NetBSD/sys/arch/next68k/dev/esp.c
2000-08-09 02:26:26 +00:00

1224 lines
33 KiB
C

/* $NetBSD: esp.c,v 1.28 2000/08/09 02:26:26 tv Exp $ */
/*-
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum and by Jason R. Thorpe of the Numerical Aerospace
* Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994 Peter Galbavy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Peter Galbavy
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Based on aic6360 by Jarle Greipsland
*
* Acknowledgements: Many of the algorithms used in this driver are
* inspired by the work of Julian Elischer (julian@tfs.com) and
* Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million!
*/
/*
* Grabbed from the sparc port at revision 1.73 for the NeXT.
* Darrin B. Jewell <dbj@netbsd.org> Sat Jul 4 15:41:32 1998
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/scsipi/scsi_message.h>
#include <machine/bus.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <dev/ic/ncr53c9xreg.h>
#include <dev/ic/ncr53c9xvar.h>
#include <next68k/next68k/isr.h>
#include <next68k/dev/nextdmareg.h>
#include <next68k/dev/nextdmavar.h>
#include "espreg.h"
#include "espvar.h"
#ifdef DEBUG
#define ESP_DEBUG
#endif
#ifdef ESP_DEBUG
int esp_debug = 0;
#define DPRINTF(x) if (esp_debug) printf x;
#else
#define DPRINTF(x)
#endif
void espattach_intio __P((struct device *, struct device *, void *));
int espmatch_intio __P((struct device *, struct cfdata *, void *));
/* DMA callbacks */
bus_dmamap_t esp_dmacb_continue __P((void *arg));
void esp_dmacb_completed __P((bus_dmamap_t map, void *arg));
void esp_dmacb_shutdown __P((void *arg));
#ifdef ESP_DEBUG
char esp_dma_dump[5*1024] = "";
struct ncr53c9x_softc *esp_debug_sc = 0;
void esp_dma_store __P((struct ncr53c9x_softc *sc));
void esp_dma_print __P((struct ncr53c9x_softc *sc));
int esp_dma_nest = 0;
#endif
/* Linkup to the rest of the kernel */
struct cfattach esp_ca = {
sizeof(struct esp_softc), espmatch_intio, espattach_intio
};
/*
* Functions and the switch for the MI code.
*/
u_char esp_read_reg __P((struct ncr53c9x_softc *, int));
void esp_write_reg __P((struct ncr53c9x_softc *, int, u_char));
int esp_dma_isintr __P((struct ncr53c9x_softc *));
void esp_dma_reset __P((struct ncr53c9x_softc *));
int esp_dma_intr __P((struct ncr53c9x_softc *));
int esp_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
size_t *, int, size_t *));
void esp_dma_go __P((struct ncr53c9x_softc *));
void esp_dma_stop __P((struct ncr53c9x_softc *));
int esp_dma_isactive __P((struct ncr53c9x_softc *));
struct ncr53c9x_glue esp_glue = {
esp_read_reg,
esp_write_reg,
esp_dma_isintr,
esp_dma_reset,
esp_dma_intr,
esp_dma_setup,
esp_dma_go,
esp_dma_stop,
esp_dma_isactive,
NULL, /* gl_clear_latched_intr */
};
#ifdef ESP_DEBUG
#define XCHR(x) "0123456789abcdef"[(x) & 0xf]
static void
esp_hex_dump(unsigned char *pkt, size_t len)
{
size_t i, j;
printf("00000000 ");
for(i=0; i<len; i++) {
printf("%c%c ", XCHR(pkt[i]>>4), XCHR(pkt[i]));
if ((i+1) % 16 == 8) {
printf(" ");
}
if ((i+1) % 16 == 0) {
printf(" %c", '|');
for(j=0; j<16; j++) {
printf("%c", pkt[i-15+j]>=32 && pkt[i-15+j]<127?pkt[i-15+j]:'.');
}
printf("%c\n%c%c%c%c%c%c%c%c ", '|',
XCHR((i+1)>>28),XCHR((i+1)>>24),XCHR((i+1)>>20),XCHR((i+1)>>16),
XCHR((i+1)>>12), XCHR((i+1)>>8), XCHR((i+1)>>4), XCHR(i+1));
}
}
printf("\n");
}
#endif
int
espmatch_intio(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
/* should probably probe here */
/* Should also probably set up data from config */
return(1);
}
void
espattach_intio(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct esp_softc *esc = (void *)self;
struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
#ifdef ESP_DEBUG
esp_debug_sc = sc;
#endif
esc->sc_bst = NEXT68K_INTIO_BUS_SPACE;
if (bus_space_map(esc->sc_bst, NEXT_P_SCSI,
ESP_DEVICE_SIZE, 0, &esc->sc_bsh)) {
panic("\n%s: can't map ncr53c90 registers",
sc->sc_dev.dv_xname);
}
sc->sc_id = 7;
sc->sc_freq = 20; /* Mhz */
/*
* Set up glue for MI code early; we use some of it here.
