802 lines
20 KiB
C
802 lines
20 KiB
C
/* $NetBSD: cgd.c,v 1.44 2007/03/04 06:01:41 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2002 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Roland C. Dowdeswell.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.44 2007/03/04 06:01:41 christos Exp $");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/bufq.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/device.h>
|
|
#include <sys/disk.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/conf.h>
|
|
|
|
#include <dev/dkvar.h>
|
|
#include <dev/cgdvar.h>
|
|
|
|
/* Entry Point Functions */
|
|
|
|
void cgdattach(int);
|
|
|
|
static dev_type_open(cgdopen);
|
|
static dev_type_close(cgdclose);
|
|
static dev_type_read(cgdread);
|
|
static dev_type_write(cgdwrite);
|
|
static dev_type_ioctl(cgdioctl);
|
|
static dev_type_strategy(cgdstrategy);
|
|
static dev_type_dump(cgddump);
|
|
static dev_type_size(cgdsize);
|
|
|
|
const struct bdevsw cgd_bdevsw = {
|
|
cgdopen, cgdclose, cgdstrategy, cgdioctl,
|
|
cgddump, cgdsize, D_DISK
|
|
};
|
|
|
|
const struct cdevsw cgd_cdevsw = {
|
|
cgdopen, cgdclose, cgdread, cgdwrite, cgdioctl,
|
|
nostop, notty, nopoll, nommap, nokqfilter, D_DISK
|
|
};
|
|
|
|
/* Internal Functions */
|
|
|
|
static int cgdstart(struct dk_softc *, struct buf *);
|
|
static void cgdiodone(struct buf *);
|
|
|
|
static int cgd_ioctl_set(struct cgd_softc *, void *, struct lwp *);
|
|
static int cgd_ioctl_clr(struct cgd_softc *, void *, struct lwp *);
|
|
static int cgdinit(struct cgd_softc *, const char *, struct vnode *,
|
|
struct lwp *);
|
|
static void cgd_cipher(struct cgd_softc *, void *, void *,
|
|
size_t, daddr_t, size_t, int);
|
|
|
|
/* Pseudo-disk Interface */
|
|
|
|
static struct dk_intf the_dkintf = {
|
|
DTYPE_CGD,
|
|
"cgd",
|
|
cgdopen,
|
|
cgdclose,
|
|
cgdstrategy,
|
|
cgdstart,
|
|
};
|
|
static struct dk_intf *di = &the_dkintf;
|
|
|
|
static struct dkdriver cgddkdriver = {
|
|
.d_strategy = cgdstrategy,
|
|
.d_minphys = minphys,
|
|
};
|
|
|
|
/* DIAGNOSTIC and DEBUG definitions */
|
|
|
|
#if defined(CGDDEBUG) && !defined(DEBUG)
|
|
#define DEBUG
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
int cgddebug = 0;
|
|
|
|
#define CGDB_FOLLOW 0x1
|
|
#define CGDB_IO 0x2
|
|
#define CGDB_CRYPTO 0x4
|
|
|
|
#define IFDEBUG(x,y) if (cgddebug & (x)) y
|
|
#define DPRINTF(x,y) IFDEBUG(x, printf y)
|
|
#define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y)
|
|
|
|
static void hexprint(const char *, void *, int);
|
|
|
|
#else
|
|
#define IFDEBUG(x,y)
|
|
#define DPRINTF(x,y)
|
|
#define DPRINTF_FOLLOW(y)
|
|
#endif
|
|
|
|
#ifdef DIAGNOSTIC
|
|
#define DIAGPANIC(x) panic x
|
|
#define DIAGCONDPANIC(x,y) if (x) panic y
|
|
#else
|
|
#define DIAGPANIC(x)
|
|
#define DIAGCONDPANIC(x,y)
