NetBSD/sys/net/npf/npf_conn.c
rmind 1a89186798 NPF: set the connection flags atomically in the post-creation logic and
fix a tiny race condition window.  Might fix PR/49488.
2014-12-20 16:19:43 +00:00

1000 lines
27 KiB
C

/* $NetBSD: npf_conn.c,v 1.14 2014/12/20 16:19:43 rmind Exp $ */
/*-
* Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
* Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NPF connection tracking for stateful filtering and translation.
*
* Overview
*
* Connection direction is identified by the direction of its first
* packet. Packets can be incoming or outgoing with respect to an
* interface. To describe the packet in the context of connection
* direction we will use the terms "forwards stream" and "backwards
* stream". All connections have two keys and thus two entries:
*
* npf_conn_t::c_forw_entry for the forwards stream and
* npf_conn_t::c_back_entry for the backwards stream.
*
* The keys are formed from the 5-tuple (source/destination address,
* source/destination port and the protocol). Additional matching
* is performed for the interface (a common behaviour is equivalent
* to the 6-tuple lookup including the interface ID). Note that the
* key may be formed using translated values in a case of NAT.
*
* Connections can serve two purposes: for the implicit passing or
* to accommodate the dynamic NAT. Connections for the former purpose
* are created by the rules with "stateful" attribute and are used for
* stateful filtering. Such connections indicate that the packet of
* the backwards stream should be passed without inspection of the
* ruleset. The other purpose is to associate a dynamic NAT mechanism
* with a connection. Such connections are created by the NAT policies
* and they have a relationship with NAT translation structure via
* npf_conn_t::c_nat. A single connection can serve both purposes,
* which is a common case.
*
* Connection life-cycle
*
* Connections are established when a packet matches said rule or
* NAT policy. Both keys of the established connection are inserted
* into the connection database. A garbage collection thread
* periodically scans all connections and depending on connection
* properties (e.g. last activity time, protocol) removes connection
* entries and expires the actual connections.
*
* Each connection has a reference count. The reference is acquired
* on lookup and should be released by the caller. It guarantees that
* the connection will not be destroyed, although it may be expired.
*
* Synchronisation
*
* Connection database is accessed in a lock-less manner by the main
* routines: npf_conn_inspect() and npf_conn_establish(). Since they
* are always called from a software interrupt, the database is
* protected using passive serialisation. The main place which can
* destroy a connection is npf_conn_worker(). The database itself
* can be replaced and destroyed in npf_conn_reload().
*
* ALG support
*
* Application-level gateways (ALGs) can override generic connection
* inspection (npf_alg_conn() call in npf_conn_inspect() function) by
* performing their own lookup using different key. Recursive call
* to npf_conn_inspect() is not allowed. The ALGs ought to use the
* npf_conn_lookup() function for this purpose.
*
* Lock order
*
* npf_config_lock ->
* conn_lock ->
* npf_conn_t::c_lock
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.14 2014/12/20 16:19:43 rmind Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <sys/atomic.h>
#include <sys/condvar.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/mutex.h>
#include <net/pfil.h>
#include <sys/pool.h>
#include <sys/queue.h>
#include <sys/systm.h>
#define __NPF_CONN_PRIVATE
#include "npf_conn.h"
#include "npf_impl.h"
/*
* Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
*/
CTASSERT(PFIL_ALL == (0x001 | 0x002));
#define CONN_ACTIVE 0x004 /* visible on inspection */
#define CONN_PASS 0x008 /* perform implicit passing */
#define CONN_EXPIRE 0x010 /* explicitly expire */
#define CONN_REMOVED 0x020 /* "forw/back" entries removed */
/*
* Connection tracking state: disabled (off) or enabled (on).
*/
enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
static volatile int conn_tracking __cacheline_aligned;
/* Connection tracking database, connection cache and the lock. */
static npf_conndb_t * conn_db __read_mostly;
static pool_cache_t conn_cache __read_mostly;
static kmutex_t conn_lock __cacheline_aligned;
static void npf_conn_worker(void);
static void npf_conn_destroy(npf_conn_t *);
/*
* npf_conn_sys{init,fini}: initialise/destroy connection tracking.
