NetBSD/gnu/dist/gdb6/gdb/hppa-tdep.h

253 lines
9.3 KiB
C

/* Target-dependent code for the HP PA-RISC architecture.
Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#ifndef HPPA_TDEP_H
#define HPPA_TDEP_H
struct trad_frame_saved_reg;
struct objfile;
struct so_list;
/* Register numbers of various important registers.
Note that some of these values are "real" register numbers,
and correspond to the general registers of the machine,
and some are "phony" register numbers which are too large
to be actual register numbers as far as the user is concerned
but do serve to get the desired values when passed to read_register. */
enum hppa_regnum
{
HPPA_R0_REGNUM = 0, /* Doesn't actually exist, used as base for
other r registers. */
HPPA_R1_REGNUM = 1,
HPPA_FLAGS_REGNUM = 0, /* Various status flags */
HPPA_RP_REGNUM = 2, /* return pointer */
HPPA_FP_REGNUM = 3, /* The ABI's frame pointer, when used */
HPPA_DP_REGNUM = 27,
HPPA_RET0_REGNUM = 28,
HPPA_RET1_REGNUM = 29,
HPPA_SP_REGNUM = 30, /* Stack pointer. */
HPPA_R31_REGNUM = 31,
HPPA_SAR_REGNUM = 32, /* Shift Amount Register */
HPPA_IPSW_REGNUM = 41, /* Interrupt Processor Status Word */
HPPA_PCOQ_HEAD_REGNUM = 33, /* instruction offset queue head */
HPPA_PCSQ_HEAD_REGNUM = 34, /* instruction space queue head */
HPPA_PCOQ_TAIL_REGNUM = 35, /* instruction offset queue tail */
HPPA_PCSQ_TAIL_REGNUM = 36, /* instruction space queue tail */
HPPA_EIEM_REGNUM = 37, /* External Interrupt Enable Mask */
HPPA_IIR_REGNUM = 38, /* Interrupt Instruction Register */
HPPA_ISR_REGNUM = 39, /* Interrupt Space Register */
HPPA_IOR_REGNUM = 40, /* Interrupt Offset Register */
HPPA_SR4_REGNUM = 43, /* space register 4 */
HPPA_RCR_REGNUM = 51, /* Recover Counter (also known as cr0) */
HPPA_PID0_REGNUM = 52, /* Protection ID */
HPPA_PID1_REGNUM = 53, /* Protection ID */
HPPA_PID2_REGNUM = 55, /* Protection ID */
HPPA_PID3_REGNUM = 56, /* Protection ID */
HPPA_CCR_REGNUM = 54, /* Coprocessor Configuration Register */
HPPA_TR0_REGNUM = 57, /* Temporary Registers (cr24 -> cr31) */
HPPA_CR27_REGNUM = 60, /* Base register for thread-local storage, cr27 */
HPPA_FP0_REGNUM = 64, /* First floating-point. */
HPPA_FP4_REGNUM = 72,
HPPA64_FP4_REGNUM = 68,
HPPA_ARG0_REGNUM = 26, /* The first argument of a callee. */
HPPA_ARG1_REGNUM = 25, /* The second argument of a callee. */
HPPA_ARG2_REGNUM = 24, /* The third argument of a callee. */
HPPA_ARG3_REGNUM = 23 /* The fourth argument of a callee. */
};
/* Instruction size. */
#define HPPA_INSN_SIZE 4
/* Target-dependent structure in gdbarch. */
struct gdbarch_tdep
{
/* The number of bytes in an address. For now, this field is designed
to allow us to differentiate hppa32 from hppa64 targets. */
int bytes_per_address;
/* Is this an ELF target? This can be 64-bit HP-UX, or a 32/64-bit GNU/Linux
system. */
int is_elf;
/* Given a function address, try to find the global pointer for the
corresponding shared object. */
CORE_ADDR (*find_global_pointer) (struct value *);
/* For shared libraries, each call goes through a small piece of
trampoline code in the ".plt", or equivalent, section.
IN_SOLIB_CALL_TRAMPOLINE evaluates to nonzero if we are currently
stopped in one of these. */
int (*in_solib_call_trampoline) (CORE_ADDR pc, char *name);
/* For targets that support multiple spaces, we may have additional stubs
in the return path. These stubs are internal to the ABI, and users are
not interested in them. If we detect that we are returning to a stub,
adjust the pc to the real caller. This improves the behavior of commands
that traverse frames such as "up" and "finish". */
void (*unwind_adjust_stub) (struct frame_info *next_frame, CORE_ADDR base,
struct trad_frame_saved_reg *saved_regs);
/* These are solib-dependent methods. They are really HPUX only, but
we don't have a HPUX-specific tdep vector at the moment. */
CORE_ADDR (*solib_thread_start_addr) (struct so_list *so);
CORE_ADDR (*solib_get_got_by_pc) (CORE_ADDR addr);
CORE_ADDR (*solib_get_solib_by_pc) (CORE_ADDR addr);
CORE_ADDR (*solib_get_text_base) (struct objfile *objfile);
};
/*
* Unwind table and descriptor.
