1a89186798
fix a tiny race condition window. Might fix PR/49488.
1000 lines
27 KiB
C
1000 lines
27 KiB
C
/* $NetBSD: npf_conn.c,v 1.14 2014/12/20 16:19:43 rmind Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
|
|
* Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This material is based upon work partially supported by The
|
|
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* NPF connection tracking for stateful filtering and translation.
|
|
*
|
|
* Overview
|
|
*
|
|
* Connection direction is identified by the direction of its first
|
|
* packet. Packets can be incoming or outgoing with respect to an
|
|
* interface. To describe the packet in the context of connection
|
|
* direction we will use the terms "forwards stream" and "backwards
|
|
* stream". All connections have two keys and thus two entries:
|
|
*
|
|
* npf_conn_t::c_forw_entry for the forwards stream and
|
|
* npf_conn_t::c_back_entry for the backwards stream.
|
|
*
|
|
* The keys are formed from the 5-tuple (source/destination address,
|
|
* source/destination port and the protocol). Additional matching
|
|
* is performed for the interface (a common behaviour is equivalent
|
|
* to the 6-tuple lookup including the interface ID). Note that the
|
|
* key may be formed using translated values in a case of NAT.
|
|
*
|
|
* Connections can serve two purposes: for the implicit passing or
|
|
* to accommodate the dynamic NAT. Connections for the former purpose
|
|
* are created by the rules with "stateful" attribute and are used for
|
|
* stateful filtering. Such connections indicate that the packet of
|
|
* the backwards stream should be passed without inspection of the
|
|
* ruleset. The other purpose is to associate a dynamic NAT mechanism
|
|
* with a connection. Such connections are created by the NAT policies
|
|
* and they have a relationship with NAT translation structure via
|
|
* npf_conn_t::c_nat. A single connection can serve both purposes,
|
|
* which is a common case.
|
|
*
|
|
* Connection life-cycle
|
|
*
|
|
* Connections are established when a packet matches said rule or
|
|
* NAT policy. Both keys of the established connection are inserted
|
|
* into the connection database. A garbage collection thread
|
|
* periodically scans all connections and depending on connection
|
|
* properties (e.g. last activity time, protocol) removes connection
|
|
* entries and expires the actual connections.
|
|
*
|
|
* Each connection has a reference count. The reference is acquired
|
|
* on lookup and should be released by the caller. It guarantees that
|
|
* the connection will not be destroyed, although it may be expired.
|
|
*
|
|
* Synchronisation
|
|
*
|
|
* Connection database is accessed in a lock-less manner by the main
|
|
* routines: npf_conn_inspect() and npf_conn_establish(). Since they
|
|
* are always called from a software interrupt, the database is
|
|
* protected using passive serialisation. The main place which can
|
|
* destroy a connection is npf_conn_worker(). The database itself
|
|
* can be replaced and destroyed in npf_conn_reload().
|
|
*
|
|
* ALG support
|
|
*
|
|
* Application-level gateways (ALGs) can override generic connection
|
|
* inspection (npf_alg_conn() call in npf_conn_inspect() function) by
|
|
* performing their own lookup using different key. Recursive call
|
|
* to npf_conn_inspect() is not allowed. The ALGs ought to use the
|
|
* npf_conn_lookup() function for this purpose.
|
|
*
|
|
* Lock order
|
|
*
|
|
* npf_config_lock ->
|
|
* conn_lock ->
|
|
* npf_conn_t::c_lock
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.14 2014/12/20 16:19:43 rmind Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/tcp.h>
|
|
|
|
#include <sys/atomic.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/mutex.h>
|
|
#include <net/pfil.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/systm.h>
|
|
|
|
#define __NPF_CONN_PRIVATE
|
|
#include "npf_conn.h"
|
|
#include "npf_impl.h"
|
|
|
|
/*
|
|
* Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
|
|
*/
|
|
CTASSERT(PFIL_ALL == (0x001 | 0x002));
|
|
#define CONN_ACTIVE 0x004 /* visible on inspection */
|
|
#define CONN_PASS 0x008 /* perform implicit passing */
|
|
#define CONN_EXPIRE 0x010 /* explicitly expire */
|
|
#define CONN_REMOVED 0x020 /* "forw/back" entries removed */
|
|
|
|
/*
|
|
* Connection tracking state: disabled (off) or enabled (on).