|
|
#endif
|
|
|
|
/* Global variables */
|
|
|
|
struct cgd_softc *cgd_softc;
|
|
int numcgd = 0;
|
|
|
|
/* Utility Functions */
|
|
|
|
#define CGDUNIT(x) DISKUNIT(x)
|
|
#define GETCGD_SOFTC(_cs, x) if (!((_cs) = getcgd_softc(x))) return ENXIO
|
|
|
|
static struct cgd_softc *
|
|
getcgd_softc(dev_t dev)
|
|
{
|
|
int unit = CGDUNIT(dev);
|
|
|
|
DPRINTF_FOLLOW(("getcgd_softc(0x%x): unit = %d\n", dev, unit));
|
|
if (unit >= numcgd)
|
|
return NULL;
|
|
return &cgd_softc[unit];
|
|
}
|
|
|
|
/* The code */
|
|
|
|
static void
|
|
cgdsoftc_init(struct cgd_softc *cs, int num)
|
|
{
|
|
char sbuf[DK_XNAME_SIZE];
|
|
|
|
memset(cs, 0x0, sizeof(*cs));
|
|
snprintf(sbuf, DK_XNAME_SIZE, "cgd%d", num);
|
|
simple_lock_init(&cs->sc_slock);
|
|
dk_sc_init(&cs->sc_dksc, cs, sbuf);
|
|
cs->sc_dksc.sc_dkdev.dk_driver = &cgddkdriver;
|
|
pseudo_disk_init(&cs->sc_dksc.sc_dkdev);
|
|
}
|
|
|
|
void
|
|
cgdattach(int num)
|
|
{
|
|
int i;
|
|
|
|
DPRINTF_FOLLOW(("cgdattach(%d)\n", num));
|
|
if (num <= 0) {
|
|
DIAGPANIC(("cgdattach: count <= 0"));
|
|
return;
|
|
}
|
|
|
|
cgd_softc = (void *)malloc(num * sizeof(*cgd_softc), M_DEVBUF, M_NOWAIT);
|
|
if (!cgd_softc) {
|
|
printf("WARNING: unable to malloc(9) memory for crypt disks\n");
|
|
DIAGPANIC(("cgdattach: cannot malloc(9) enough memory"));
|
|
return;
|
|
}
|
|
|
|
numcgd = num;
|
|
for (i=0; i<num; i++)
|
|
cgdsoftc_init(&cgd_softc[i], i);
|
|
}
|
|
|
|
static int
|
|
cgdopen(dev_t dev, int flags, int fmt, struct lwp *l)
|
|
{
|
|
struct cgd_softc *cs;
|
|
|
|
DPRINTF_FOLLOW(("cgdopen(%d, %d)\n", dev, flags));
|
|
GETCGD_SOFTC(cs, dev);
|
|
return dk_open(di, &cs->sc_dksc, dev, flags, fmt, l);
|
|
}
|
|
|
|
static int
|
|
cgdclose(dev_t dev, int flags, int fmt, struct lwp *l)
|
|
{
|
|
struct cgd_softc *cs;
|
|
|
|
DPRINTF_FOLLOW(("cgdclose(%d, %d)\n", dev, flags));
|
|
GETCGD_SOFTC(cs, dev);
|
|
return dk_close(di, &cs->sc_dksc, dev, flags, fmt, l);
|
|
}
|
|
|
|
static void
|
|
cgdstrategy(struct buf *bp)
|
|
{
|
|
struct cgd_softc *cs = getcgd_softc(bp->b_dev);
|
|
|
|
DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp,
|
|
(long)bp->b_bcount));
|
|
/* XXXrcd: Should we test for (cs != NULL)? */
|
|
dk_strategy(di, &cs->sc_dksc, bp);
|
|
return;
|
|
}
|
|
|
|
static int
|
|
cgdsize(dev_t dev)
|
|
{
|
|
struct cgd_softc *cs = getcgd_softc(dev);
|
|
|
|
DPRINTF_FOLLOW(("cgdsize(%d)\n", dev));
|
|
if (!cs)
|
|
return -1;
|
|
return dk_size(di, &cs->sc_dksc, dev);
|
|
}
|
|
|
|
/*
|
|
* cgd_{get,put}data are functions that deal with getting a buffer
|
|
* for the new encrypted data. We have a buffer per device so that
|
|
* we can ensure that we can always have a transaction in flight.
|
|
* We use this buffer first so that we have one less piece of
|
|
* malloc'ed data at any given point.
