NetBSD/sys/net/npf/npf_ruleset.c
rmind 9e6a3bf60e - npf_config_load: if loading the connections, do not perform any actice
NAT policy take over or or portmap sharing - just replace them all.
- npf_config_fini: flush with the empty connection database.
- npf_nat_import: fix the stat counter.
2014-11-30 01:37:53 +00:00

939 lines
22 KiB
C

/* $NetBSD: npf_ruleset.c,v 1.40 2014/11/30 01:37:53 rmind Exp $ */
/*-
* Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NPF ruleset module.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.40 2014/11/30 01:37:53 rmind Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/kmem.h>
#include <sys/queue.h>
#include <sys/mbuf.h>
#include <sys/types.h>
#include <net/bpf.h>
#include <net/bpfjit.h>
#include <net/pfil.h>
#include <net/if.h>
#include "npf_impl.h"
struct npf_ruleset {
/*
* - List of all rules.
* - Dynamic (i.e. named) rules.
* - G/C list for convenience.
*/
LIST_HEAD(, npf_rule) rs_all;
LIST_HEAD(, npf_rule) rs_dynamic;
LIST_HEAD(, npf_rule) rs_gc;
/* Unique ID counter. */
uint64_t rs_idcnt;
/* Number of array slots and active rules. */
u_int rs_slots;
u_int rs_nitems;
/* Array of ordered rules. */
npf_rule_t * rs_rules[];
};
struct npf_rule {
/* Attributes, interface and skip slot. */
uint32_t r_attr;
u_int r_ifid;
u_int r_skip_to;
/* Code to process, if any. */
int r_type;
bpfjit_func_t r_jcode;
void * r_code;
u_int r_clen;
/* NAT policy (optional), rule procedure and subset. */
npf_natpolicy_t * r_natp;
npf_rproc_t * r_rproc;
/* Rule priority: (highest) 1, 2 ... n (lowest). */
pri_t r_priority;
/*
* Dynamic group: subset queue and a dynamic group list entry.
* Dynamic rule: entry and the parent rule (the group).
*/
union {
TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
TAILQ_ENTRY(npf_rule) r_entry;
} /* C11 */;
union {
LIST_ENTRY(npf_rule) r_dentry;
npf_rule_t * r_parent;
} /* C11 */;
/* Rule ID, name and the optional key. */
uint64_t r_id;
char r_name[NPF_RULE_MAXNAMELEN];
uint8_t r_key[NPF_RULE_MAXKEYLEN];
/* All-list entry and the auxiliary info. */
LIST_ENTRY(npf_rule) r_aentry;
prop_data_t r_info;
};
#define SKIPTO_ADJ_FLAG (1U << 31)
#define SKIPTO_MASK (SKIPTO_ADJ_FLAG - 1)
static int npf_rule_export(const npf_ruleset_t *,
const npf_rule_t *, prop_dictionary_t);
/*
* Private attributes - must be in the NPF_RULE_PRIVMASK range.
*/
#define NPF_RULE_KEEPNAT (0x01000000 & NPF_RULE_PRIVMASK)
#define NPF_DYNAMIC_GROUP_P(attr) \
(((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
#define NPF_DYNAMIC_RULE_P(attr) \
(((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
npf_ruleset_t *
npf_ruleset_create(size_t slots)
{
size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
npf_ruleset_t *rlset;
rlset = kmem_zalloc(len, KM_SLEEP);
LIST_INIT(&rlset->rs_dynamic);
LIST_INIT(&rlset->rs_all);
LIST_INIT(&rlset->rs_gc);
rlset->rs_slots = slots;
return rlset;
}
static void
npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
{
if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
LIST_REMOVE(rl, r_dentry);
}
if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
npf_rule_t *rg = rl->r_parent;
TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
}
LIST_REMOVE(rl, r_aentry);
}
void
npf_ruleset_destroy(npf_ruleset_t *rlset)
{
size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
npf_rule_t *rl;
while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
npf_ruleset_unlink(rlset, rl);
npf_rule_free(rl);
}
KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
KASSERT(LIST_EMPTY(&rlset->rs_gc));
kmem_free(rlset, len);
}
/*
* npf_ruleset_insert: insert the rule into the specified ruleset.