*/
sc->sc_glue = &esp_glue;
/*
* XXX More of this should be in ncr53c9x_attach(), but
* XXX should we really poke around the chip that much in
* XXX the MI code? Think about this more...
*/
/*
* It is necessary to try to load the 2nd config register here,
* to find out what rev the esp chip is, else the ncr53c9x_reset
* will not set up the defaults correctly.
*/
sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_RPE;
sc->sc_cfg3 = NCRCFG3_CDB;
NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2);
if ((NCR_READ_REG(sc, NCR_CFG2) & ~NCRCFG2_RSVD) !=
(NCRCFG2_SCSI2 | NCRCFG2_RPE)) {
sc->sc_rev = NCR_VARIANT_ESP100;
} else {
sc->sc_cfg2 = NCRCFG2_SCSI2;
NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2);
sc->sc_cfg3 = 0;
NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
sc->sc_cfg3 = (NCRCFG3_CDB | NCRCFG3_FCLK);
NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
if (NCR_READ_REG(sc, NCR_CFG3) !=
(NCRCFG3_CDB | NCRCFG3_FCLK)) {
sc->sc_rev = NCR_VARIANT_ESP100A;
} else {
/* NCRCFG2_FE enables > 64K transfers */
sc->sc_cfg2 |= NCRCFG2_FE;
sc->sc_cfg3 = 0;
NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
sc->sc_rev = NCR_VARIANT_ESP200;
}
}
/*
* XXX minsync and maxxfer _should_ be set up in MI code,
* XXX but it appears to have some dependency on what sort
* XXX of DMA we're hooked up to, etc.
*/
/*
* This is the value used to start sync negotiations
* Note that the NCR register "SYNCTP" is programmed
* in "clocks per byte", and has a minimum value of 4.
* The SCSI period used in negotiation is one-fourth
* of the time (in nanoseconds) needed to transfer one byte.
* Since the chip's clock is given in MHz, we have the following
* formula: 4 * period = (1000 / freq) * 4
*/
sc->sc_minsync = 1000 / sc->sc_freq;
/*
* Alas, we must now modify the value a bit, because it's
* only valid when can switch on FASTCLK and FASTSCSI bits
* in config register 3...
*/
switch (sc->sc_rev) {
case NCR_VARIANT_ESP100:
sc->sc_maxxfer = 64 * 1024;
sc->sc_minsync = 0; /* No synch on old chip? */
break;
case NCR_VARIANT_ESP100A:
sc->sc_maxxfer = 64 * 1024;
/* Min clocks/byte is 5 */
sc->sc_minsync = ncr53c9x_cpb2stp(sc, 5);
break;
case NCR_VARIANT_ESP200:
sc->sc_maxxfer = 16 * 1024 * 1024;
/* XXX - do actually set FAST* bits */
break;
}
/* @@@ Some ESP_DCTL bits probably need setting */
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_RESET);
DELAY(10);
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
NCR_WRITE_REG(sc, ESP_DCTL, ESPDCTL_20MHZ | ESPDCTL_INTENB);
DELAY(10);
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
/* Set up SCSI DMA */
{
esc->sc_scsi_dma.nd_bst = NEXT68K_INTIO_BUS_SPACE;
if (bus_space_map(esc->sc_scsi_dma.nd_bst, NEXT_P_SCSI_CSR,
sizeof(struct dma_dev),0, &esc->sc_scsi_dma.nd_bsh)) {
panic("\n%s: can't map scsi DMA registers",
sc->sc_dev.dv_xname);
}
esc->sc_scsi_dma.nd_intr = NEXT_I_SCSI_DMA;
esc->sc_scsi_dma.nd_shutdown_cb = &esp_dmacb_shutdown;
esc->sc_scsi_dma.nd_continue_cb = &esp_dmacb_continue;
esc->sc_scsi_dma.nd_completed_cb = &esp_dmacb_completed;
esc->sc_scsi_dma.nd_cb_arg = sc;
nextdma_config(&esc->sc_scsi_dma);
nextdma_init(&esc->sc_scsi_dma);
#if 0
/* Turn on target selection using the `dma' method */
ncr53c9x_dmaselect = 1;
#else
ncr53c9x_dmaselect = 0;
#endif
esc->sc_datain = -1;
esc->sc_dmaaddr = 0;
esc->sc_dmalen = 0;
esc->sc_dmasize = 0;
esc->sc_loaded = 0;
esc->sc_begin = 0;
esc->sc_begin_size = 0;
{
int error;
if ((error = bus_dmamap_create(esc->sc_scsi_dma.nd_dmat,
sc->sc_maxxfer, sc->sc_maxxfer/NBPG, sc->sc_maxxfer,
0, BUS_DMA_ALLOCNOW, &esc->sc_main_dmamap)) != 0) {
panic("%s: can't create main i/o DMA map, error = %d",