|
|
*/
|
|
|
|
static void *
|
|
cgd_getdata(struct dk_softc *dksc, unsigned long size)
|
|
{
|
|
struct cgd_softc *cs =dksc->sc_osc;
|
|
void * data = NULL;
|
|
|
|
simple_lock(&cs->sc_slock);
|
|
if (cs->sc_data_used == 0) {
|
|
cs->sc_data_used = 1;
|
|
data = cs->sc_data;
|
|
}
|
|
simple_unlock(&cs->sc_slock);
|
|
|
|
if (data)
|
|
return data;
|
|
|
|
return malloc(size, M_DEVBUF, M_NOWAIT);
|
|
}
|
|
|
|
static void
|
|
cgd_putdata(struct dk_softc *dksc, void *data)
|
|
{
|
|
struct cgd_softc *cs =dksc->sc_osc;
|
|
|
|
if (data == cs->sc_data) {
|
|
simple_lock(&cs->sc_slock);
|
|
cs->sc_data_used = 0;
|
|
simple_unlock(&cs->sc_slock);
|
|
} else {
|
|
free(data, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
static int
|
|
cgdstart(struct dk_softc *dksc, struct buf *bp)
|
|
{
|
|
struct cgd_softc *cs = dksc->sc_osc;
|
|
struct buf *nbp;
|
|
void * addr;
|
|
void * newaddr;
|
|
daddr_t bn;
|
|
|
|
DPRINTF_FOLLOW(("cgdstart(%p, %p)\n", dksc, bp));
|
|
disk_busy(&dksc->sc_dkdev); /* XXX: put in dksubr.c */
|
|
|
|
bn = bp->b_rawblkno;
|
|
|
|
/*
|
|
* We attempt to allocate all of our resources up front, so that
|
|
* we can fail quickly if they are unavailable.
|
|
*/
|
|
|
|
nbp = getiobuf_nowait();
|
|
if (nbp == NULL) {
|
|
disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If we are writing, then we need to encrypt the outgoing
|
|
* block into a new block of memory. If we fail, then we
|
|
* return an error and let the dksubr framework deal with it.
|
|
*/
|
|
newaddr = addr = bp->b_data;
|
|
if ((bp->b_flags & B_READ) == 0) {
|
|
newaddr = cgd_getdata(dksc, bp->b_bcount);
|
|
if (!newaddr) {
|
|
putiobuf(nbp);
|
|
disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
|
|
return -1;
|
|
}
|
|
cgd_cipher(cs, newaddr, addr, bp->b_bcount, bn,
|
|
DEV_BSIZE, CGD_CIPHER_ENCRYPT);
|
|
}
|
|
|
|
nbp->b_data = newaddr;
|
|
nbp->b_flags = bp->b_flags | B_CALL;
|
|
nbp->b_iodone = cgdiodone;
|
|
nbp->b_proc = bp->b_proc;
|
|
nbp->b_blkno = bn;
|
|
nbp->b_vp = cs->sc_tvn;
|
|
nbp->b_bcount = bp->b_bcount;
|
|
nbp->b_private = bp;
|
|
|
|
BIO_COPYPRIO(nbp, bp);
|
|
|
|
if ((nbp->b_flags & B_READ) == 0) {
|
|
V_INCR_NUMOUTPUT(nbp->b_vp);
|
|
}
|
|
VOP_STRATEGY(cs->sc_tvn, nbp);
|
|
return 0;
|
|
}
|
|
|
|
/* expected to be called at splbio() */
|
|
static void
|
|
cgdiodone(struct buf *nbp)
|
|
{
|
|
struct buf *obp = nbp->b_private;
|
|
struct cgd_softc *cs = getcgd_softc(obp->b_dev);
|
|
struct dk_softc *dksc = &cs->sc_dksc;
|
|
|
|
KDASSERT(cs);
|
|
|
|
DPRINTF_FOLLOW(("cgdiodone(%p)\n", nbp));
|
|
DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %d resid %d\n",
|
|
obp, obp->b_bcount, obp->b_resid));
|
|
DPRINTF(CGDB_IO, (" dev 0x%x, nbp %p bn %" PRId64 " addr %p bcnt %d\n",
|
|
nbp->b_dev, nbp, nbp->b_blkno, nbp->b_data,
|
|
nbp->b_bcount));
|
|
if (nbp->b_flags & B_ERROR) {
|
|
obp->b_flags |= B_ERROR;
|
|
obp->b_error = nbp->b_error ? nbp->b_error : EIO;
|
|
|
|
printf("%s: error %d\n", dksc->sc_xname, obp->b_error);
|
|
}
|
|
|
|
/* Perform the decryption if we are reading.
|
|
*
|
|
* Note: use the blocknumber from nbp, since it is what
|
|
* we used to encrypt the blocks.