*/
void
npf_conn_sysinit(void)
{
conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
conn_tracking = CONN_TRACKING_OFF;
conn_db = npf_conndb_create();
npf_worker_register(npf_conn_worker);
}
void
npf_conn_sysfini(void)
{
/* Note: the caller should have flushed the connections. */
KASSERT(conn_tracking == CONN_TRACKING_OFF);
npf_worker_unregister(npf_conn_worker);
npf_conndb_destroy(conn_db);
pool_cache_destroy(conn_cache);
mutex_destroy(&conn_lock);
}
/*
* npf_conn_load: perform the load by flushing the current connection
* database and replacing it with the new one or just destroying.
*
* => The caller must disable the connection tracking and ensure that
* there are no connection database lookups or references in-flight.
*/
void
npf_conn_load(npf_conndb_t *ndb, bool track)
{
npf_conndb_t *odb = NULL;
KASSERT(npf_config_locked_p());
/*
* The connection database is in the quiescent state.
* Prevent G/C thread from running and install a new database.
*/
mutex_enter(&conn_lock);
if (ndb) {
KASSERT(conn_tracking == CONN_TRACKING_OFF);
odb = conn_db;
conn_db = ndb;
membar_sync();
}
if (track) {
/* After this point lookups start flying in. */
conn_tracking = CONN_TRACKING_ON;
}
mutex_exit(&conn_lock);
if (odb) {
/*
* Flush all, no sync since the caller did it for us.
* Also, release the pool cache memory.
*/
npf_conn_gc(odb, true, false);
npf_conndb_destroy(odb);
pool_cache_invalidate(conn_cache);
}
}
/*
* npf_conn_tracking: enable/disable connection tracking.
*/
void
npf_conn_tracking(bool track)
{
KASSERT(npf_config_locked_p());
conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
}
static inline bool
npf_conn_trackable_p(const npf_cache_t *npc)
{
/*
* Check if connection tracking is on. Also, if layer 3 and 4 are
* not cached - protocol is not supported or packet is invalid.
*/
if (conn_tracking != CONN_TRACKING_ON) {
return false;
}
if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
return false;
}
return true;
}
/*
* npf_conn_conkey: construct a key for the connection lookup.
*
* => Returns the key length in bytes or zero on failure.
*/
unsigned
npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
{
const u_int alen = npc->npc_alen;
const struct tcphdr *th;
const struct udphdr *uh;
u_int keylen, isrc, idst;
uint16_t id[2];
switch (npc->npc_proto) {
case IPPROTO_TCP:
KASSERT(npf_iscached(npc, NPC_TCP));
th = npc->npc_l4.tcp;
id[NPF_SRC] = th->th_sport;
id[NPF_DST] = th->th_dport;
break;
case IPPROTO_UDP:
KASSERT(npf_iscached(npc, NPC_UDP));
uh = npc->npc_l4.udp;
id[NPF_SRC] = uh->uh_sport;
id[NPF_DST] = uh->uh_dport;
break;
case IPPROTO_ICMP:
if (npf_iscached(npc, NPC_ICMP_ID)) {
const struct icmp *ic = npc->npc_l4.icmp;
id[NPF_SRC] = ic->icmp_id;
id[NPF_DST] = ic->icmp_id;
break;
}
return 0;
case IPPROTO_ICMPV6:
if (npf_iscached(npc, NPC_ICMP_ID)) {
const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
id[NPF_SRC] = ic6->icmp6_id;
id[NPF_DST] = ic6->icmp6_id;
break;
}
return 0;
default:
/* Unsupported protocol. */
return 0;
}
if (__predict_true(forw)) {
isrc = NPF_SRC, idst = NPF_DST;
} else {
isrc = NPF_DST, idst = NPF_SRC;
}
/*
* Construct a key formed out of 32-bit integers. The key layout:
*
* Field: | proto | alen | src-id | dst-id | src-addr | dst-addr |
* +--------+--------+--------+--------+----------+----------+
* Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 |
*
* The source and destination are inverted if they key is for the
* backwards stream (forw == false). The address length depends
* on the 'alen' field; it is a length in bytes, either 4 or 16.