|
|
*/
|
|
enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
|
|
static volatile int conn_tracking __cacheline_aligned;
|
|
|
|
/* Connection tracking database, connection cache and the lock. */
|
|
static npf_conndb_t * conn_db __read_mostly;
|
|
static pool_cache_t conn_cache __read_mostly;
|
|
static kmutex_t conn_lock __cacheline_aligned;
|
|
|
|
static void npf_conn_worker(void);
|
|
static void npf_conn_destroy(npf_conn_t *);
|
|
|
|
/*
|
|
* npf_conn_sys{init,fini}: initialise/destroy connection tracking.
|
|
*/
|
|
|
|
void
|
|
npf_conn_sysinit(void)
|
|
{
|
|
conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
|
|
0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
|
|
mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
conn_tracking = CONN_TRACKING_OFF;
|
|
conn_db = npf_conndb_create();
|
|
|
|
npf_worker_register(npf_conn_worker);
|
|
}
|
|
|
|
void
|
|
npf_conn_sysfini(void)
|
|
{
|
|
/* Note: the caller should have flushed the connections. */
|
|
KASSERT(conn_tracking == CONN_TRACKING_OFF);
|
|
npf_worker_unregister(npf_conn_worker);
|
|
|
|
npf_conndb_destroy(conn_db);
|
|
pool_cache_destroy(conn_cache);
|
|
mutex_destroy(&conn_lock);
|
|
}
|
|
|
|
/*
|
|
* npf_conn_load: perform the load by flushing the current connection
|
|
* database and replacing it with the new one or just destroying.
|
|
*
|
|
* => The caller must disable the connection tracking and ensure that
|
|
* there are no connection database lookups or references in-flight.
|
|
*/
|
|
void
|
|
npf_conn_load(npf_conndb_t *ndb, bool track)
|
|
{
|
|
npf_conndb_t *odb = NULL;
|
|
|
|
KASSERT(npf_config_locked_p());
|
|
|
|
/*
|
|
* The connection database is in the quiescent state.
|
|
* Prevent G/C thread from running and install a new database.
|
|
*/
|
|
mutex_enter(&conn_lock);
|
|
if (ndb) {
|
|
KASSERT(conn_tracking == CONN_TRACKING_OFF);
|
|
odb = conn_db;
|
|
conn_db = ndb;
|
|
membar_sync();
|
|
}
|
|
if (track) {
|
|
/* After this point lookups start flying in. */
|
|
conn_tracking = CONN_TRACKING_ON;
|
|
}
|
|
mutex_exit(&conn_lock);
|
|
|
|
if (odb) {
|
|
/*
|
|
* Flush all, no sync since the caller did it for us.
|
|
* Also, release the pool cache memory.
|
|
*/
|
|
npf_conn_gc(odb, true, false);
|
|
npf_conndb_destroy(odb);
|
|
pool_cache_invalidate(conn_cache);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* npf_conn_tracking: enable/disable connection tracking.
|
|
*/
|
|
void
|
|
npf_conn_tracking(bool track)
|
|
{
|
|
KASSERT(npf_config_locked_p());
|
|
conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
|
|
}
|
|
|
|
static inline bool
|
|
npf_conn_trackable_p(const npf_cache_t *npc)
|
|
{
|
|
/*
|
|
* Check if connection tracking is on. Also, if layer 3 and 4 are
|
|
* not cached - protocol is not supported or packet is invalid.
|
|
*/
|
|
if (conn_tracking != CONN_TRACKING_ON) {
|
|
return false;
|
|
}
|
|
if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_conkey: construct a key for the connection lookup.
|
|
*
|
|
* => Returns the key length in bytes or zero on failure.