|
|
*/
|
|
|
|
if (nbp->b_flags & B_READ)
|
|
cgd_cipher(cs, obp->b_data, obp->b_data, obp->b_bcount,
|
|
nbp->b_blkno, DEV_BSIZE, CGD_CIPHER_DECRYPT);
|
|
|
|
/* If we allocated memory, free it now... */
|
|
if (nbp->b_data != obp->b_data)
|
|
cgd_putdata(dksc, nbp->b_data);
|
|
|
|
putiobuf(nbp);
|
|
|
|
/* Request is complete for whatever reason */
|
|
obp->b_resid = 0;
|
|
if (obp->b_flags & B_ERROR)
|
|
obp->b_resid = obp->b_bcount;
|
|
disk_unbusy(&dksc->sc_dkdev, obp->b_bcount - obp->b_resid,
|
|
(obp->b_flags & B_READ));
|
|
biodone(obp);
|
|
dk_iodone(di, dksc);
|
|
}
|
|
|
|
/* XXX: we should probably put these into dksubr.c, mostly */
|
|
static int
|
|
cgdread(dev_t dev, struct uio *uio, int flags)
|
|
{
|
|
struct cgd_softc *cs;
|
|
struct dk_softc *dksc;
|
|
|
|
DPRINTF_FOLLOW(("cgdread(%d, %p, %d)\n", dev, uio, flags));
|
|
GETCGD_SOFTC(cs, dev);
|
|
dksc = &cs->sc_dksc;
|
|
if ((dksc->sc_flags & DKF_INITED) == 0)
|
|
return ENXIO;
|
|
return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio);
|
|
}
|
|
|
|
/* XXX: we should probably put these into dksubr.c, mostly */
|
|
static int
|
|
cgdwrite(dev_t dev, struct uio *uio, int flags)
|
|
{
|
|
struct cgd_softc *cs;
|
|
struct dk_softc *dksc;
|
|
|
|
DPRINTF_FOLLOW(("cgdwrite(%d, %p, %d)\n", dev, uio, flags));
|
|
GETCGD_SOFTC(cs, dev);
|
|
dksc = &cs->sc_dksc;
|
|
if ((dksc->sc_flags & DKF_INITED) == 0)
|
|
return ENXIO;
|
|
return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio);
|
|
}
|
|
|
|
static int
|
|
cgdioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
|
|
{
|
|
struct cgd_softc *cs;
|
|
struct dk_softc *dksc;
|
|
struct disk *dk;
|
|
int ret;
|
|
int part = DISKPART(dev);
|
|
int pmask = 1 << part;
|
|
|
|
DPRINTF_FOLLOW(("cgdioctl(%d, %ld, %p, %d, %p)\n",
|
|
dev, cmd, data, flag, l));
|
|
GETCGD_SOFTC(cs, dev);
|
|
dksc = &cs->sc_dksc;
|
|
dk = &dksc->sc_dkdev;
|
|
switch (cmd) {
|
|
case CGDIOCSET:
|
|
case CGDIOCCLR:
|
|
if ((flag & FWRITE) == 0)
|
|
return EBADF;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case CGDIOCSET:
|
|
if (dksc->sc_flags & DKF_INITED)
|
|
ret = EBUSY;
|
|
else
|
|
ret = cgd_ioctl_set(cs, data, l);
|
|
break;
|
|
case CGDIOCCLR:
|
|
if (!(dksc->sc_flags & DKF_INITED)) {
|
|
ret = ENXIO;
|
|
break;
|
|
}
|
|
if (DK_BUSY(&cs->sc_dksc, pmask)) {
|
|
ret = EBUSY;
|
|
break;
|
|
}
|
|
ret = cgd_ioctl_clr(cs, data, l);
|
|
break;
|
|
default:
|
|
ret = dk_ioctl(di, dksc, dev, cmd, data, flag, l);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
cgddump(dev_t dev, daddr_t blkno, void *va, size_t size)
|
|
{
|
|
struct cgd_softc *cs;
|
|
|
|
DPRINTF_FOLLOW(("cgddump(%d, %" PRId64 ", %p, %lu)\n", dev, blkno, va,
|
|
(unsigned long)size));
|
|
GETCGD_SOFTC(cs, dev);
|
|
return dk_dump(di, &cs->sc_dksc, dev, blkno, va, size);
|
|
}
|
|
|
|
/*
|
|
* XXXrcd:
|
|
* for now we hardcode the maximum key length.
