT)
return (dir == SB_LEFT) ? OP_rol : OP_ror;
if (type == SB_LOGICAL)
return (dir == SB_LEFT) ? OP_lsl : OP_lsr;
return (dir == SB_LEFT) ? OP_asl : OP_asr;
}
static void
shift_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands)
{
size_t i;
uint8_t byte;
int status = mra->read (mra, -1, 1, &byte);
if (status < 0)
return ;
uint8_t sb;
status = mra->read (mra, 0, 1, &sb);
if (status < 0)
return ;
enum SB_MODE mode = -1;
for (i = 0; i < sizeof (sb_table) / sizeof (sb_table[0]); ++i)
{
const struct sb *sbe = sb_table + i;
if ((sb & sbe->mask) == sbe->value)
mode = sbe->mode;
}
short osize = -1;
switch (mode)
{
case SB_REG_OPR_EFF:
case SB_ROT:
case SB_REG_OPR_OPR:
osize = sb & 0x03;
break;
case SB_OPR_N:
{
uint8_t xb;
mra->read (mra, 1, 1, &xb);
/* The size suffix is not printed if the OPR operand refers
directly to a register, because the size is implied by the
size of that register. */
if ((xb & 0xF8) != 0xB8)
osize = sb & 0x03;
}
break;
default:
break;
};
/* Destination register */
switch (mode)
{
case SB_REG_REG_N_EFF:
case SB_REG_REG_N:
operands[(*n_operands)++] = create_register_operand (byte & 0x07);
break;
case SB_REG_OPR_EFF:
case SB_REG_OPR_OPR:
operands[(*n_operands)++] = create_register_operand (byte & 0x07);
break;
case SB_ROT:
operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1, osize);
break;
default:
break;
}
/* Source register */
switch (mode)
{
case SB_REG_REG_N_EFF:
case SB_REG_REG_N:
operands[(*n_operands)++] =
create_register_operand_with_size (sb & 0x07, osize);
break;
case SB_REG_OPR_OPR:
operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1, osize);
break;
default:
break;
}
/* 3rd arg */
switch (mode)
{
case SB_REG_OPR_EFF:
case SB_OPR_N:
operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1, osize);
break;
case SB_REG_REG_N:
{
uint8_t xb;
mra->read (mra, 1, 1, &xb);
/* This case is slightly unusual.
If XB matches the binary pattern 0111XXXX, then instead of
interpreting this as a general OPR postbyte in the IMMe4 mode,
the XB byte is interpreted in s special way. */
if ((xb & 0xF0) == 0x70)
{
if (byte & 0x10)
{
int shift = ((sb & 0x08) >> 3) | ((xb & 0x0f) << 1);
operands[(*n_operands)++] = create_immediate_operand (shift);
}
else
{
/* This should not happen. */
abort ();
}
}
else
{
operands[(*n_operands)++] = x_opr_decode (mra, 1);
}
}
break;
case SB_REG_OPR_OPR:
{
uint8_t xb;
int n = x_opr_n_bytes (mra, 1);
mra->read (mra, 1 + n, 1, &xb);
if ((xb & 0xF0) == 0x70)
{
int imm = xb & 0x0F;
imm <<= 1;
imm |= (sb & 0x08) >> 3;
operands[(*n_operands)++] = create_immediate_operand (imm);
}
else
{
operands[(*n_operands)++] = x_opr_decode (mra, 1 + n);
}
}
break;
default:
break;
}
switch (mode)
{
case SB_REG_REG_N_EFF:
case SB_REG_OPR_EFF:
case SB_OPR_N:
{
int imm = (sb & 0x08) ? 2 : 1;
operands[(*n_operands)++] = create_immediate_operand (imm);
}
break;
default:
break;
}
}
static enum operator
psh_pul_discrim (struct mem_read_abstraction_base *mra,
enum operator hint ATTRIBUTE_UNUSED)
{
uint8_t byte;
int status = mra->read (mra, 0, 1, &byte);
if (status != 0)
return OP_INVALID;
return (byte & 0x80) ? OP_pull: OP_push;
}
static void
psh_pul_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operand)
{
uint8_t byte;
int status = mra->read (mra, 0, 1, &byte);
if (status != 0)
return;
int bit;
if (byte & 0x40)
{
if ((byte & 0x3F) == 0)
{
operand[(*n_operands)++] = create_register_all16_operand ();
}
else
for (bit = 5; bit >= 0; --bit)
{
if (byte & (0x1 << bit))
{
operand[(*n_operands)++] = create_register_operand (oprregs2[bit]);
}
}
}
else
{
if ((byte & 0x3F) == 0)
{
operand[(*n_operands)++] = create_register_all_operand ();