*/
struct unwind_table_entry
{
CORE_ADDR region_start;
CORE_ADDR region_end;
unsigned int Cannot_unwind:1; /* 0 */
unsigned int Millicode:1; /* 1 */
unsigned int Millicode_save_sr0:1; /* 2 */
unsigned int Region_description:2; /* 3..4 */
unsigned int reserved1:1; /* 5 */
unsigned int Entry_SR:1; /* 6 */
unsigned int Entry_FR:4; /* number saved *//* 7..10 */
unsigned int Entry_GR:5; /* number saved *//* 11..15 */
unsigned int Args_stored:1; /* 16 */
unsigned int Variable_Frame:1; /* 17 */
unsigned int Separate_Package_Body:1; /* 18 */
unsigned int Frame_Extension_Millicode:1; /* 19 */
unsigned int Stack_Overflow_Check:1; /* 20 */
unsigned int Two_Instruction_SP_Increment:1; /* 21 */
unsigned int Ada_Region:1; /* 22 */
unsigned int cxx_info:1; /* 23 */
unsigned int cxx_try_catch:1; /* 24 */
unsigned int sched_entry_seq:1; /* 25 */
unsigned int reserved2:1; /* 26 */
unsigned int Save_SP:1; /* 27 */
unsigned int Save_RP:1; /* 28 */
unsigned int Save_MRP_in_frame:1; /* 29 */
unsigned int extn_ptr_defined:1; /* 30 */
unsigned int Cleanup_defined:1; /* 31 */
unsigned int MPE_XL_interrupt_marker:1; /* 0 */
unsigned int HP_UX_interrupt_marker:1; /* 1 */
unsigned int Large_frame:1; /* 2 */
unsigned int Pseudo_SP_Set:1; /* 3 */
unsigned int reserved4:1; /* 4 */
unsigned int Total_frame_size:27; /* 5..31 */
/* This is *NOT* part of an actual unwind_descriptor in an object
file. It is *ONLY* part of the "internalized" descriptors that
we create from those in a file.
*/
struct
{
unsigned int stub_type:4; /* 0..3 */
unsigned int padding:28; /* 4..31 */
}
stub_unwind;
};
/* HP linkers also generate unwinds for various linker-generated stubs.
GDB reads in the stubs from the $UNWIND_END$ subspace, then
"converts" them into normal unwind entries using some of the reserved
fields to store the stub type. */
/* The gaps represent linker stubs used in MPE and space for future
expansion. */
enum unwind_stub_types
{
LONG_BRANCH = 1,
PARAMETER_RELOCATION = 2,
EXPORT = 10,
IMPORT = 11,
IMPORT_SHLIB = 12,
};
struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
/* We use the objfile->obj_private pointer for two things:
* 1. An unwind table;
*
* 2. A pointer to any associated shared library object.
*
* #defines are used to help refer to these objects.
*/
/* Info about the unwind table associated with an object file.
* This is hung off of the "objfile->obj_private" pointer, and
* is allocated in the objfile's psymbol obstack. This allows
* us to have unique unwind info for each executable and shared
* library that we are debugging.
*/
struct hppa_unwind_info
{
struct unwind_table_entry *table; /* Pointer to unwind info */
struct unwind_table_entry *cache; /* Pointer to last entry we found */
int last; /* Index of last entry */
};
struct hppa_objfile_private
{
struct hppa_unwind_info *unwind_info; /* a pointer */
struct so_list *so_info; /* a pointer */
CORE_ADDR dp;
int dummy_call_sequence_reg;
CORE_ADDR dummy_call_sequence_addr;
};
extern const struct objfile_data *hppa_objfile_priv_data;
int hppa_get_field (unsigned word, int from, int to);
int hppa_extract_5_load (unsigned int);
unsigned hppa_extract_5R_store (unsigned int);
unsigned hppa_extract_5r_store (unsigned int);
int hppa_extract_17 (unsigned int);
int hppa_extract_21 (unsigned);
int hppa_extract_14 (unsigned);
int hppa_low_sign_extend (unsigned int, unsigned int);
int hppa_sign_extend (unsigned int, unsigned int);
CORE_ADDR hppa_symbol_address(const char *sym);
extern void
hppa_frame_prev_register_helper (struct frame_info *next_frame,
struct trad_frame_saved_reg *saved_regs,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, gdb_byte *valuep);
extern CORE_ADDR hppa_read_pc (ptid_t ptid);
extern void hppa_write_pc (CORE_ADDR pc, ptid_t ptid);
extern CORE_ADDR hppa_unwind_pc (struct gdbarch *gdbarch,
struct frame_info *next_frame);
extern struct minimal_symbol *
hppa_lookup_stub_minimal_symbol (const char *name,
enum unwind_stub_types stub_type);
extern struct hppa_objfile_private *
hppa_init_objfile_priv_data (struct objfile *objfile);
#endif /* HPPA_TDEP_H */