|
|
*/
|
|
#define MAX_KEYSIZE 1024
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
cgd_ioctl_set(struct cgd_softc *cs, void *data, struct lwp *l)
|
|
{
|
|
struct cgd_ioctl *ci = data;
|
|
struct vnode *vp;
|
|
int ret;
|
|
size_t keybytes; /* key length in bytes */
|
|
const char *cp;
|
|
char *inbuf;
|
|
|
|
cp = ci->ci_disk;
|
|
if ((ret = dk_lookup(cp, l, &vp)) != 0)
|
|
return ret;
|
|
|
|
inbuf = malloc(MAX_KEYSIZE, M_TEMP, M_WAITOK);
|
|
|
|
if ((ret = cgdinit(cs, cp, vp, l)) != 0)
|
|
goto bail;
|
|
|
|
(void)memset(inbuf, 0, MAX_KEYSIZE);
|
|
ret = copyinstr(ci->ci_alg, inbuf, 256, NULL);
|
|
if (ret)
|
|
goto bail;
|
|
cs->sc_cfuncs = cryptfuncs_find(inbuf);
|
|
if (!cs->sc_cfuncs) {
|
|
ret = EINVAL;
|
|
goto bail;
|
|
}
|
|
|
|
/* right now we only support encblkno, so hard-code it */
|
|
(void)memset(inbuf, 0, MAX_KEYSIZE);
|
|
ret = copyinstr(ci->ci_ivmethod, inbuf, MAX_KEYSIZE, NULL);
|
|
if (ret)
|
|
goto bail;
|
|
if (strcmp("encblkno", inbuf)) {
|
|
ret = EINVAL;
|
|
goto bail;
|
|
}
|
|
|
|
keybytes = ci->ci_keylen / 8 + 1;
|
|
if (keybytes > MAX_KEYSIZE) {
|
|
ret = EINVAL;
|
|
goto bail;
|
|
}
|
|
(void)memset(inbuf, 0, MAX_KEYSIZE);
|
|
ret = copyin(ci->ci_key, inbuf, keybytes);
|
|
if (ret)
|
|
goto bail;
|
|
|
|
cs->sc_cdata.cf_blocksize = ci->ci_blocksize;
|
|
cs->sc_cdata.cf_mode = CGD_CIPHER_CBC_ENCBLKNO;
|
|
cs->sc_cdata.cf_priv = cs->sc_cfuncs->cf_init(ci->ci_keylen, inbuf,
|
|
&cs->sc_cdata.cf_blocksize);
|
|
(void)memset(inbuf, 0, MAX_KEYSIZE);
|
|
if (!cs->sc_cdata.cf_priv) {
|
|
printf("cgd: unable to initialize cipher\n");
|
|
ret = EINVAL; /* XXX is this the right error? */
|
|
goto bail;
|
|
}
|
|
free(inbuf, M_TEMP);
|
|
|
|
bufq_alloc(&cs->sc_dksc.sc_bufq, "fcfs", 0);
|
|
|
|
cs->sc_data = malloc(MAXPHYS, M_DEVBUF, M_WAITOK);
|
|
cs->sc_data_used = 0;
|
|
|
|
cs->sc_dksc.sc_flags |= DKF_INITED;
|
|
|
|
/* Attach the disk. */
|
|
pseudo_disk_attach(&cs->sc_dksc.sc_dkdev);
|
|
|
|
/* Try and read the disklabel. */
|
|
dk_getdisklabel(di, &cs->sc_dksc, 0 /* XXX ? */);
|
|
|
|
/* Discover wedges on this disk. */
|
|
dkwedge_discover(&cs->sc_dksc.sc_dkdev);
|
|
|
|
return 0;
|
|
|
|
bail:
|
|
free(inbuf, M_TEMP);
|
|
(void)vn_close(vp, FREAD|FWRITE, l->l_cred, l);
|
|
return ret;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
cgd_ioctl_clr(struct cgd_softc *cs, void *data, struct lwp *l)
|
|
{
|
|
int s;
|
|
|
|
/* Delete all of our wedges. */
|
|
dkwedge_delall(&cs->sc_dksc.sc_dkdev);
|
|
|
|
/* Kill off any queued buffers. */
|
|
s = splbio();
|
|
bufq_drain(cs->sc_dksc.sc_bufq);
|
|
splx(s);
|
|
bufq_free(cs->sc_dksc.sc_bufq);
|
|
|
|
(void)vn_close(cs->sc_tvn, FREAD|FWRITE, l->l_cred, l);
|
|
cs->sc_cfuncs->cf_destroy(cs->sc_cdata.cf_priv);
|
|