sc->sc_dev.dv_xname,error);
}
}
esc->sc_main = 0;
esc->sc_main_size = 0;
{
int error;
if ((error = bus_dmamap_create(esc->sc_scsi_dma.nd_dmat,
ESP_DMA_TAILBUFSIZE,
1, ESP_DMA_TAILBUFSIZE,
0, BUS_DMA_ALLOCNOW, &esc->sc_tail_dmamap)) != 0) {
panic("%s: can't create tail i/o DMA map, error = %d",
sc->sc_dev.dv_xname,error);
}
}
esc->sc_tail = 0;
esc->sc_tail_size = 0;
}
/* Establish interrupt channel */
isrlink_autovec(ncr53c9x_intr, sc, NEXT_I_IPL(NEXT_I_SCSI), 0);
INTR_ENABLE(NEXT_I_SCSI);
/* register interrupt stats */
evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL,
sc->sc_dev.dv_xname, "intr");
/* Do the common parts of attachment. */
ncr53c9x_attach(sc, NULL, NULL);
}
/*
* Glue functions.
*/
u_char
esp_read_reg(sc, reg)
struct ncr53c9x_softc *sc;
int reg;
{
struct esp_softc *esc = (struct esp_softc *)sc;
return(bus_space_read_1(esc->sc_bst, esc->sc_bsh, reg));
}
void
esp_write_reg(sc, reg, val)
struct ncr53c9x_softc *sc;
int reg;
u_char val;
{
struct esp_softc *esc = (struct esp_softc *)sc;
bus_space_write_1(esc->sc_bst, esc->sc_bsh, reg, val);
}
int
esp_dma_isintr(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
int r = (INTR_OCCURRED(NEXT_I_SCSI));
if (r) {
{
int flushcount;
int s;
s = spldma();
flushcount = 0;
#ifdef ESP_DEBUG
esp_dma_nest++;
if (esp_debug) {
char sbuf[256];
bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRSTAT)),
NEXT_INTR_BITS, sbuf, sizeof(sbuf));
printf("esp_dma_isintr = 0x%s\n", sbuf);
}
#endif
while (esp_dma_isactive(sc)) {
flushcount++;
#ifdef DIAGNOSTIC
r = (INTR_OCCURRED(NEXT_I_SCSI));
if (!r) panic("esp intr enabled but dma failed to flush");
#endif
#ifdef DIAGNOSTIC
#if 0
if ((esc->sc_loaded & (ESP_LOADED_TAIL/* |ESP_UNLOADED_MAIN */))
!= (ESP_LOADED_TAIL /* |ESP_UNLOADED_MAIN */)) {
if (esc->sc_datain) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
} else {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB);
}
next_dma_print(&esc->sc_scsi_dma);
esp_dma_print(sc);
printf("%s: unexpected flush: tc=0x%06x\n",
sc->sc_dev.dv_xname,
(((sc->sc_cfg2 & NCRCFG2_FE)
? NCR_READ_REG(sc, NCR_TCH) : 0)<<16)|
(NCR_READ_REG(sc, NCR_TCM)<<8)|
NCR_READ_REG(sc, NCR_TCL));
ncr53c9x_readregs(sc);
printf("%s: readregs[intr=%02x,stat=%02x,step=%02x]\n",
sc->sc_dev.dv_xname,
sc->sc_espintr, sc->sc_espstat, sc->sc_espstep);
panic("%s: flushing flushing non-tail dma\n",
sc->sc_dev.dv_xname);
}
#endif
#endif
DPRINTF(("%s: flushing dma, count = %d\n", sc->sc_dev.dv_xname,flushcount));
if (esc->sc_datain) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD | ESPDCTL_DMARD | ESPDCTL_FLUSH);
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD | ESPDCTL_DMARD);
} else {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD | ESPDCTL_FLUSH);
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD);
}
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
{
int nr;
nr = nextdma_intr(&esc->sc_scsi_dma);
if (nr) {
DPRINTF(("nextma_intr = %d\n",nr));
#ifdef DIAGNOSTIC
#if 0
if (flushcount > 16) {
printf("%s: unexpected flushcount %d\n",sc->sc_dev.dv_xname,flushcount);
}
#endif
#endif
#ifdef DIAGNOSTIC
#if 0
if (esp_dma_isactive(sc)) {
esp_dma_print(sc);
printf("%s: dma still active after a flush with count %d\n",
sc->sc_dev.dv_xname,flushcount);
}
#endif
#endif
flushcount = 0;
}
}
}
#ifdef ESP_DEBUG
esp_dma_nest--;
#endif
splx(s);
}
#ifdef DIAGNOSTIC
r = (INTR_OCCURRED(NEXT_I_SCSI));
if (!r) panic("esp intr not enabled after dma flush");
#endif
/* Clear the DMAMOD bit in the DCTL register, since if this
* routine returns true, then the ncr53c9x_intr handler will
* be called and needs access to the scsi registers.