|
|
*/
|
|
unsigned
|
|
npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
|
|
{
|
|
const u_int alen = npc->npc_alen;
|
|
const struct tcphdr *th;
|
|
const struct udphdr *uh;
|
|
u_int keylen, isrc, idst;
|
|
uint16_t id[2];
|
|
|
|
switch (npc->npc_proto) {
|
|
case IPPROTO_TCP:
|
|
KASSERT(npf_iscached(npc, NPC_TCP));
|
|
th = npc->npc_l4.tcp;
|
|
id[NPF_SRC] = th->th_sport;
|
|
id[NPF_DST] = th->th_dport;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
KASSERT(npf_iscached(npc, NPC_UDP));
|
|
uh = npc->npc_l4.udp;
|
|
id[NPF_SRC] = uh->uh_sport;
|
|
id[NPF_DST] = uh->uh_dport;
|
|
break;
|
|
case IPPROTO_ICMP:
|
|
if (npf_iscached(npc, NPC_ICMP_ID)) {
|
|
const struct icmp *ic = npc->npc_l4.icmp;
|
|
id[NPF_SRC] = ic->icmp_id;
|
|
id[NPF_DST] = ic->icmp_id;
|
|
break;
|
|
}
|
|
return 0;
|
|
case IPPROTO_ICMPV6:
|
|
if (npf_iscached(npc, NPC_ICMP_ID)) {
|
|
const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
|
|
id[NPF_SRC] = ic6->icmp6_id;
|
|
id[NPF_DST] = ic6->icmp6_id;
|
|
break;
|
|
}
|
|
return 0;
|
|
default:
|
|
/* Unsupported protocol. */
|
|
return 0;
|
|
}
|
|
|
|
if (__predict_true(forw)) {
|
|
isrc = NPF_SRC, idst = NPF_DST;
|
|
} else {
|
|
isrc = NPF_DST, idst = NPF_SRC;
|
|
}
|
|
|
|
/*
|
|
* Construct a key formed out of 32-bit integers. The key layout:
|
|
*
|
|
* Field: | proto | alen | src-id | dst-id | src-addr | dst-addr |
|
|
* +--------+--------+--------+--------+----------+----------+
|
|
* Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 |
|
|
*
|
|
* The source and destination are inverted if they key is for the
|
|
* backwards stream (forw == false). The address length depends
|
|
* on the 'alen' field; it is a length in bytes, either 4 or 16.
|
|
*/
|
|
|
|
key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
|
|
key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
|
|
|
|
if (__predict_true(alen == sizeof(in_addr_t))) {
|
|
key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
|
|
key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
|
|
keylen = 4 * sizeof(uint32_t);
|
|
} else {
|
|
const u_int nwords = alen >> 2;
|
|
memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
|
|
memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
|
|
keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
|
|
}
|
|
return keylen;
|
|
}
|
|
|
|
static __inline void
|
|
connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
|
|
{
|
|
const u_int alen = key->ck_key[0] & 0xffff;
|
|
uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
|
|
|
|
KASSERT(alen > 0);
|
|
memcpy(addr, naddr, alen);
|
|
}
|
|
|
|
static __inline void
|
|
connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
|
|
{
|
|
const uint32_t oid = key->ck_key[1];
|
|
const u_int shift = 16 * !di;
|
|
const uint32_t mask = 0xffff0000 >> shift;
|
|
|
|
key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
|
|
}
|
|
|
|
/*
|
|
* npf_conn_lookup: lookup if there is an established connection.
|
|
*
|
|
* => If found, we will hold a reference for the caller.
|
|
*/
|
|
npf_conn_t *
|
|
npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
|
|
{
|
|
const nbuf_t *nbuf = npc->npc_nbuf;
|
|
npf_conn_t *con;
|
|
npf_connkey_t key;
|
|
u_int flags, cifid;
|
|
bool ok, pforw;
|
|
|
|
/* Construct a key and lookup for a connection in the store. */
|
|
if (!npf_conn_conkey(npc, &key, true)) {
|
|
return NULL;
|
|
}
|
|
con = npf_conndb_lookup(conn_db, &key, forw);
|
|
if (con == NULL) {
|
|
return NULL;
|
|
}
|
|
KASSERT(npc->npc_proto == con->c_proto);
|
|
|
|
/* Check if connection is active and not expired. */
|
|
flags = con->c_flags;
|
|
ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
|
|
|
|
if (__predict_false(!ok)) {
|
|
atomic_dec_uint(&con->c_refcnt);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Match the interface and the direction of the connection entry
|
|
* and the packet.