*/
void
npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
{
u_int n = rlset->rs_nitems;
KASSERT(n < rlset->rs_slots);
LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
} else {
KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
rl->r_attr &= ~NPF_RULE_DYNAMIC;
}
rlset->rs_rules[n] = rl;
rlset->rs_nitems++;
if (rl->r_skip_to < ++n) {
rl->r_skip_to = SKIPTO_ADJ_FLAG | n;
}
}
static npf_rule_t *
npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
{
npf_rule_t *rl;
KASSERT(npf_config_locked_p());
LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
break;
}
return rl;
}
/*
* npf_ruleset_add: insert dynamic rule into the (active) ruleset.
*/
int
npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
{
npf_rule_t *rg, *it;
pri_t priocmd;
rg = npf_ruleset_lookup(rlset, rname);
if (rg == NULL) {
return ESRCH;
}
if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
return EINVAL;
}
/* Dynamic rule - assign a unique ID and save the parent. */
rl->r_id = ++rlset->rs_idcnt;
rl->r_parent = rg;
/*
* Rule priority: (highest) 1, 2 ... n (lowest).
* Negative priority indicates an operation and is reset to zero.
*/
if ((priocmd = rl->r_priority) < 0) {
rl->r_priority = 0;
}
switch (priocmd) {
case NPF_PRI_FIRST:
TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
if (rl->r_priority <= it->r_priority)
break;
}
if (it) {
TAILQ_INSERT_BEFORE(it, rl, r_entry);
} else {
TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
}
break;
case NPF_PRI_LAST:
default:
TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
if (rl->r_priority < it->r_priority)
break;
}
if (it) {
TAILQ_INSERT_BEFORE(it, rl, r_entry);
} else {
TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
}
break;
}
/* Finally, add into the all-list. */
LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
return 0;
}
/*
* npf_ruleset_remove: remove the dynamic rule given the rule ID.
*/
int
npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
{
npf_rule_t *rg, *rl;
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
return ESRCH;
}
TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
KASSERT(rl->r_parent == rg);
/* Compare ID. On match, remove and return. */
if (rl->r_id == id) {
npf_ruleset_unlink(rlset, rl);
LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
return 0;
}
}
return ENOENT;
}
/*
* npf_ruleset_remkey: remove the dynamic rule given the rule key.
*/
int
npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
const void *key, size_t len)
{
npf_rule_t *rg, *rl;
KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
return ESRCH;
}
/* Find the last in the list. */
TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
KASSERT(rl->r_parent == rg);
/* Compare the key. On match, remove and return. */
if (memcmp(rl->r_key, key, len) == 0) {
npf_ruleset_unlink(rlset, rl);
LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
return 0;
}
}
return ENOENT;
}
/*
* npf_ruleset_list: serialise and return the dynamic rules.
*/
prop_dictionary_t
npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
{
prop_dictionary_t rgdict;
prop_array_t rules;
npf_rule_t *rg, *rl;
KASSERT(npf_config_locked_p());
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
return NULL;
}
if ((rgdict = prop_dictionary_create()) == NULL) {
return NULL;
}
if ((rules = prop_array_create()) == NULL) {
prop_object_release(rgdict);
return NULL;
}
TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
prop_dictionary_t rldict;
rldict = prop_dictionary_create();
KASSERT(rl->r_parent == rg);
if (npf_rule_export(rlset, rl, rldict)) {
prop_object_release(rldict);
prop_object_release(rules);
return NULL;
}
prop_array_add(rules, rldict);
prop_object_release(rldict);
}
if (!prop_dictionary_set(rgdict, "rules", rules)) {
prop_object_release(rgdict);
rgdict = NULL;
}
prop_object_release(rules);
return rgdict;
}
/*
* npf_ruleset_flush: flush the dynamic rules in the ruleset by inserting
* them into the G/C list.
*/
int
npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
{
npf_rule_t *rg, *rl;
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
return ESRCH;
}
while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
KASSERT(rl->r_parent == rg);
npf_ruleset_unlink(rlset, rl);
LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
}
return 0;
}
/*
* npf_ruleset_gc: destroy the rules in G/C list.
*/
void
npf_ruleset_gc(npf_ruleset_t *rlset)
{
npf_rule_t *rl;
while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
LIST_REMOVE(rl, r_aentry);
npf_rule_free(rl);
}
}
/*
* npf_ruleset_export: serialise and return the static rules.