*/
key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
if (__predict_true(alen == sizeof(in_addr_t))) {
key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
keylen = 4 * sizeof(uint32_t);
} else {
const u_int nwords = alen >> 2;
memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
}
return keylen;
}
static __inline void
connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
{
const u_int alen = key->ck_key[0] & 0xffff;
uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
KASSERT(alen > 0);
memcpy(addr, naddr, alen);
}
static __inline void
connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
{
const uint32_t oid = key->ck_key[1];
const u_int shift = 16 * !di;
const uint32_t mask = 0xffff0000 >> shift;
key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
}
/*
* npf_conn_lookup: lookup if there is an established connection.
*
* => If found, we will hold a reference for the caller.
*/
npf_conn_t *
npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
{
const nbuf_t *nbuf = npc->npc_nbuf;
npf_conn_t *con;
npf_connkey_t key;
u_int flags, cifid;
bool ok, pforw;
/* Construct a key and lookup for a connection in the store. */
if (!npf_conn_conkey(npc, &key, true)) {
return NULL;
}
con = npf_conndb_lookup(conn_db, &key, forw);
if (con == NULL) {
return NULL;
}
KASSERT(npc->npc_proto == con->c_proto);
/* Check if connection is active and not expired. */
flags = con->c_flags;
ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
if (__predict_false(!ok)) {
atomic_dec_uint(&con->c_refcnt);
return NULL;
}
/*
* Match the interface and the direction of the connection entry
* and the packet.
*/
cifid = con->c_ifid;
if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
atomic_dec_uint(&con->c_refcnt);
return NULL;
}
pforw = (flags & PFIL_ALL) == di;
if (__predict_false(*forw != pforw)) {
atomic_dec_uint(&con->c_refcnt);
return NULL;
}
/* Update the last activity time. */
getnanouptime(&con->c_atime);
return con;
}
/*
* npf_conn_inspect: lookup a connection and inspecting the protocol data.
*
* => If found, we will hold a reference for the caller.
*/
npf_conn_t *
npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
{
nbuf_t *nbuf = npc->npc_nbuf;
npf_conn_t *con;
bool forw, ok;
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
if (!npf_conn_trackable_p(npc)) {
return NULL;
}
/* Query ALG which may lookup connection for us. */
if ((con = npf_alg_conn(npc, di)) != NULL) {
/* Note: reference is held. */
return con;
}
if (nbuf_head_mbuf(nbuf) == NULL) {
*error = ENOMEM;
return NULL;
}
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
/* Main lookup of the connection. */
if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
return NULL;
}
/* Inspect the protocol data and handle state changes. */
mutex_enter(&con->c_lock);
ok = npf_state_inspect(npc, &con->c_state, forw);
mutex_exit(&con->c_lock);
if (__predict_false(!ok)) {
/* Invalid: let the rules deal with it. */
npf_conn_release(con);
npf_stats_inc(NPF_STAT_INVALID_STATE);
con = NULL;
}
return con;
}
/*
* npf_conn_establish: create a new connection, insert into the global list.
*
* => Connection is created with the reference held for the caller.
* => Connection will be activated on the first reference release.
*/
npf_conn_t *
npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
{
const nbuf_t *nbuf = npc->npc_nbuf;
npf_conn_t *con;
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
if (!npf_conn_trackable_p(npc)) {
return NULL;
}
/* Allocate and initialise the new connection. */
con = pool_cache_get(conn_cache, PR_NOWAIT);
if (__predict_false(!con)) {
return NULL;
}
NPF_PRINTF(("NPF: create conn %p\n", con));
npf_stats_inc(NPF_STAT_CONN_CREATE);
/* Reference count and flags (indicate direction). */
mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
con->c_flags = (di & PFIL_ALL);
con->c_refcnt = 1;
con->c_rproc = NULL;
con->c_nat = NULL;
/* Initialize protocol state. */
if (!npf_state_init(npc, &con->c_state)) {
goto err;
}
KASSERT(npf_iscached(npc, NPC_IP46));
npf_connkey_t *fw = &con->c_forw_entry;
npf_connkey_t *bk = &con->c_back_entry;
/*
* Construct "forwards" and "backwards" keys. Also, set the
* interface ID for this connection (unless it is global).