|
|
*/
|
|
cifid = con->c_ifid;
|
|
if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
|
|
atomic_dec_uint(&con->c_refcnt);
|
|
return NULL;
|
|
}
|
|
pforw = (flags & PFIL_ALL) == di;
|
|
if (__predict_false(*forw != pforw)) {
|
|
atomic_dec_uint(&con->c_refcnt);
|
|
return NULL;
|
|
}
|
|
|
|
/* Update the last activity time. */
|
|
getnanouptime(&con->c_atime);
|
|
return con;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_inspect: lookup a connection and inspecting the protocol data.
|
|
*
|
|
* => If found, we will hold a reference for the caller.
|
|
*/
|
|
npf_conn_t *
|
|
npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
|
|
{
|
|
nbuf_t *nbuf = npc->npc_nbuf;
|
|
npf_conn_t *con;
|
|
bool forw, ok;
|
|
|
|
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
|
|
if (!npf_conn_trackable_p(npc)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Query ALG which may lookup connection for us. */
|
|
if ((con = npf_alg_conn(npc, di)) != NULL) {
|
|
/* Note: reference is held. */
|
|
return con;
|
|
}
|
|
if (nbuf_head_mbuf(nbuf) == NULL) {
|
|
*error = ENOMEM;
|
|
return NULL;
|
|
}
|
|
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
|
|
|
|
/* Main lookup of the connection. */
|
|
if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Inspect the protocol data and handle state changes. */
|
|
mutex_enter(&con->c_lock);
|
|
ok = npf_state_inspect(npc, &con->c_state, forw);
|
|
mutex_exit(&con->c_lock);
|
|
|
|
if (__predict_false(!ok)) {
|
|
/* Invalid: let the rules deal with it. */
|
|
npf_conn_release(con);
|
|
npf_stats_inc(NPF_STAT_INVALID_STATE);
|
|
con = NULL;
|
|
}
|
|
return con;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_establish: create a new connection, insert into the global list.
|
|
*
|
|
* => Connection is created with the reference held for the caller.
|
|
* => Connection will be activated on the first reference release.
|
|
*/
|
|
npf_conn_t *
|
|
npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
|
|
{
|
|
const nbuf_t *nbuf = npc->npc_nbuf;
|
|
npf_conn_t *con;
|
|
|
|
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
|
|
|
|
if (!npf_conn_trackable_p(npc)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate and initialise the new connection. */
|
|
con = pool_cache_get(conn_cache, PR_NOWAIT);
|
|
if (__predict_false(!con)) {
|
|
return NULL;
|
|
}
|
|
NPF_PRINTF(("NPF: create conn %p\n", con));
|
|
npf_stats_inc(NPF_STAT_CONN_CREATE);
|
|
|
|
/* Reference count and flags (indicate direction). */
|
|
mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
|
|
con->c_flags = (di & PFIL_ALL);
|
|
con->c_refcnt = 1;
|
|
con->c_rproc = NULL;
|
|
con->c_nat = NULL;
|
|
|
|
/* Initialize protocol state. */
|
|
if (!npf_state_init(npc, &con->c_state)) {
|
|
goto err;
|
|
}
|
|
|
|
KASSERT(npf_iscached(npc, NPC_IP46));
|
|
npf_connkey_t *fw = &con->c_forw_entry;
|
|
npf_connkey_t *bk = &con->c_back_entry;
|
|
|
|
/*
|
|
* Construct "forwards" and "backwards" keys. Also, set the
|
|
* interface ID for this connection (unless it is global).
|
|
*/
|
|
if (!npf_conn_conkey(npc, fw, true)) {
|
|
goto err;
|
|
}
|
|
if (!npf_conn_conkey(npc, bk, false)) {
|
|
goto err;
|
|
}
|
|
fw->ck_backptr = bk->ck_backptr = con;
|
|
con->c_ifid = per_if ? nbuf->nb_ifid : 0;
|
|
con->c_proto = npc->npc_proto;
|
|
|
|
/* Set last activity time for a new connection. */
|
|
getnanouptime(&con->c_atime);
|
|
|
|
/*
|
|
* Insert both keys (entries representing directions) of the
|
|
* connection. At this point, it becomes visible.