*/
if (esc->sc_datain) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
} else {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB);
}
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
}
return (r);
}
void
esp_dma_reset(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
DPRINTF(("esp dma reset\n"));
#ifdef ESP_DEBUG
if (esp_debug) {
char sbuf[256];
bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRSTAT)),
NEXT_INTR_BITS, sbuf, sizeof(sbuf));
printf(" *intrstat = 0x%s\n", sbuf);
bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRMASK)),
NEXT_INTR_BITS, sbuf, sizeof(sbuf));
printf(" *intrmask = 0x%s\n", sbuf);
}
#endif
/* Clear the DMAMOD bit in the DCTL register: */
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB);
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
nextdma_reset(&esc->sc_scsi_dma);
esc->sc_datain = -1;
esc->sc_dmaaddr = 0;
esc->sc_dmalen = 0;
esc->sc_dmasize = 0;
esc->sc_loaded = 0;
esc->sc_begin = 0;
esc->sc_begin_size = 0;
if (esc->sc_main_dmamap->dm_mapsize) {
bus_dmamap_unload(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap);
}
esc->sc_main = 0;
esc->sc_main_size = 0;
if (esc->sc_tail_dmamap->dm_mapsize) {
bus_dmamap_unload(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap);
}
esc->sc_tail = 0;
esc->sc_tail_size = 0;
}
int
esp_dma_intr(sc)
struct ncr53c9x_softc *sc;
{
#ifdef DIAGNOSTIC
panic("%s: esp_dma_intr shouldn't be invoked.\n", sc->sc_dev.dv_xname);
#endif
return -1;
}
/* it appears that:
* addr and len arguments to this need to be kept up to date
* with the status of the transfter.
* the dmasize of this is the actual length of the transfer
* request, which is guaranteed to be less than maxxfer.
* (len may be > maxxfer)
*/
int
esp_dma_setup(sc, addr, len, datain, dmasize)
struct ncr53c9x_softc *sc;
caddr_t *addr;
size_t *len;
int datain;
size_t *dmasize;
{
struct esp_softc *esc = (struct esp_softc *)sc;
#ifdef DIAGNOSTIC
#ifdef ESP_DEBUG
/* if this is a read DMA, pre-fill the buffer with 0xdeadbeef
* to identify bogus reads
*/
if (datain) {
int *v = (int *)(*addr);
int i;
for(i=0;i<((*len)/4);i++) v[i] = 0xdeadbeef;
v = (int *)(&(esc->sc_tailbuf[0]));
for(i=0;i<((sizeof(esc->sc_tailbuf)/4));i++) v[i] = 0xdeaffeed;
} else {
int *v;
int i;
v = (int *)(&(esc->sc_tailbuf[0]));
for(i=0;i<((sizeof(esc->sc_tailbuf)/4));i++) v[i] = 0xfeeb1eed;
}
#endif
#endif
DPRINTF(("esp_dma_setup(0x%08lx,0x%08lx,0x%08lx)\n",*addr,*len,*dmasize));
#if 0
#ifdef DIAGNOSTIC /* @@@ this is ok sometimes. verify that we handle it ok
* and then remove this check
*/
if (*len != *dmasize) {
panic("esp dmalen 0x%lx != size 0x%lx",*len,*dmasize);
}
#endif
#endif
#ifdef DIAGNOSTIC
if ((esc->sc_datain != -1) ||
(esc->sc_main_dmamap->dm_mapsize != 0) ||
(esc->sc_tail_dmamap->dm_mapsize != 0) ||
(esc->sc_dmasize != 0)) {
panic("%s: map already loaded in esp_dma_setup\n"