free(cs->sc_tpath, M_DEVBUF);
|
|
free(cs->sc_data, M_DEVBUF);
|
|
cs->sc_data_used = 0;
|
|
cs->sc_dksc.sc_flags &= ~DKF_INITED;
|
|
pseudo_disk_detach(&cs->sc_dksc.sc_dkdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cgdinit(struct cgd_softc *cs, const char *cpath, struct vnode *vp,
|
|
struct lwp *l)
|
|
{
|
|
struct dk_geom *pdg;
|
|
struct partinfo dpart;
|
|
struct vattr va;
|
|
size_t size;
|
|
int maxsecsize = 0;
|
|
int ret;
|
|
char *tmppath;
|
|
|
|
cs->sc_dksc.sc_size = 0;
|
|
cs->sc_tvn = vp;
|
|
cs->sc_tpath = NULL;
|
|
|
|
tmppath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
|
|
ret = copyinstr(cpath, tmppath, MAXPATHLEN, &cs->sc_tpathlen);
|
|
if (ret)
|
|
goto bail;
|
|
cs->sc_tpath = malloc(cs->sc_tpathlen, M_DEVBUF, M_WAITOK);
|
|
memcpy(cs->sc_tpath, tmppath, cs->sc_tpathlen);
|
|
|
|
if ((ret = VOP_GETATTR(vp, &va, l->l_cred, l)) != 0)
|
|
goto bail;
|
|
|
|
cs->sc_tdev = va.va_rdev;
|
|
|
|
ret = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
|
|
if (ret)
|
|
goto bail;
|
|
|
|
maxsecsize =
|
|
((dpart.disklab->d_secsize > maxsecsize) ?
|
|
dpart.disklab->d_secsize : maxsecsize);
|
|
size = dpart.part->p_size;
|
|
|
|
if (!size) {
|
|
ret = ENODEV;
|
|
goto bail;
|
|
}
|
|
|
|
cs->sc_dksc.sc_size = size;
|
|
|
|
/*
|
|
* XXX here we should probe the underlying device. If we
|
|
* are accessing a partition of type RAW_PART, then
|
|
* we should populate our initial geometry with the
|
|
* geometry that we discover from the device.
|
|
*/
|
|
pdg = &cs->sc_dksc.sc_geom;
|
|
pdg->pdg_secsize = DEV_BSIZE;
|
|
pdg->pdg_ntracks = 1;
|
|
pdg->pdg_nsectors = 1024 * (1024 / pdg->pdg_secsize);
|
|
pdg->pdg_ncylinders = cs->sc_dksc.sc_size / pdg->pdg_nsectors;
|
|
|
|
bail:
|
|
free(tmppath, M_TEMP);
|
|
if (ret && cs->sc_tpath)
|
|
free(cs->sc_tpath, M_DEVBUF);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Our generic cipher entry point. This takes care of the
|
|
* IV mode and passes off the work to the specific cipher.
|
|
* We implement here the IV method ``encrypted block
|
|
* number''.
|
|
*
|
|
* For the encryption case, we accomplish this by setting
|
|
* up a struct uio where the first iovec of the source is
|
|
* the blocknumber and the first iovec of the dest is a
|
|
* sink. We then call the cipher with an IV of zero, and
|
|
* the right thing happens.
|
|
*
|
|
* For the decryption case, we use the same basic mechanism
|
|
* for symmetry, but we encrypt the block number in the
|
|
* first iovec.
|
|
*
|
|
* We mainly do this to avoid requiring the definition of
|
|
* an ECB mode.
|
|
*
|
|
* XXXrcd: for now we rely on our own crypto framework defined
|
|
* in dev/cgd_crypto.c. This will change when we
|
|
* get a generic kernel crypto framework.