|
|
*/
|
|
if (!npf_conndb_insert(conn_db, fw, con)) {
|
|
goto err;
|
|
}
|
|
if (!npf_conndb_insert(conn_db, bk, con)) {
|
|
/* We have hit the duplicate. */
|
|
npf_conndb_remove(conn_db, fw);
|
|
npf_stats_inc(NPF_STAT_RACE_CONN);
|
|
goto err;
|
|
}
|
|
|
|
/* Finally, insert into the connection list. */
|
|
NPF_PRINTF(("NPF: establish conn %p\n", con));
|
|
npf_conndb_enqueue(conn_db, con);
|
|
return con;
|
|
err:
|
|
npf_conn_destroy(con);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
npf_conn_destroy(npf_conn_t *con)
|
|
{
|
|
if (con->c_nat) {
|
|
/* Release any NAT structures. */
|
|
npf_nat_destroy(con->c_nat);
|
|
}
|
|
if (con->c_rproc) {
|
|
/* Release the rule procedure. */
|
|
npf_rproc_release(con->c_rproc);
|
|
}
|
|
|
|
/* Destroy the state. */
|
|
npf_state_destroy(&con->c_state);
|
|
mutex_destroy(&con->c_lock);
|
|
|
|
/* Free the structure, increase the counter. */
|
|
pool_cache_put(conn_cache, con);
|
|
npf_stats_inc(NPF_STAT_CONN_DESTROY);
|
|
NPF_PRINTF(("NPF: conn %p destroyed\n", con));
|
|
}
|
|
|
|
/*
|
|
* npf_conn_setnat: associate NAT entry with the connection, update and
|
|
* re-insert connection entry using the translation values.
|
|
*/
|
|
int
|
|
npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
|
|
npf_nat_t *nt, u_int ntype)
|
|
{
|
|
static const u_int nat_type_dimap[] = {
|
|
[NPF_NATOUT] = NPF_DST,
|
|
[NPF_NATIN] = NPF_SRC,
|
|
};
|
|
npf_connkey_t key, *bk;
|
|
npf_conn_t *ret __diagused;
|
|
npf_addr_t *taddr;
|
|
in_port_t tport;
|
|
u_int tidx;
|
|
|
|
KASSERT(con->c_refcnt > 0);
|
|
|
|
npf_nat_gettrans(nt, &taddr, &tport);
|
|
KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
|
|
tidx = nat_type_dimap[ntype];
|
|
|
|
/* Construct a "backwards" key. */
|
|
if (!npf_conn_conkey(npc, &key, false)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Acquire the lock and check for the races. */
|
|
mutex_enter(&con->c_lock);
|
|
if (__predict_false(con->c_flags & CONN_EXPIRE)) {
|
|
/* The connection got expired. */
|
|
mutex_exit(&con->c_lock);
|
|
return EINVAL;
|
|
}
|
|
if (__predict_false(con->c_nat != NULL)) {
|
|
/* Race with a duplicate packet. */
|
|
mutex_exit(&con->c_lock);
|
|
npf_stats_inc(NPF_STAT_RACE_NAT);
|
|
return EISCONN;
|
|
}
|
|
|
|
/* Remove the "backwards" entry. */
|
|
ret = npf_conndb_remove(conn_db, &key);
|
|
KASSERT(ret == con);
|
|
|
|
/* Set the source/destination IDs to the translation values. */
|
|
bk = &con->c_back_entry;
|
|
connkey_set_addr(bk, taddr, tidx);
|
|
if (tport) {
|
|
connkey_set_id(bk, tport, tidx);
|
|
}
|
|
|
|
/* Finally, re-insert the "backwards" entry. */
|
|
if (!npf_conndb_insert(conn_db, bk, con)) {
|
|
/*
|
|
* Race: we have hit the duplicate, remove the "forwards"
|
|
* entry and expire our connection; it is no longer valid.