*/
int
npf_ruleset_export(const npf_ruleset_t *rlset, prop_array_t rules)
{
const u_int nitems = rlset->rs_nitems;
int error = 0;
u_int n = 0;
KASSERT(npf_config_locked_p());
while (n < nitems) {
const npf_rule_t *rl = rlset->rs_rules[n];
const npf_natpolicy_t *natp = rl->r_natp;
prop_dictionary_t rldict;
rldict = prop_dictionary_create();
if ((error = npf_rule_export(rlset, rl, rldict)) != 0) {
prop_object_release(rldict);
break;
}
if (natp && (error = npf_nat_policyexport(natp, rldict)) != 0) {
prop_object_release(rldict);
break;
}
prop_array_add(rules, rldict);
prop_object_release(rldict);
n++;
}
return error;
}
/*
* npf_ruleset_reload: prepare the new ruleset by scanning the active
* ruleset and: 1) sharing the dynamic rules 2) sharing NAT policies.
*
* => The active (old) ruleset should be exclusively locked.
*/
void
npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset, bool load)
{
npf_rule_t *rg, *rl;
uint64_t nid = 0;
KASSERT(npf_config_locked_p());
/*
* Scan the dynamic rules and share (migrate) if needed.
*/
LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
npf_rule_t *actrg;
/* Look for a dynamic ruleset group with such name. */
actrg = npf_ruleset_lookup(oldset, rg->r_name);
if (actrg == NULL) {
continue;
}
/*
* Copy the list-head structure. This is necessary because
* the rules are still active and therefore accessible for
* inspection via the old ruleset.
*/
memcpy(&rg->r_subset, &actrg->r_subset, sizeof(rg->r_subset));
TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
/*
* We can safely migrate to the new all-rule list
* and re-set the parent rule, though.
*/
LIST_REMOVE(rl, r_aentry);
LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
rl->r_parent = rg;
}
}
/*
* If performing the load of connections then NAT policies may
* already have translated connections associated with them and
* we should not share or inherit anything.
*/
if (load)
return;
/*
* Scan all rules in the new ruleset and share NAT policies.
* Also, assign a unique ID for each policy here.
*/
LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
npf_natpolicy_t *np;
npf_rule_t *actrl;
/* Does the rule have a NAT policy associated? */
if ((np = rl->r_natp) == NULL) {
continue;
}
/*
* First, try to share the active port map. If this
* policy will be unused, npf_nat_freepolicy() will
* drop the reference.
*/
npf_ruleset_sharepm(oldset, np);
/* Does it match with any policy in the active ruleset? */
LIST_FOREACH(actrl, &oldset->rs_all, r_aentry) {
if (!actrl->r_natp)
continue;
if ((actrl->r_attr & NPF_RULE_KEEPNAT) != 0)
continue;
if (npf_nat_cmppolicy(actrl->r_natp, np))
break;
}
if (!actrl) {
/* No: just set the ID and continue. */
npf_nat_setid(np, ++nid);
continue;
}
/* Yes: inherit the matching NAT policy. */
rl->r_natp = actrl->r_natp;
npf_nat_setid(rl->r_natp, ++nid);
/*
* Finally, mark the active rule to not destroy its NAT
* policy later as we inherited it (but the rule must be
* kept active for now). Destroy the new/unused policy.
*/
actrl->r_attr |= NPF_RULE_KEEPNAT;
npf_nat_freepolicy(np);
}
/* Inherit the ID counter. */
newset->rs_idcnt = oldset->rs_idcnt;
}
/*
* npf_ruleset_sharepm: attempt to share the active NAT portmap.
*/
npf_rule_t *
npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
{
npf_natpolicy_t *np;
npf_rule_t *rl;
/*
* Scan the NAT policies in the ruleset and match with the
* given policy based on the translation IP address. If they
* match - adjust the given NAT policy to use the active NAT
* portmap. In such case the reference on the old portmap is
* dropped and acquired on the active one.
*/
LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
np = rl->r_natp;
if (np == NULL || np == mnp)
continue;
if (npf_nat_sharepm(np, mnp))
break;
}
return rl;
}
npf_natpolicy_t *
npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id)
{
npf_rule_t *rl;
LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
npf_natpolicy_t *np = rl->r_natp;
if (np && npf_nat_getid(np) == id) {
return np;
}
}
return NULL;
}
/*
* npf_ruleset_freealg: inspect the ruleset and disassociate specified
* ALG from all NAT entries using it.