"\tdatain = %d\n\tmain_mapsize=%d\n\tail_mapsize=%d\n\tdmasize = %d",
sc->sc_dev.dv_xname, esc->sc_datain,
esc->sc_main_dmamap->dm_mapsize,
esc->sc_tail_dmamap->dm_mapsize,
esc->sc_dmasize);
}
#endif
/* we are sometimes asked to dma zero bytes, that's easy */
if (*dmasize <= 0) {
return(0);
}
/* Save these in case we have to abort DMA */
esc->sc_datain = datain;
esc->sc_dmaaddr = addr;
esc->sc_dmalen = len;
esc->sc_dmasize = *dmasize;
esc->sc_loaded = 0;
#define DMA_SCSI_ALIGNMENT 16
#define DMA_SCSI_ALIGN(type, addr) \
((type)(((unsigned)(addr)+DMA_SCSI_ALIGNMENT-1) \
&~(DMA_SCSI_ALIGNMENT-1)))
#define DMA_SCSI_ALIGNED(addr) \
(((unsigned)(addr)&(DMA_SCSI_ALIGNMENT-1))==0)
{
size_t slop_bgn_size; /* # bytes to be fifo'd at beginning */
size_t slop_end_size; /* # bytes to be transferred in tail buffer */
{
u_long bgn = (u_long)(*esc->sc_dmaaddr);
u_long end = (u_long)(*esc->sc_dmaaddr+esc->sc_dmasize);
slop_bgn_size = DMA_SCSI_ALIGNMENT-(bgn % DMA_SCSI_ALIGNMENT);
if (slop_bgn_size == DMA_SCSI_ALIGNMENT) slop_bgn_size = 0;
slop_end_size = (end % DMA_ENDALIGNMENT);
}
/* Force a minimum slop end size. This ensures that write
* requests will overrun, as required to get completion interrupts.
* In addition, since the tail buffer is guaranteed to be mapped
* in a single dma segment, the overrun won't accidentally
* end up in its own segment.
*/
if (!esc->sc_datain) {
#if 0
slop_end_size += ESP_DMA_MAXTAIL;
#else
slop_end_size += 0x10;
#endif
}
/* Check to make sure we haven't counted extra slop
* as would happen for a very short dma buffer, also
* for short buffers, just stuff the entire thing in the tail
*/
if ((slop_bgn_size+slop_end_size >= esc->sc_dmasize)
#if 0
|| (esc->sc_dmasize <= ESP_DMA_MAXTAIL)
#endif
)
{
slop_bgn_size = 0;
slop_end_size = esc->sc_dmasize;
}
/* initialize the fifo buffer */
if (slop_bgn_size) {
esc->sc_begin = *esc->sc_dmaaddr;
esc->sc_begin_size = slop_bgn_size;
} else {
esc->sc_begin = 0;
esc->sc_begin_size = 0;
}
/* Load the normal DMA map */
{
esc->sc_main = *esc->sc_dmaaddr+slop_bgn_size;
esc->sc_main_size = (esc->sc_dmasize)-(slop_end_size+slop_bgn_size);
if (esc->sc_main_size) {
int error;
error = bus_dmamap_load(esc->sc_scsi_dma.nd_dmat,
esc->sc_main_dmamap,
esc->sc_main, esc->sc_main_size,
NULL, BUS_DMA_NOWAIT);
if (error) {
panic("%s: can't load main dma map. error = %d, addr=0x%08x, size=0x%08x",
sc->sc_dev.dv_xname, error,esc->sc_main,esc->sc_main_size);
}
#if 0
bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap,
0, esc->sc_main_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
#endif
} else {
esc->sc_main = 0;
}
}
/* Load the tail DMA map */
if (slop_end_size) {
esc->sc_tail = DMA_ENDALIGN(caddr_t,esc->sc_tailbuf+slop_end_size)-slop_end_size;
/* If the beginning of the tail is not correctly aligned,
* we have no choice but to align the start, which might then unalign the end.