|
|
*/
|
|
(void)npf_conndb_remove(conn_db, &con->c_forw_entry);
|
|
atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
|
|
mutex_exit(&con->c_lock);
|
|
|
|
npf_stats_inc(NPF_STAT_RACE_NAT);
|
|
return EISCONN;
|
|
}
|
|
|
|
/* Associate the NAT entry and release the lock. */
|
|
con->c_nat = nt;
|
|
mutex_exit(&con->c_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_expire: explicitly mark connection as expired.
|
|
*/
|
|
void
|
|
npf_conn_expire(npf_conn_t *con)
|
|
{
|
|
/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
|
|
atomic_or_uint(&con->c_flags, CONN_EXPIRE);
|
|
}
|
|
|
|
/*
|
|
* npf_conn_pass: return true if connection is "pass" one, otherwise false.
|
|
*/
|
|
bool
|
|
npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
|
|
{
|
|
KASSERT(con->c_refcnt > 0);
|
|
if (__predict_true(con->c_flags & CONN_PASS)) {
|
|
*rp = con->c_rproc;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_setpass: mark connection as a "pass" one and associate the
|
|
* rule procedure with it.
|
|
*/
|
|
void
|
|
npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
|
|
{
|
|
KASSERT((con->c_flags & CONN_ACTIVE) == 0);
|
|
KASSERT(con->c_refcnt > 0);
|
|
KASSERT(con->c_rproc == NULL);
|
|
|
|
/*
|
|
* No need for atomic since the connection is not yet active.
|
|
* If rproc is set, the caller transfers its reference to us,
|
|
* which will be released on npf_conn_destroy().
|
|
*/
|
|
atomic_or_uint(&con->c_flags, CONN_PASS);
|
|
con->c_rproc = rp;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_release: release a reference, which might allow G/C thread
|
|
* to destroy this connection.
|
|
*/
|
|
void
|
|
npf_conn_release(npf_conn_t *con)
|
|
{
|
|
if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
|
|
/* Activate: after this, connection is globally visible. */
|
|
atomic_or_uint(&con->c_flags, CONN_ACTIVE);
|
|
}
|
|
KASSERT(con->c_refcnt > 0);
|
|
atomic_dec_uint(&con->c_refcnt);
|
|
}
|
|
|
|
/*
|
|
* npf_conn_getnat: return associated NAT data entry and indicate
|
|
* whether it is a "forwards" or "backwards" stream.
|
|
*/
|
|
npf_nat_t *
|
|
npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
|
|
{
|
|
KASSERT(con->c_refcnt > 0);
|
|
*forw = (con->c_flags & PFIL_ALL) == di;
|
|
return con->c_nat;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_expired: criterion to check if connection is expired.
|
|
*/
|
|
static inline bool
|
|
npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
|
|
{
|
|
const int etime = npf_state_etime(&con->c_state, con->c_proto);
|
|
struct timespec tsdiff;
|
|
|
|
if (__predict_false(con->c_flags & CONN_EXPIRE)) {
|
|
/* Explicitly marked to be expired. */
|
|
return true;
|
|
}
|
|
timespecsub(tsnow, &con->c_atime, &tsdiff);
|
|
return tsdiff.tv_sec > etime;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_gc: garbage collect the expired connections.
|
|
*
|
|
* => Must run in a single-threaded manner.
|
|
* => If it is a flush request, then destroy all connections.
|
|
* => If 'sync' is true, then perform passive serialisation.
|
|
*/
|
|
void
|
|
npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
|
|
{
|
|
npf_conn_t *con, *prev, *gclist = NULL;
|
|
struct timespec tsnow;
|
|
|
|
getnanouptime(&tsnow);
|
|
|
|
/*
|
|
* Scan all connections and check them for expiration.