*/
void
npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
{
npf_rule_t *rl;
npf_natpolicy_t *np;
LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
if ((np = rl->r_natp) != NULL) {
npf_nat_freealg(np, alg);
}
}
}
/*
* npf_rule_alloc: allocate a rule and initialise it.
*/
npf_rule_t *
npf_rule_alloc(prop_dictionary_t rldict)
{
npf_rule_t *rl;
const char *rname;
prop_data_t d;
/* Allocate a rule structure. */
rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
TAILQ_INIT(&rl->r_subset);
rl->r_natp = NULL;
/* Name (optional) */
if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
} else {
rl->r_name[0] = '\0';
}
/* Attributes, priority and interface ID (optional). */
prop_dictionary_get_uint32(rldict, "attr", &rl->r_attr);
prop_dictionary_get_int32(rldict, "prio", &rl->r_priority);
rl->r_attr &= ~NPF_RULE_PRIVMASK;
if (prop_dictionary_get_cstring_nocopy(rldict, "ifname", &rname)) {
if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
kmem_free(rl, sizeof(npf_rule_t));
return NULL;
}
} else {
rl->r_ifid = 0;
}
/* Get the skip-to index. No need to validate it. */
prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
/* Key (optional). */
prop_object_t obj = prop_dictionary_get(rldict, "key");
const void *key = prop_data_data_nocopy(obj);
if (key) {
size_t len = prop_data_size(obj);
if (len > NPF_RULE_MAXKEYLEN) {
kmem_free(rl, sizeof(npf_rule_t));
return NULL;
}
memcpy(rl->r_key, key, len);
}
if ((d = prop_dictionary_get(rldict, "info")) != NULL) {
rl->r_info = prop_data_copy(d);
}
return rl;
}
static int
npf_rule_export(const npf_ruleset_t *rlset, const npf_rule_t *rl,
prop_dictionary_t rldict)
{
u_int skip_to = 0;
prop_data_t d;
prop_dictionary_set_uint32(rldict, "attr", rl->r_attr);
prop_dictionary_set_int32(rldict, "prio", rl->r_priority);
if ((rl->r_skip_to & SKIPTO_ADJ_FLAG) == 0) {
skip_to = rl->r_skip_to & SKIPTO_MASK;
}
prop_dictionary_set_uint32(rldict, "skip-to", skip_to);
prop_dictionary_set_int32(rldict, "code-type", rl->r_type);
if (rl->r_code) {
d = prop_data_create_data(rl->r_code, rl->r_clen);
prop_dictionary_set_and_rel(rldict, "code", d);
}
if (rl->r_ifid) {
const char *ifname = npf_ifmap_getname(rl->r_ifid);
prop_dictionary_set_cstring(rldict, "ifname", ifname);
}
prop_dictionary_set_uint64(rldict, "id", rl->r_id);
if (rl->r_name[0]) {
prop_dictionary_set_cstring(rldict, "name", rl->r_name);
}
if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
d = prop_data_create_data(rl->r_key, NPF_RULE_MAXKEYLEN);
prop_dictionary_set_and_rel(rldict, "key", d);
}
if (rl->r_info) {
prop_dictionary_set(rldict, "info", rl->r_info);
}
return 0;
}
/*
* npf_rule_setcode: assign filter code to the rule.
*
* => The code must be validated by the caller.
* => JIT compilation may be performed here.
*/
void
npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
{
KASSERT(type == NPF_CODE_BPF);
rl->r_type = type;
rl->r_code = code;
rl->r_clen = size;
rl->r_jcode = npf_bpf_compile(code, size);
}
/*
* npf_rule_setrproc: assign a rule procedure and hold a reference on it.
*/
void
npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
{
npf_rproc_acquire(rp);
rl->r_rproc = rp;
}
/*
* npf_rule_free: free the specified rule.
