478 lines
13 KiB
C
478 lines
13 KiB
C
/* $NetBSD: rtc.c,v 1.1.1.1 1999/09/16 12:23:32 takemura Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999 Shin Takemura. All rights reserved.
|
|
* Copyright (c) 1999 SATO Kazumi. All rights reserved.
|
|
* Copyright (c) 1999 PocketBSD Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the PocketBSD project
|
|
* and its contributors.
|
|
* 4. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/device.h>
|
|
#include <sys/reboot.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/clock_machdep.h>
|
|
#include <machine/cpu.h>
|
|
|
|
#include <hpcmips/vr/vr.h>
|
|
#include <hpcmips/vr/vripvar.h>
|
|
#include <hpcmips/vr/rtcreg.h>
|
|
#include <dev/dec/clockvar.h>
|
|
|
|
#if 0
|
|
#define RTCDEBUG /* rtc debugging infomation */
|
|
#define RTC_HEARTBEAT /* HEARTBEAT print */
|
|
#define RECALC_CPUSPEED /* cpuspeed recalculaton */
|
|
#define RECALC_CPUSPEED_DEBUG /* XXX */
|
|
#endif
|
|
|
|
|
|
struct vrrtc_softc {
|
|
struct device sc_dev;
|
|
bus_space_tag_t sc_iot;
|
|
bus_space_handle_t sc_ioh;
|
|
void *sc_ih;
|
|
};
|
|
|
|
void clock_init __P((struct device *));
|
|
void clock_get __P((struct device *, time_t, struct clocktime *));
|
|
void clock_set __P((struct device *, struct clocktime *));
|
|
|
|
static const struct clockfns clockfns = {
|
|
clock_init, clock_get, clock_set,
|
|
};
|
|
|
|
int vrrtc_match __P((struct device *, struct cfdata *, void *));
|
|
void vrrtc_attach __P((struct device *, struct device *, void *));
|
|
int vrrtc_intr __P((void*, u_int32_t, u_int32_t));
|
|
|
|
struct cfattach vrrtc_ca = {
|
|
sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach
|
|
};
|
|
|
|
void vrrtc_write __P((struct vrrtc_softc *, int, unsigned short));
|
|
unsigned short vrrtc_read __P((struct vrrtc_softc *, int));
|
|
void cvt_timehl_ct __P((u_long, u_long, struct clocktime *));
|
|
int vrrtc_recalc_cpuspeed __P((struct device *));
|
|
|
|
|
|
extern int rtc_offset;
|
|
|
|
int
|
|
vrrtc_match(parent, cf, aux)
|
|
struct device *parent;
|
|
struct cfdata *cf;
|
|
void *aux;
|
|
{
|
|
return(1);
|
|
}
|
|
|
|
inline void
|
|
vrrtc_write(sc, port, val)
|
|
struct vrrtc_softc *sc;
|
|
int port;
|
|
unsigned short val;
|
|
{
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
|
|
}
|
|
|
|
inline unsigned short
|
|
vrrtc_read(sc, port)
|
|
struct vrrtc_softc *sc;
|
|
int port;
|
|
{
|
|
return bus_space_read_2(sc->sc_iot, sc->sc_ioh, port);
|
|
}
|
|
|
|
void
|
|
vrrtc_attach(parent, self, aux)
|
|
struct device *parent;
|
|
struct device *self;
|
|
void *aux;
|
|
{
|
|
struct vrip_attach_args *va = aux;
|
|
struct vrrtc_softc *sc = (void*)self;
|
|
|
|
sc->sc_iot = va->va_iot;
|
|
if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
|
|
0 /* no flags */, &sc->sc_ioh)) {
|
|
printf("vrrtc_attach: can't map i/o space\n");
|
|
return;
|
|
}
|
|
/* RTC interrupt handler is directly dispatched from CPU intr */
|
|
vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
|
|
/* But need to set level 1 interupt mask register,
|
|
* so regsiter fake interrurpt handler
|
|
*/
|
|
if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_intr,
|
|
IPL_CLOCK, 0, 0))) {
|
|
printf (":can't map interrupt.\n");
|
|
return;
|
|
}
|
|
/*
|
|
* Rtc is attached to call this routine
|
|
* before cpu_initclock() calls clock_init().
|
|
* So we must disable all interrupt for now.
|
|
*/
|
|
/*
|
|
* Disable all rtc interrupts
|
|
*/
|
|
/* Disable Elapse compare intr */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
|
|
/* Disable RTC Long1 intr */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
|
|
/* Disable RTC Long2 intr */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
|
|
/* Disable RTC TCLK intr */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
|
|
/*
|
|
* Clear all rtc intrrupts.