|
|
*/
|
|
prev = NULL;
|
|
con = npf_conndb_getlist(cd);
|
|
while (con) {
|
|
npf_conn_t *next = con->c_next;
|
|
|
|
/* Expired? Flushing all? */
|
|
if (!npf_conn_expired(con, &tsnow) && !flush) {
|
|
prev = con;
|
|
con = next;
|
|
continue;
|
|
}
|
|
|
|
/* Remove both entries of the connection. */
|
|
mutex_enter(&con->c_lock);
|
|
if ((con->c_flags & CONN_REMOVED) == 0) {
|
|
npf_conn_t *ret __diagused;
|
|
|
|
ret = npf_conndb_remove(cd, &con->c_forw_entry);
|
|
KASSERT(ret == con);
|
|
ret = npf_conndb_remove(cd, &con->c_back_entry);
|
|
KASSERT(ret == con);
|
|
}
|
|
|
|
/* Flag the removal and expiration. */
|
|
atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
|
|
mutex_exit(&con->c_lock);
|
|
|
|
/* Move to the G/C list. */
|
|
npf_conndb_dequeue(cd, con, prev);
|
|
con->c_next = gclist;
|
|
gclist = con;
|
|
|
|
/* Next.. */
|
|
con = next;
|
|
}
|
|
npf_conndb_settail(cd, prev);
|
|
|
|
/*
|
|
* Ensure it is safe to destroy the connections.
|
|
* Note: drop the conn_lock (see the lock order).
|
|
*/
|
|
if (sync) {
|
|
mutex_exit(&conn_lock);
|
|
if (gclist) {
|
|
npf_config_enter();
|
|
npf_config_sync();
|
|
npf_config_exit();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Garbage collect all expired connections.
|
|
* May need to wait for the references to drain.
|
|
*/
|
|
con = gclist;
|
|
while (con) {
|
|
npf_conn_t *next = con->c_next;
|
|
|
|
/*
|
|
* Destroy only if removed and no references.
|
|
* Otherwise, wait for a tiny moment.
|
|
*/
|
|
if (__predict_false(con->c_refcnt)) {
|
|
kpause("npfcongc", false, 1, NULL);
|
|
continue;
|
|
}
|
|
npf_conn_destroy(con);
|
|
con = next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* npf_conn_worker: G/C to run from a worker thread.
|
|
*/
|
|
static void
|
|
npf_conn_worker(void)
|
|
{
|
|
mutex_enter(&conn_lock);
|
|
/* Note: the conn_lock will be released (sync == true). */
|
|
npf_conn_gc(conn_db, false, true);
|
|
}
|
|
|
|
/*
|
|
* npf_conndb_export: construct a list of connections prepared for saving.
|
|
* Note: this is expected to be an expensive operation.
|
|
*/
|
|
int
|
|
npf_conndb_export(prop_array_t conlist)
|
|
{
|
|
npf_conn_t *con, *prev;
|
|
|
|
/*
|
|
* Note: acquire conn_lock to prevent from the database
|
|
* destruction and G/C thread.
|
|
*/
|
|
mutex_enter(&conn_lock);
|
|
if (conn_tracking != CONN_TRACKING_ON) {
|
|
mutex_exit(&conn_lock);
|
|
return 0;
|
|
}
|
|
prev = NULL;
|
|
con = npf_conndb_getlist(conn_db);
|
|
while (con) {
|
|
npf_conn_t *next = con->c_next;
|
|
prop_dictionary_t cdict;
|
|
|
|
if ((cdict = npf_conn_export(con)) != NULL) {
|
|
prop_array_add(conlist, cdict);
|
|
prop_object_release(cdict);
|
|
}
|
|
prev = con;
|
|
con = next;
|
|
}
|
|
npf_conndb_settail(conn_db, prev);
|
|
mutex_exit(&conn_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_export: serialise a single connection.
|
|
*/
|
|
prop_dictionary_t
|
|
npf_conn_export(const npf_conn_t *con)
|
|
{
|
|
prop_dictionary_t cdict;
|
|
prop_data_t d;
|
|
|
|
if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
|
|
return NULL;
|
|
}
|
|
cdict = prop_dictionary_create();
|
|
prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
|
|
prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
|
|
if (con->c_ifid) {
|
|
const char *ifname = npf_ifmap_getname(con->c_ifid);
|
|
prop_dictionary_set_cstring(cdict, "ifname", ifname);
|
|
}
|
|
|
|
d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
|
|
prop_dictionary_set_and_rel(cdict, "state", d);
|
|
|
|
const uint32_t *fkey = con->c_forw_entry.ck_key;
|
|
d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
|
|
prop_dictionary_set_and_rel(cdict, "forw-key", d);
|
|
|
|
const uint32_t *bkey = con->c_back_entry.ck_key;
|
|
d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
|
|
prop_dictionary_set_and_rel(cdict, "back-key", d);
|
|
|
|
if (con->c_nat) {
|
|
npf_nat_export(cdict, con->c_nat);
|
|
}
|
|
return cdict;
|
|
}
|
|
|
|
/*
|
|
* npf_conn_import: fully reconstruct a single connection from a
|
|
* directory and insert into the given database.