*/
if (!npf_conn_conkey(npc, fw, true)) {
goto err;
}
if (!npf_conn_conkey(npc, bk, false)) {
goto err;
}
fw->ck_backptr = bk->ck_backptr = con;
con->c_ifid = per_if ? nbuf->nb_ifid : 0;
con->c_proto = npc->npc_proto;
/* Set last activity time for a new connection. */
getnanouptime(&con->c_atime);
/*
* Insert both keys (entries representing directions) of the
* connection. At this point, it becomes visible.
*/
if (!npf_conndb_insert(conn_db, fw, con)) {
goto err;
}
if (!npf_conndb_insert(conn_db, bk, con)) {
/* We have hit the duplicate. */
npf_conndb_remove(conn_db, fw);
npf_stats_inc(NPF_STAT_RACE_CONN);
goto err;
}
/* Finally, insert into the connection list. */
NPF_PRINTF(("NPF: establish conn %p\n", con));
npf_conndb_enqueue(conn_db, con);
return con;
err:
npf_conn_destroy(con);
return NULL;
}
static void
npf_conn_destroy(npf_conn_t *con)
{
if (con->c_nat) {
/* Release any NAT structures. */
npf_nat_destroy(con->c_nat);
}
if (con->c_rproc) {
/* Release the rule procedure. */
npf_rproc_release(con->c_rproc);
}
/* Destroy the state. */
npf_state_destroy(&con->c_state);
mutex_destroy(&con->c_lock);
/* Free the structure, increase the counter. */
pool_cache_put(conn_cache, con);
npf_stats_inc(NPF_STAT_CONN_DESTROY);
NPF_PRINTF(("NPF: conn %p destroyed\n", con));
}
/*
* npf_conn_setnat: associate NAT entry with the connection, update and
* re-insert connection entry using the translation values.
*/
int
npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
npf_nat_t *nt, u_int ntype)
{
static const u_int nat_type_dimap[] = {
[NPF_NATOUT] = NPF_DST,
[NPF_NATIN] = NPF_SRC,
};
npf_connkey_t key, *bk;
npf_conn_t *ret __diagused;
npf_addr_t *taddr;
in_port_t tport;
u_int tidx;
KASSERT(con->c_refcnt > 0);
npf_nat_gettrans(nt, &taddr, &tport);
KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
tidx = nat_type_dimap[ntype];
/* Construct a "backwards" key. */
if (!npf_conn_conkey(npc, &key, false)) {
return EINVAL;
}
/* Acquire the lock and check for the races. */
mutex_enter(&con->c_lock);
if (__predict_false(con->c_flags & CONN_EXPIRE)) {
/* The connection got expired. */
mutex_exit(&con->c_lock);
return EINVAL;
}
if (__predict_false(con->c_nat != NULL)) {
/* Race with a duplicate packet. */
mutex_exit(&con->c_lock);
npf_stats_inc(NPF_STAT_RACE_NAT);
return EISCONN;
}
/* Remove the "backwards" entry. */
ret = npf_conndb_remove(conn_db, &key);
KASSERT(ret == con);
/* Set the source/destination IDs to the translation values. */
bk = &con->c_back_entry;
connkey_set_addr(bk, taddr, tidx);
if (tport) {
connkey_set_id(bk, tport, tidx);
}
/* Finally, re-insert the "backwards" entry. */
if (!npf_conndb_insert(conn_db, bk, con)) {
/*
* Race: we have hit the duplicate, remove the "forwards"
* entry and expire our connection; it is no longer valid.
*/
(void)npf_conndb_remove(conn_db, &con->c_forw_entry);
atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
mutex_exit(&con->c_lock);
npf_stats_inc(NPF_STAT_RACE_NAT);
return EISCONN;
}
/* Associate the NAT entry and release the lock. */
con->c_nat = nt;
mutex_exit(&con->c_lock);
return 0;
}
/*
* npf_conn_expire: explicitly mark connection as expired.
*/
void
npf_conn_expire(npf_conn_t *con)
{
/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
atomic_or_uint(&con->c_flags, CONN_EXPIRE);
}
/*
* npf_conn_pass: return true if connection is "pass" one, otherwise false.
*/
bool
npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
{
KASSERT(con->c_refcnt > 0);
if (__predict_true(con->c_flags & CONN_PASS)) {
*rp = con->c_rproc;
return true;
}
return false;
}
/*
* npf_conn_setpass: mark connection as a "pass" one and associate the
* rule procedure with it.