|
|
*/
|
|
|
|
static void
|
|
blkno2blkno_buf(char *sbuf, daddr_t blkno)
|
|
{
|
|
int i;
|
|
|
|
/* Set up the blkno in blkno_buf, here we do not care much
|
|
* about the final layout of the information as long as we
|
|
* can guarantee that each sector will have a different IV
|
|
* and that the endianness of the machine will not affect
|
|
* the representation that we have chosen.
|
|
*
|
|
* We choose this representation, because it does not rely
|
|
* on the size of buf (which is the blocksize of the cipher),
|
|
* but allows daddr_t to grow without breaking existing
|
|
* disks.
|
|
*
|
|
* Note that blkno2blkno_buf does not take a size as input,
|
|
* and hence must be called on a pre-zeroed buffer of length
|
|
* greater than or equal to sizeof(daddr_t).
|
|
*/
|
|
for (i=0; i < sizeof(daddr_t); i++) {
|
|
*sbuf++ = blkno & 0xff;
|
|
blkno >>= 8;
|
|
}
|
|
}
|
|
|
|
static void
|
|
cgd_cipher(struct cgd_softc *cs, void *dstv, void *srcv,
|
|
size_t len, daddr_t blkno, size_t secsize, int dir)
|
|
{
|
|
char *dst = dstv;
|
|
char *src = srcv;
|
|
cfunc_cipher *cipher = cs->sc_cfuncs->cf_cipher;
|
|
struct uio dstuio;
|
|
struct uio srcuio;
|
|
struct iovec dstiov[2];
|
|
struct iovec srciov[2];
|
|
size_t blocksize = cs->sc_cdata.cf_blocksize;
|
|
char sink[blocksize];
|
|
char zero_iv[blocksize];
|
|
char blkno_buf[blocksize];
|
|
|
|
DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir));
|
|
|
|
DIAGCONDPANIC(len % blocksize != 0,
|
|
("cgd_cipher: len %% blocksize != 0"));
|
|
|
|
/* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */
|
|
DIAGCONDPANIC(sizeof(daddr_t) > blocksize,
|
|
("cgd_cipher: sizeof(daddr_t) > blocksize"));
|
|
|
|
memset(zero_iv, 0x0, sizeof(zero_iv));
|
|
|
|
dstuio.uio_iov = dstiov;
|
|
dstuio.uio_iovcnt = 2;
|
|
|
|
srcuio.uio_iov = srciov;
|
|
srcuio.uio_iovcnt = 2;
|
|
|
|
dstiov[0].iov_base = sink;
|
|
dstiov[0].iov_len = blocksize;
|
|
srciov[0].iov_base = blkno_buf;
|
|
srciov[0].iov_len = blocksize;
|
|
dstiov[1].iov_len = secsize;
|
|
srciov[1].iov_len = secsize;
|
|
|
|
for (; len > 0; len -= secsize) {
|
|
dstiov[1].iov_base = dst;
|
|
srciov[1].iov_base = src;
|
|
|
|
memset(blkno_buf, 0x0, sizeof(blkno_buf));
|
|
blkno2blkno_buf(blkno_buf, blkno);
|
|
if (dir == CGD_CIPHER_DECRYPT) {
|
|
dstuio.uio_iovcnt = 1;
|
|
srcuio.uio_iovcnt = 1;
|
|
IFDEBUG(CGDB_CRYPTO, hexprint("step 0: blkno_buf",
|
|
blkno_buf, sizeof(blkno_buf)));
|
|
cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio,
|
|
zero_iv, CGD_CIPHER_ENCRYPT);
|
|
memcpy(blkno_buf, sink, blocksize);
|
|
dstuio.uio_iovcnt = 2;
|
|
srcuio.uio_iovcnt = 2;
|
|
}
|
|
|
|
IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf",
|
|
blkno_buf, sizeof(blkno_buf)));
|
|
cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio, zero_iv, dir);
|
|
IFDEBUG(CGDB_CRYPTO, hexprint("step 2: sink",
|
|
sink, sizeof(sink)));
|
|
|
|
dst += secsize;
|
|
src += secsize;
|
|
blkno++;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static void
|
|
hexprint(const char *start, void *buf, int len)
|
|
{
|
|
char *c = buf;
|
|
|
|
DIAGCONDPANIC(len < 0, ("hexprint: called with len < 0"));
|
|
printf("%s: len=%06d 0x", start, len);
|
|
while (len--)
|
|
printf("%02x", (unsigned char) *c++);
|
|
}
|
|
#endif
|