|
|
*/
|
|
int
|
|
npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
|
|
npf_ruleset_t *natlist)
|
|
{
|
|
npf_conn_t *con;
|
|
npf_connkey_t *fw, *bk;
|
|
prop_object_t obj;
|
|
const char *ifname;
|
|
const void *d;
|
|
|
|
/* Allocate a connection and initialise it (clear first). */
|
|
con = pool_cache_get(conn_cache, PR_WAITOK);
|
|
memset(con, 0, sizeof(npf_conn_t));
|
|
mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
|
|
npf_stats_inc(NPF_STAT_CONN_CREATE);
|
|
|
|
prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
|
|
prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
|
|
con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
|
|
getnanouptime(&con->c_atime);
|
|
|
|
if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
|
|
(con->c_ifid = npf_ifmap_register(ifname)) == 0) {
|
|
goto err;
|
|
}
|
|
|
|
obj = prop_dictionary_get(cdict, "state");
|
|
if ((d = prop_data_data_nocopy(obj)) == NULL ||
|
|
prop_data_size(obj) != sizeof(npf_state_t)) {
|
|
goto err;
|
|
}
|
|
memcpy(&con->c_state, d, sizeof(npf_state_t));
|
|
|
|
/* Reconstruct NAT association, if any. */
|
|
if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
|
|
(con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Fetch and copy the keys for each direction.
|
|
*/
|
|
obj = prop_dictionary_get(cdict, "forw-key");
|
|
if ((d = prop_data_data_nocopy(obj)) == NULL ||
|
|
prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
|
|
goto err;
|
|
}
|
|
fw = &con->c_forw_entry;
|
|
memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
|
|
|
|
obj = prop_dictionary_get(cdict, "back-key");
|
|
if ((d = prop_data_data_nocopy(obj)) == NULL ||
|
|
prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
|
|
goto err;
|
|
}
|
|
bk = &con->c_back_entry;
|
|
memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
|
|
|
|
fw->ck_backptr = bk->ck_backptr = con;
|
|
|
|
/* Insert the entries and the connection itself. */
|
|
if (!npf_conndb_insert(cd, fw, con)) {
|
|
goto err;
|
|
}
|
|
if (!npf_conndb_insert(cd, bk, con)) {
|
|
npf_conndb_remove(cd, fw);
|
|
goto err;
|
|
}
|
|
|
|
NPF_PRINTF(("NPF: imported conn %p\n", con));
|
|
npf_conndb_enqueue(cd, con);
|
|
return 0;
|
|
err:
|
|
npf_conn_destroy(con);
|
|
return EINVAL;
|
|
}
|
|
|
|
#if defined(DDB) || defined(_NPF_TESTING)
|
|
|
|
void
|
|
npf_conn_print(const npf_conn_t *con)
|
|
{
|
|
const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
|
|
const uint32_t *fkey = con->c_forw_entry.ck_key;
|
|
const uint32_t *bkey = con->c_back_entry.ck_key;
|
|
const u_int proto = con->c_proto;
|
|
struct timespec tsnow, tsdiff;
|
|
const void *src, *dst;
|
|
int etime;
|
|
|
|
getnanouptime(&tsnow);
|
|
timespecsub(&tsnow, &con->c_atime, &tsdiff);
|
|
etime = npf_state_etime(&con->c_state, proto);
|
|
|
|
printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
|
|
con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
|
|
|
|
src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
|
|
printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
|
|
printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
|
|
|
|
src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
|
|
printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
|
|
printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
|
|
|
|
npf_state_dump(&con->c_state);
|
|
if (con->c_nat) {
|
|
npf_nat_dump(con->c_nat);
|
|
}
|
|
}
|
|
|
|
#endif
|