|
|
*/
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
|
|
|
|
clockattach(&sc->sc_dev, &clockfns);
|
|
}
|
|
|
|
int
|
|
vrrtc_intr(arg, pc, statusReg)
|
|
void *arg;
|
|
u_int32_t pc;
|
|
u_int32_t statusReg;
|
|
{
|
|
struct vrrtc_softc *sc = arg;
|
|
struct clockframe cf;
|
|
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
|
|
cf.pc = pc;
|
|
cf.sr = statusReg;
|
|
hardclock(&cf);
|
|
intrcnt[HARDCLOCK]++;
|
|
|
|
#ifdef RTC_HEARTBEAT
|
|
if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) {
|
|
struct clocktime ct;
|
|
clock_get((struct device *)sc, NULL, &ct);
|
|
printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n",
|
|
__FILE__, __LINE__,
|
|
ct.year, ct.mon, ct.day,
|
|
ct.hour, ct.min, ct.sec);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
vrrtc_recalc_cpuspeed(dev)
|
|
struct device *dev;
|
|
{
|
|
struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
|
|
u_long otimeh;
|
|
u_long otimel;
|
|
u_long timeh;
|
|
u_long timel;
|
|
|
|
otimeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
|
|
otimel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
|
|
otimel = (otimel << 16)
|
|
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
|
|
|
|
#define MSEC 1000
|
|
/* wait 1msec */
|
|
DELAY(MSEC);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
|
|
timel = (timel << 16)
|
|
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
|
|
|
|
if (timeh-otimeh > 0){
|
|
/* cpuspeed is too large (> 2 sec)*/
|
|
cpuspeed = cpuspeed/((timeh-otimeh)*2*MSEC);
|
|
cpuspeed +=1;
|
|
return 0;
|
|
}
|
|
if (timel-otimel < (ETIME_L_HZ/MSEC/10)) {
|
|
/* cpuspeed is too small (< 0.1msec) */
|
|
cpuspeed *=10;
|
|
return -1;
|
|
}
|
|
cpuspeed = cpuspeed * (ETIME_L_HZ/MSEC) / (timel-otimel);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
clock_init(dev)
|
|
struct device *dev;
|
|
{
|
|
struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
|
|
#ifdef RTCDEBUG
|
|
int timeh;
|
|
int timel;
|
|
#endif /* RTCDEBUG */
|
|
#ifdef RECALC_CPUSPEED
|
|
int maxrecalc = 3;
|
|
#endif /* RECALC_CPUSPEED */
|
|
|
|
#ifdef RTCDEBUG
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
|
|
timel = (timel << 16)
|
|
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
|
|
printf("clock_init() Elapse Time %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
|
|
timel = (timel << 16)
|
|
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
|
|
printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
|
|
printf("clock_init() LONG1 %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
|
|
printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
|
|
printf("clock_init() LONG2 %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
|
|
printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
|
|
printf("clock_init() TCLK %04x%04x\n", timeh, timel);
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
|
|
printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel);
|
|
#endif /* RTCDEBUG */
|
|
/*
|
|
* Set tick (CLOCK_RATE)
|
|
*/
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
|
|
RTCL1_L_REG_W, RTCL1_L_HZ/CLOCK_RATE);
|
|
|
|
#ifdef RECALC_CPUSPEED
|
|
/* calcurate cpu speed */
|
|
while (maxrecalc-- > 0 && vrrtc_recalc_cpuspeed(dev))
|
|
;
|
|
#ifdef RECALC_CPUSPEED_DEBUG
|
|
printf("clock_init() cpuspeed = %d\n", cpuspeed);
|
|
#endif /* RECALC_CPUSPEED_DEBUG */
|
|
#endif /* RECALC_CPUSPEED */
|
|
}
|
|
|
|
static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
|
|
|
void
|
|
cvt_timehl_ct(timeh, timel, ct)
|
|
u_long timeh; /* 2 sec */
|
|
u_long timel; /* 1/32768 sec */
|
|
struct clocktime *ct;
|
|
{
|
|
#define EPOCHOFF 0
|
|
#define EPOCHYEAR 1850 /* XXXX */
|
|
#define EPOCHMONTH 0
|
|
#define EPOCHDATE 0
|
|
|
|
u_long year, month, date, hour, min, sec, sec2;
|
|
|
|
timeh -= EPOCHOFF;
|
|
|
|
timeh += (rtc_offset*(SECMIN/2));
|
|
|
|
year = EPOCHYEAR;
|
|
sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2;