*/
void
npf_rule_free(npf_rule_t *rl)
{
npf_natpolicy_t *np = rl->r_natp;
npf_rproc_t *rp = rl->r_rproc;
if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
/* Free NAT policy. */
npf_nat_freepolicy(np);
}
if (rp) {
/* Release rule procedure. */
npf_rproc_release(rp);
}
if (rl->r_code) {
/* Free byte-code. */
kmem_free(rl->r_code, rl->r_clen);
}
if (rl->r_jcode) {
/* Free JIT code. */
bpf_jit_freecode(rl->r_jcode);
}
if (rl->r_info) {
prop_object_release(rl->r_info);
}
kmem_free(rl, sizeof(npf_rule_t));
}
/*
* npf_rule_getid: return the unique ID of a rule.
* npf_rule_getrproc: acquire a reference and return rule procedure, if any.
* npf_rule_getnat: get NAT policy assigned to the rule.
*/
uint64_t
npf_rule_getid(const npf_rule_t *rl)
{
KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
return rl->r_id;
}
npf_rproc_t *
npf_rule_getrproc(const npf_rule_t *rl)
{
npf_rproc_t *rp = rl->r_rproc;
if (rp) {
npf_rproc_acquire(rp);
}
return rp;
}
npf_natpolicy_t *
npf_rule_getnat(const npf_rule_t *rl)
{
return rl->r_natp;
}
/*
* npf_rule_setnat: assign NAT policy to the rule and insert into the
* NAT policy list in the ruleset.
*/
void
npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
{
KASSERT(rl->r_natp == NULL);
rl->r_natp = np;
}
/*
* npf_rule_inspect: match the interface, direction and run the filter code.
* Returns true if rule matches and false otherwise.
*/
static inline bool
npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
const int di_mask, const u_int ifid)
{
/* Match the interface. */
if (rl->r_ifid && rl->r_ifid != ifid) {
return false;
}
/* Match the direction. */
if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
if ((rl->r_attr & di_mask) == 0)
return false;
}
/* Any code? */
if (!rl->r_code) {
KASSERT(rl->r_jcode == NULL);
return true;
}
KASSERT(rl->r_type == NPF_CODE_BPF);
return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
}
/*
* npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
* This is only for the dynamic rules. Subrules cannot have nested rules.
*/
static npf_rule_t *
npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args,
const int di_mask, const u_int ifid)
{
npf_rule_t *final_rl = NULL, *rl;
KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
continue;
}
if (rl->r_attr & NPF_RULE_FINAL) {
return rl;
}
final_rl = rl;
}
return final_rl;
}
/*
* npf_ruleset_inspect: inspect the packet against the given ruleset.
*
* Loop through the rules in the set and run the byte-code of each rule
* against the packet (nbuf chain). If sub-ruleset is found, inspect it.
*/
npf_rule_t *
npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
const int di, const int layer)
{
nbuf_t *nbuf = npc->npc_nbuf;
const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
const u_int nitems = rlset->rs_nitems;
const u_int ifid = nbuf->nb_ifid;
npf_rule_t *final_rl = NULL;
bpf_args_t bc_args;
u_int n = 0;
KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
/*
* Prepare the external memory store and the arguments for
* the BPF programs to be executed.
*/
uint32_t bc_words[NPF_BPF_NWORDS];
npf_bpf_prepare(npc, &bc_args, bc_words);
while (n < nitems) {
npf_rule_t *rl = rlset->rs_rules[n];
const u_int skip_to = rl->r_skip_to & SKIPTO_MASK;
const uint32_t attr = rl->r_attr;
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
KASSERT(n < skip_to);
/* Group is a barrier: return a matching if found any. */
if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
break;
}
/* Main inspection of the rule. */
if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
n = skip_to;
continue;
}
if (NPF_DYNAMIC_GROUP_P(attr)) {
/*
* If this is a dynamic rule, re-inspect the subrules.
* If it has any matching rule, then it is final.
*/
rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
if (rl != NULL) {
final_rl = rl;
break;
}
} else if ((attr & NPF_RULE_GROUP) == 0) {
/*
* Groups themselves are not matching.
*/
final_rl = rl;
}
/* Set the matching rule and check for "final". */
if (attr & NPF_RULE_FINAL) {
break;
}
n++;
}
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
return final_rl;
}
/*
* npf_rule_conclude: return decision and the flags for conclusion.
*
* => Returns ENETUNREACH if "block" and 0 if "pass".
*/
int
npf_rule_conclude(const npf_rule_t *rl, int *retfl)
{
/* If not passing - drop the packet. */
*retfl = rl->r_attr;
return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
}