*/
esc->sc_tail = DMA_SCSI_ALIGN(caddr_t,esc->sc_tail);
/* So therefore, we change the tail size to be end aligned again. */
esc->sc_tail_size = DMA_ENDALIGN(caddr_t,esc->sc_tail+slop_end_size)-esc->sc_tail;
/* @@@ next dma overrun lossage */
if (!esc->sc_datain) {
esc->sc_tail_size += ESP_DMA_OVERRUN;
}
{
int error;
error = bus_dmamap_load(esc->sc_scsi_dma.nd_dmat,
esc->sc_tail_dmamap,
esc->sc_tail, esc->sc_tail_size,
NULL, BUS_DMA_NOWAIT);
if (error) {
panic("%s: can't load tail dma map. error = %d, addr=0x%08x, size=0x%08x",
sc->sc_dev.dv_xname, error,esc->sc_tail,esc->sc_tail_size);
}
#if 0
bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap,
0, esc->sc_tail_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
#endif
}
}
}
return (0);
}
#ifdef ESP_DEBUG
/* For debugging */
void
esp_dma_store(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
char *p = &esp_dma_dump[0];
p += sprintf(p,"%s: sc_datain=%d\n",sc->sc_dev.dv_xname,esc->sc_datain);
p += sprintf(p,"%s: sc_loaded=0x%08x\n",sc->sc_dev.dv_xname,esc->sc_loaded);
if (esc->sc_dmaaddr) {
p += sprintf(p,"%s: sc_dmaaddr=0x%08lx\n",sc->sc_dev.dv_xname,*esc->sc_dmaaddr);
} else {
p += sprintf(p,"%s: sc_dmaaddr=NULL\n",sc->sc_dev.dv_xname);
}
if (esc->sc_dmalen) {
p += sprintf(p,"%s: sc_dmalen=0x%08lx\n",sc->sc_dev.dv_xname,*esc->sc_dmalen);
} else {
p += sprintf(p,"%s: sc_dmalen=NULL\n",sc->sc_dev.dv_xname);
}
p += sprintf(p,"%s: sc_dmasize=0x%08x\n",sc->sc_dev.dv_xname,esc->sc_dmasize);
p += sprintf(p,"%s: sc_begin = 0x%08x, sc_begin_size = 0x%08x\n",
sc->sc_dev.dv_xname, esc->sc_begin, esc->sc_begin_size);
p += sprintf(p,"%s: sc_main = 0x%08x, sc_main_size = 0x%08x\n",
sc->sc_dev.dv_xname, esc->sc_main, esc->sc_main_size);
{
int i;
bus_dmamap_t map = esc->sc_main_dmamap;
p += sprintf(p,"%s: sc_main_dmamap. mapsize = 0x%08x, nsegs = %d\n",
sc->sc_dev.dv_xname, map->dm_mapsize, map->dm_nsegs);
for(i=0;i<map->dm_nsegs;i++) {
p += sprintf(p,"%s: map->dm_segs[%d]->ds_addr = 0x%08x, len = 0x%08x\n",
sc->sc_dev.dv_xname, i, map->dm_segs[i].ds_addr, map->dm_segs[i].ds_len);
}
}
p += sprintf(p,"%s: sc_tail = 0x%08x, sc_tail_size = 0x%08x\n",
sc->sc_dev.dv_xname, esc->sc_tail, esc->sc_tail_size);
{
int i;
bus_dmamap_t map = esc->sc_tail_dmamap;
p += sprintf(p,"%s: sc_tail_dmamap. mapsize = 0x%08x, nsegs = %d\n",
sc->sc_dev.dv_xname, map->dm_mapsize, map->dm_nsegs);
for(i=0;i<map->dm_nsegs;i++) {
p += sprintf(p,"%s: map->dm_segs[%d]->ds_addr = 0x%08x, len = 0x%08x\n",
sc->sc_dev.dv_xname, i, map->dm_segs[i].ds_addr, map->dm_segs[i].ds_len);
}
}
}
void
esp_dma_print(sc)
struct ncr53c9x_softc *sc;
{
esp_dma_store(sc);
printf("%s",esp_dma_dump);
}
#endif
void
esp_dma_go(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
DPRINTF(("%s: esp_dma_go(datain = %d)\n",
sc->sc_dev.dv_xname, esc->sc_datain));
#ifdef ESP_DEBUG
if (esp_debug) esp_dma_print(sc);
else esp_dma_store(sc);
#endif
#ifdef ESP_DEBUG
{
int n = NCR_READ_REG(sc, NCR_FFLAG);
DPRINTF(("%s: fifo size = %d, seq = 0x%x\n",
sc->sc_dev.dv_xname,
n & NCRFIFO_FF, (n & NCRFIFO_SS)>>5));
}
#endif
/* zero length dma transfers are boring */
if (esc->sc_dmasize == 0) {
return;
}
#if defined(DIAGNOSTIC)
if ((esc->sc_begin_size == 0) &&
(esc->sc_main_dmamap->dm_mapsize == 0) &&
(esc->sc_tail_dmamap->dm_mapsize == 0)) {
esp_dma_print(sc);
panic("%s: No DMA requested!",sc->sc_dev.dv_xname);
}
#endif
/* Stuff the fifo with the begin buffer */
if (esc->sc_datain) {
int i;
DPRINTF(("%s: FIFO read of %d bytes:",
sc->sc_dev.dv_xname,esc->sc_begin_size));
for(i=0;i<esc->sc_begin_size;i++) {
esc->sc_begin[i]=NCR_READ_REG(sc, NCR_FIFO);
DPRINTF((" %02x",esc->sc_begin[i]&0xff));
}
DPRINTF(("\n"));
} else {
int i;
DPRINTF(("%s: FIFO write of %d bytes:",
sc->sc_dev.dv_xname,esc->sc_begin_size));
for(i=0;i<esc->sc_begin_size;i++) {
NCR_WRITE_REG(sc, NCR_FIFO, esc->sc_begin[i]);
DPRINTF((" %02x",esc->sc_begin[i]&0xff));