}
else
for (bit = 5; bit >= 0; --bit)
{
if (byte & (0x1 << bit))
{
operand[(*n_operands)++] = create_register_operand (oprregs1[bit]);
}
}
}
}
static enum operator
bit_field_discrim (struct mem_read_abstraction_base *mra, enum operator hint ATTRIBUTE_UNUSED)
{
int status;
bfd_byte bb;
status = mra->read (mra, 0, 1, &bb);
if (status != 0)
return OP_INVALID;
return (bb & 0x80) ? OP_bfins : OP_bfext;
}
static void
bit_field_decode (struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operands)
{
int status;
bfd_byte byte2;
status = mra->read (mra, -1, 1, &byte2);
if (status != 0)
return;
bfd_byte bb;
status = mra->read (mra, 0, 1, &bb);
if (status != 0)
return;
enum BB_MODE mode = -1;
size_t i;
const struct opr_bb *bbs = 0;
for (i = 0; i < sizeof (bb_modes) / sizeof (bb_modes[0]); ++i)
{
bbs = bb_modes + i;
if ((bb & bbs->mask) == bbs->value)
{
mode = bbs->mode;
break;
}
}
int reg1 = byte2 & 0x07;
/* First operand */
switch (mode)
{
case BB_REG_REG_REG:
case BB_REG_REG_IMM:
case BB_REG_OPR_REG:
case BB_REG_OPR_IMM:
operands[(*n_operands)++] = create_register_operand (reg1);
break;
case BB_OPR_REG_REG:
operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1,
(bb >> 2) & 0x03);
break;
case BB_OPR_REG_IMM:
operands[(*n_operands)++] = x_opr_decode_with_size (mra, 2,
(bb >> 2) & 0x03);
break;
}
/* Second operand */
switch (mode)
{
case BB_REG_REG_REG:
case BB_REG_REG_IMM:
{
int reg_src = (bb >> 2) & 0x07;
operands[(*n_operands)++] = create_register_operand (reg_src);
}
break;
case BB_OPR_REG_REG:
case BB_OPR_REG_IMM:
{
int reg_src = (byte2 & 0x07);
operands[(*n_operands)++] = create_register_operand (reg_src);
}
break;
case BB_REG_OPR_REG:
operands[(*n_operands)++] = x_opr_decode_with_size (mra, 1,
(bb >> 2) & 0x03);
break;
case BB_REG_OPR_IMM:
operands[(*n_operands)++] = x_opr_decode_with_size (mra, 2,
(bb >> 2) & 0x03);
break;
}
/* Third operand */
switch (mode)
{
case BB_REG_REG_REG:
case BB_OPR_REG_REG:
case BB_REG_OPR_REG:
{
int reg_parm = bb & 0x03;
operands[(*n_operands)++] = create_register_operand (reg_parm);
}
break;
case BB_REG_REG_IMM:
case BB_OPR_REG_IMM:
case BB_REG_OPR_IMM:
{
bfd_byte i1;
mra->read (mra, 1, 1, &i1);
int offset = i1 & 0x1f;
int width = bb & 0x03;
width <<= 3;
width |= i1 >> 5;
operands[(*n_operands)++] = create_bitfield_operand (width, offset);
}
break;
}
}
/* Decode the next instruction at MRA, according to OPC.
The operation to be performed is returned.
The number of operands, will be placed in N_OPERANDS.
The operands themselved into OPERANDS. */
static enum operator
decode_operation (const struct opcode *opc,
struct mem_read_abstraction_base *mra,
int *n_operands, struct operand **operands)
{
enum operator op = opc->operator;
if (opc->discriminator)
op = opc->discriminator (mra, opc->operator);
if (opc->operands)
opc->operands (mra, n_operands, operands);
if (opc->operands2)
opc->operands2 (mra, n_operands, operands);
return op;
}
int
decode_s12z (enum operator *myoperator, short *osize,
int *n_operands, struct operand **operands,
struct mem_read_abstraction_base *mra)
{
int n_bytes = 0;
bfd_byte byte;
int status = mra->read (mra, 0, 1, &byte);
if (status != 0)
return status;
mra->advance (mra);
const struct opcode *opc = page1 + byte;
if (byte == PAGE2_PREBYTE)
{
/* Opcodes in page2 have an additional byte */
n_bytes++;
bfd_byte byte2;
mra->read (mra, 0, 1, &byte2);
mra->advance (mra);
opc = page2 + byte2;
}
*myoperator = decode_operation (opc, mra, n_operands, operands);
*osize = opc->osize;
/* Return the number of bytes in the instruction. */
n_bytes += (opc && opc->insn_bytes) ? opc->insn_bytes (mra) : 0;
return n_bytes;
}