*/
void
npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
{
KASSERT((con->c_flags & CONN_ACTIVE) == 0);
KASSERT(con->c_refcnt > 0);
KASSERT(con->c_rproc == NULL);
/*
* No need for atomic since the connection is not yet active.
* If rproc is set, the caller transfers its reference to us,
* which will be released on npf_conn_destroy().
*/
atomic_or_uint(&con->c_flags, CONN_PASS);
con->c_rproc = rp;
}
/*
* npf_conn_release: release a reference, which might allow G/C thread
* to destroy this connection.
*/
void
npf_conn_release(npf_conn_t *con)
{
if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
/* Activate: after this, connection is globally visible. */
atomic_or_uint(&con->c_flags, CONN_ACTIVE);
}
KASSERT(con->c_refcnt > 0);
atomic_dec_uint(&con->c_refcnt);
}
/*
* npf_conn_getnat: return associated NAT data entry and indicate
* whether it is a "forwards" or "backwards" stream.
*/
npf_nat_t *
npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
{
KASSERT(con->c_refcnt > 0);
*forw = (con->c_flags & PFIL_ALL) == di;
return con->c_nat;
}
/*
* npf_conn_expired: criterion to check if connection is expired.
*/
static inline bool
npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
{
const int etime = npf_state_etime(&con->c_state, con->c_proto);
struct timespec tsdiff;
if (__predict_false(con->c_flags & CONN_EXPIRE)) {
/* Explicitly marked to be expired. */
return true;
}
timespecsub(tsnow, &con->c_atime, &tsdiff);
return tsdiff.tv_sec > etime;
}
/*
* npf_conn_gc: garbage collect the expired connections.
*
* => Must run in a single-threaded manner.
* => If it is a flush request, then destroy all connections.
* => If 'sync' is true, then perform passive serialisation.
*/
void
npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
{
npf_conn_t *con, *prev, *gclist = NULL;
struct timespec tsnow;
getnanouptime(&tsnow);
/*
* Scan all connections and check them for expiration.
*/
prev = NULL;
con = npf_conndb_getlist(cd);
while (con) {
npf_conn_t *next = con->c_next;
/* Expired? Flushing all? */
if (!npf_conn_expired(con, &tsnow) && !flush) {
prev = con;
con = next;
continue;
}
/* Remove both entries of the connection. */
mutex_enter(&con->c_lock);
if ((con->c_flags & CONN_REMOVED) == 0) {
npf_conn_t *ret __diagused;
ret = npf_conndb_remove(cd, &con->c_forw_entry);
KASSERT(ret == con);
ret = npf_conndb_remove(cd, &con->c_back_entry);
KASSERT(ret == con);
}
/* Flag the removal and expiration. */
atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
mutex_exit(&con->c_lock);
/* Move to the G/C list. */
npf_conndb_dequeue(cd, con, prev);
con->c_next = gclist;
gclist = con;
/* Next.. */
con = next;
}
npf_conndb_settail(cd, prev);
/*
* Ensure it is safe to destroy the connections.
* Note: drop the conn_lock (see the lock order).
*/
if (sync) {
mutex_exit(&conn_lock);
if (gclist) {
npf_config_enter();
npf_config_sync();
npf_config_exit();
}
}
/*
* Garbage collect all expired connections.
* May need to wait for the references to drain.
*/
con = gclist;
while (con) {
npf_conn_t *next = con->c_next;
/*
* Destroy only if removed and no references.
* Otherwise, wait for a tiny moment.
*/
if (__predict_false(con->c_refcnt)) {
kpause("npfcongc", false, 1, NULL);
continue;
}
npf_conn_destroy(con);
con = next;
}
}
/*
* npf_conn_worker: G/C to run from a worker thread.
*/
static void
npf_conn_worker(void)
{
mutex_enter(&conn_lock);
/* Note: the conn_lock will be released (sync == true). */
npf_conn_gc(conn_db, false, true);
}
/*
* npf_conndb_export: construct a list of connections prepared for saving.
* Note: this is expected to be an expensive operation.
*/
int
npf_conndb_export(prop_array_t conlist)
{
npf_conn_t *con, *prev;
/*
* Note: acquire conn_lock to prevent from the database
* destruction and G/C thread.