}
DPRINTF(("\n"));
}
/* if we are a dma write cycle, copy the end slop */
if (esc->sc_datain == 0) {
memcpy(esc->sc_tail,
(*esc->sc_dmaaddr+esc->sc_begin_size+esc->sc_main_size),
(esc->sc_dmasize-(esc->sc_begin_size+esc->sc_main_size)));
}
if (esc->sc_main_dmamap->dm_mapsize) {
bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap,
0, esc->sc_main_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
}
if (esc->sc_tail_dmamap->dm_mapsize) {
bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap,
0, esc->sc_tail_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
}
nextdma_start(&esc->sc_scsi_dma,
(esc->sc_datain ? DMACSR_SETREAD : DMACSR_SETWRITE));
if (esc->sc_datain) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD | ESPDCTL_DMARD);
} else {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD);
}
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
}
void
esp_dma_stop(sc)
struct ncr53c9x_softc *sc;
{
panic("Not yet implemented");
}
int
esp_dma_isactive(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
int r = !nextdma_finished(&esc->sc_scsi_dma);
DPRINTF(("esp_dma_isactive = %d\n",r));
return(r);
}
/****************************************************************/
/* Internal dma callback routines */
bus_dmamap_t
esp_dmacb_continue(arg)
void *arg;
{
struct ncr53c9x_softc *sc = (struct ncr53c9x_softc *)arg;
struct esp_softc *esc = (struct esp_softc *)sc;
DPRINTF(("%s: dma continue\n",sc->sc_dev.dv_xname));
#ifdef DIAGNOSTIC
if ((esc->sc_datain < 0) || (esc->sc_datain > 1)) {
panic("%s: map not loaded in dma continue callback, datain = %d",
sc->sc_dev.dv_xname,esc->sc_datain);
}
#endif
if ((!(esc->sc_loaded & ESP_LOADED_MAIN)) &&
(esc->sc_main_dmamap->dm_mapsize)) {
DPRINTF(("%s: Loading main map\n",sc->sc_dev.dv_xname));
#if 0
bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap,
0, esc->sc_main_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
#endif
esc->sc_loaded |= ESP_LOADED_MAIN;
return(esc->sc_main_dmamap);
}
if ((!(esc->sc_loaded & ESP_LOADED_TAIL)) &&
(esc->sc_tail_dmamap->dm_mapsize)) {
DPRINTF(("%s: Loading tail map\n",sc->sc_dev.dv_xname));
#if 0
bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap,
0, esc->sc_tail_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
#endif
esc->sc_loaded |= ESP_LOADED_TAIL;
return(esc->sc_tail_dmamap);
}
DPRINTF(("%s: not loading map\n",sc->sc_dev.dv_xname));
return(0);
}
void
esp_dmacb_completed(map, arg)
bus_dmamap_t map;
void *arg;
{
struct ncr53c9x_softc *sc = (struct ncr53c9x_softc *)arg;
struct esp_softc *esc = (struct esp_softc *)sc;
DPRINTF(("%s: dma completed\n",sc->sc_dev.dv_xname));
#ifdef DIAGNOSTIC
if ((esc->sc_datain < 0) || (esc->sc_datain > 1)) {
panic("%s: invalid dma direction in completed callback, datain = %d",
sc->sc_dev.dv_xname,esc->sc_datain);
}
#endif
if (map == esc->sc_main_dmamap) {
#ifdef DIAGNOSTIC
if ((esc->sc_loaded & ESP_UNLOADED_MAIN) ||
!(esc->sc_loaded & ESP_LOADED_MAIN)) {
panic("%s: unexpected completed call for main map\n",sc->sc_dev.dv_xname);
}
#endif
esc->sc_loaded |= ESP_UNLOADED_MAIN;
} else if (map == esc->sc_tail_dmamap) {
#ifdef DIAGNOSTIC
if ((esc->sc_loaded & ESP_UNLOADED_TAIL) ||
!(esc->sc_loaded & ESP_LOADED_TAIL)) {
panic("%s: unexpected completed call for tail map\n",sc->sc_dev.dv_xname);
}
#endif
esc->sc_loaded |= ESP_UNLOADED_TAIL;
}
#ifdef DIAGNOSTIC
else {
panic("%s: unexpected completed map", sc->sc_dev.dv_xname);
}
#endif
#ifdef ESP_DEBUG
if (esp_debug) {
if (map == esc->sc_main_dmamap) {
printf("%s: completed main map\n",sc->sc_dev.dv_xname);
} else if (map == esc->sc_tail_dmamap) {
printf("%s: completed tail map\n",sc->sc_dev.dv_xname);
}
}
#endif
#if 0
if ((map == esc->sc_tail_dmamap) ||
((esc->sc_tail_size == 0) && (map == esc->sc_main_dmamap))) {
/* Clear the DMAMOD bit in the DCTL register to give control
* back to the scsi chip.