|
|
while (timeh > sec2) {
|
|
year++;
|
|
timeh -= sec2;
|
|
sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2;
|
|
}
|
|
|
|
#ifdef RTCDEBUG
|
|
printf("cvt_timehl_ct: timeh %08lx year %ld yrref %ld\n",
|
|
timeh, year, sec2);
|
|
#endif /* RTCDEBUG */
|
|
|
|
month = 0; /* now month is 0..11 */
|
|
sec2 = (SECDAY * m2d[month])/2;
|
|
while (timeh > sec2) {
|
|
timeh -= sec2;
|
|
month++;
|
|
sec2 = (SECDAY * m2d[month])/2;
|
|
if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
|
|
sec2 += SECDAY/2;
|
|
}
|
|
month +=1; /* now month is 1..12 */
|
|
|
|
#ifdef RTCDEBUG
|
|
printf("cvt_timehl_ct: timeh %08lx month %ld mref %ld\n",
|
|
timeh, month, sec2);
|
|
#endif /* RTCDEBUG */
|
|
|
|
sec2 = SECDAY/2;
|
|
date = timeh/sec2+1; /* date is 1..31 */
|
|
timeh -= (date-1)*sec2;
|
|
|
|
#ifdef RTCDEBUG
|
|
printf("cvt_timehl_ct: timeh %08lx date %ld dref %ld\n",
|
|
timeh, date, sec2);
|
|
#endif /* RTCDEBUG */
|
|
|
|
sec2 = SECHOUR/2;
|
|
hour = timeh/sec2;
|
|
timeh -= hour*sec2;
|
|
|
|
sec2 = SECMIN/2;
|
|
min = timeh/sec2;
|
|
timeh -= min*sec2;
|
|
|
|
sec = timeh*2 + timel/ETIME_L_HZ;
|
|
|
|
#ifdef RTCDEBUG
|
|
printf("cvt_timehl_ct: hour %ld min %ld sec %ld\n", hour, min, sec);
|
|
#endif /* RTCDEBUG */
|
|
|
|
if (ct) {
|
|
ct->year = year - 1900; /* base 1900 */
|
|
ct->mon = month;
|
|
ct->day = date;
|
|
ct->hour = hour;
|
|
ct->min = min;
|
|
ct->sec = sec;
|
|
}
|
|
}
|
|
|
|
void
|
|
clock_get(dev, base, ct)
|
|
struct device *dev;
|
|
time_t base;
|
|
struct clocktime *ct;
|
|
{
|
|
|
|
struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
|
|
u_long timeh; /* elapse time (2*timeh sec) */
|
|
u_long timel; /* timel/32768 sec */
|
|
|
|
timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
|
|
timeh = (timeh << 16)
|
|
| bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
|
|
timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
|
|
|
|
#ifdef RTCDEBUG
|
|
printf("clock_get: timeh %08lx timel %08lx\n", timeh, timel);
|
|
#endif /* RTCDEBUG */
|
|
|
|
cvt_timehl_ct(timeh, timel, ct);
|
|
|
|
#ifdef RTCDEBUG
|
|
printf("clock_get: %d/%d/%d/%d/%d/%d\n",
|
|
ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec);
|
|
#endif /* RTCDEBUG */
|
|
}
|
|
|
|
|
|
void
|
|
clock_set(dev, ct)
|
|
struct device *dev;
|
|
struct clocktime *ct;
|
|
{
|
|
struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
|
|
u_long timeh; /* elapse time (2*timeh sec) */
|
|
u_long timel; /* timel/32768 sec */
|
|
int year, month, sec2;
|
|
|
|
timeh = 0;
|
|
timel = 0;
|
|
|
|
#ifdef RTCDEBUG
|
|
printf("clock_set: %d/%d/%d/%d/%d/%d\n",
|
|
ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec);
|
|
#endif /* RTCDEBUG */
|
|
ct->year += 1900;
|
|
#ifdef RTCDEBUG
|
|
printf("clock_set: %d/%d/%d/%d/%d/%d\n",
|
|
ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec);
|
|
#endif /* RTCDEBUG */
|
|
year = EPOCHYEAR;
|
|
sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2;
|
|
while (year < ct->year) {
|
|
year++;
|
|
timeh += sec2;
|
|
sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2;
|
|
}
|
|
month = 1; /* now month is 1..12 */
|
|
sec2 = (SECDAY * m2d[month-1])/2;
|
|
while (month < ct->mon) {
|
|
month++;
|
|
timeh += sec2;
|
|
sec2 = (SECDAY * m2d[month-1])/2;
|
|
if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
|
|
sec2 += SECDAY/2;
|
|
}
|
|
|
|
timeh += (ct->day - 1)*(SECDAY/2);
|
|
|
|
timeh += ct->hour*(SECHOUR/2);
|
|
|
|
timeh += ct->min*(SECMIN/2);
|
|
|
|
timeh += ct->sec/2;
|
|
timel += (ct->sec%2)*ETIME_L_HZ;
|
|
|
|
timeh += EPOCHOFF;
|
|
timeh -= (rtc_offset*(SECMIN/2));
|
|
|
|
#ifdef RTCDEBUG
|
|
cvt_timehl_ct(timeh, timel, NULL);
|
|
#endif /* RTCDEBUG */
|
|
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
|
|
ETIME_H_REG_W, (timeh>>16)&0xffff);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W, timeh&0xffff);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W, timel);
|
|
|
|
}
|
|
|