*/
mutex_enter(&conn_lock);
if (conn_tracking != CONN_TRACKING_ON) {
mutex_exit(&conn_lock);
return 0;
}
prev = NULL;
con = npf_conndb_getlist(conn_db);
while (con) {
npf_conn_t *next = con->c_next;
prop_dictionary_t cdict;
if ((cdict = npf_conn_export(con)) != NULL) {
prop_array_add(conlist, cdict);
prop_object_release(cdict);
}
prev = con;
con = next;
}
npf_conndb_settail(conn_db, prev);
mutex_exit(&conn_lock);
return 0;
}
/*
* npf_conn_export: serialise a single connection.
*/
prop_dictionary_t
npf_conn_export(const npf_conn_t *con)
{
prop_dictionary_t cdict;
prop_data_t d;
if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
return NULL;
}
cdict = prop_dictionary_create();
prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
if (con->c_ifid) {
const char *ifname = npf_ifmap_getname(con->c_ifid);
prop_dictionary_set_cstring(cdict, "ifname", ifname);
}
d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
prop_dictionary_set_and_rel(cdict, "state", d);
const uint32_t *fkey = con->c_forw_entry.ck_key;
d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
prop_dictionary_set_and_rel(cdict, "forw-key", d);
const uint32_t *bkey = con->c_back_entry.ck_key;
d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
prop_dictionary_set_and_rel(cdict, "back-key", d);
if (con->c_nat) {
npf_nat_export(cdict, con->c_nat);
}
return cdict;
}
/*
* npf_conn_import: fully reconstruct a single connection from a
* directory and insert into the given database.
*/
int
npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
npf_ruleset_t *natlist)
{
npf_conn_t *con;
npf_connkey_t *fw, *bk;
prop_object_t obj;
const char *ifname;
const void *d;
/* Allocate a connection and initialise it (clear first). */
con = pool_cache_get(conn_cache, PR_WAITOK);
memset(con, 0, sizeof(npf_conn_t));
mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
npf_stats_inc(NPF_STAT_CONN_CREATE);
prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
getnanouptime(&con->c_atime);
if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
(con->c_ifid = npf_ifmap_register(ifname)) == 0) {
goto err;
}
obj = prop_dictionary_get(cdict, "state");
if ((d = prop_data_data_nocopy(obj)) == NULL ||
prop_data_size(obj) != sizeof(npf_state_t)) {
goto err;
}
memcpy(&con->c_state, d, sizeof(npf_state_t));
/* Reconstruct NAT association, if any. */
if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
(con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) {
goto err;
}
/*
* Fetch and copy the keys for each direction.
*/
obj = prop_dictionary_get(cdict, "forw-key");
if ((d = prop_data_data_nocopy(obj)) == NULL ||
prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
goto err;
}
fw = &con->c_forw_entry;
memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
obj = prop_dictionary_get(cdict, "back-key");
if ((d = prop_data_data_nocopy(obj)) == NULL ||
prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
goto err;
}
bk = &con->c_back_entry;
memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
fw->ck_backptr = bk->ck_backptr = con;
/* Insert the entries and the connection itself. */
if (!npf_conndb_insert(cd, fw, con)) {
goto err;
}
if (!npf_conndb_insert(cd, bk, con)) {
npf_conndb_remove(cd, fw);
goto err;
}
NPF_PRINTF(("NPF: imported conn %p\n", con));
npf_conndb_enqueue(cd, con);
return 0;
err:
npf_conn_destroy(con);
return EINVAL;
}
#if defined(DDB) || defined(_NPF_TESTING)
void
npf_conn_print(const npf_conn_t *con)
{
const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
const uint32_t *fkey = con->c_forw_entry.ck_key;
const uint32_t *bkey = con->c_back_entry.ck_key;
const u_int proto = con->c_proto;
struct timespec tsnow, tsdiff;
const void *src, *dst;
int etime;
getnanouptime(&tsnow);
timespecsub(&tsnow, &con->c_atime, &tsdiff);
etime = npf_state_etime(&con->c_state, proto);
printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
npf_state_dump(&con->c_state);
if (con->c_nat) {
npf_nat_dump(con->c_nat);
}
}
#endif