*/
if (esc->sc_datain) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
} else {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB);
}
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
}
#endif
#if 0
bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, map,
0, map->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
#endif
}
void
esp_dmacb_shutdown(arg)
void *arg;
{
struct ncr53c9x_softc *sc = (struct ncr53c9x_softc *)arg;
struct esp_softc *esc = (struct esp_softc *)sc;
DPRINTF(("%s: dma shutdown\n",sc->sc_dev.dv_xname));
#if 0
{
/* Clear the DMAMOD bit in the DCTL register to give control
* back to the scsi chip.
*/
if (esc->sc_datain) {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
} else {
NCR_WRITE_REG(sc, ESP_DCTL,
ESPDCTL_20MHZ | ESPDCTL_INTENB);
}
DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
}
#endif
DPRINTF(("%s: esp_dma_nest == %d\n",sc->sc_dev.dv_xname,esp_dma_nest));
/* Stuff the end slop into fifo */
#ifdef ESP_DEBUG
if (esp_debug) {
int n = NCR_READ_REG(sc, NCR_FFLAG);
DPRINTF(("%s: fifo size = %d, seq = 0x%x\n",
sc->sc_dev.dv_xname,n & NCRFIFO_FF, (n & NCRFIFO_SS)>>5));
}
#endif
if (esc->sc_main_dmamap->dm_mapsize) {
bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap,
0, esc->sc_main_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
bus_dmamap_unload(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap);
}
if (esc->sc_tail_dmamap->dm_mapsize) {
bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap,
0, esc->sc_tail_dmamap->dm_mapsize,
(esc->sc_datain ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
bus_dmamap_unload(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap);
}
/* copy the tail dma buffer data for read transfers */
if (esc->sc_datain == 1) {
memcpy((*esc->sc_dmaaddr+esc->sc_begin_size+esc->sc_main_size),
esc->sc_tail,
(esc->sc_dmasize-(esc->sc_begin_size+esc->sc_main_size)));
}
#ifdef ESP_DEBUG
if (esp_debug) {
printf("%s: dma_shutdown: addr=0x%08lx,len=0x%08lx,size=0x%08lx\n",
sc->sc_dev.dv_xname,
*esc->sc_dmaaddr, *esc->sc_dmalen, esc->sc_dmasize);
if (esp_debug > 10) {
esp_hex_dump(*(esc->sc_dmaaddr),esc->sc_dmasize);
printf("%s: tail=0x%08lx,tailbuf=0x%08lx,tail_size=0x%08lx\n",
sc->sc_dev.dv_xname,
esc->sc_tail, &(esc->sc_tailbuf[0]), esc->sc_tail_size);
esp_hex_dump(&(esc->sc_tailbuf[0]),sizeof(esc->sc_tailbuf));
}
}
#endif
*(esc->sc_dmaaddr) += esc->sc_dmasize;
*(esc->sc_dmalen) -= esc->sc_dmasize;
esc->sc_main = 0;
esc->sc_main_size = 0;
esc->sc_tail = 0;
esc->sc_tail_size = 0;
esc->sc_datain = -1;
esc->sc_dmaaddr = 0;
esc->sc_dmalen = 0;
esc->sc_dmasize = 0;
esc->sc_loaded = 0;
esc->sc_begin = 0;
esc->sc_begin_size = 0;
#ifdef ESP_DEBUG
if (esp_debug) {
char sbuf[256];
bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRSTAT)),
NEXT_INTR_BITS, sbuf, sizeof(sbuf));
printf(" *intrstat = 0x%s\n", sbuf);
bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRMASK)),
NEXT_INTR_BITS, sbuf, sizeof(sbuf));
printf(" *intrmask = 0x%s\n", sbuf);
}
#endif
}