06de426449
- implement SIMPLEQ_REMOVE(head, elm, type, field). whilst it's O(n), this mirrors the functionality of SLIST_REMOVE() (the other singly-linked list type) and FreeBSD's STAILQ_REMOVE() - remove the unnecessary elm arg from SIMPLEQ_REMOVE_HEAD(). this mirrors the functionality of SLIST_REMOVE_HEAD() (the other singly-linked list type) and FreeBSD's STAILQ_REMOVE_HEAD() - remove notes about SIMPLEQ not supporting arbitrary element removal - use SIMPLEQ_FOREACH() instead of home-grown for loops - use SIMPLEQ_EMPTY() appropriately - use SIMPLEQ_*() instead of accessing sqh_first,sqh_last,sqe_next directly - reorder manual page; be consistent about how the types are listed - other minor cleanups
5974 lines
139 KiB
C
5974 lines
139 KiB
C
/* $NetBSD: tulip.c,v 1.115 2002/06/01 23:50:59 lukem Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center; and by Charles M. Hannum.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the Digital Semiconductor ``Tulip'' (21x4x)
|
|
* Ethernet controller family, and a variety of clone chips.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: tulip.c,v 1.115 2002/06/01 23:50:59 lukem Exp $");
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <machine/endian.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/mii_bitbang.h>
|
|
|
|
#include <dev/ic/tulipreg.h>
|
|
#include <dev/ic/tulipvar.h>
|
|
|
|
const char * const tlp_chip_names[] = TULIP_CHIP_NAMES;
|
|
|
|
const struct tulip_txthresh_tab tlp_10_txthresh_tab[] =
|
|
TLP_TXTHRESH_TAB_10;
|
|
|
|
const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] =
|
|
TLP_TXTHRESH_TAB_10_100;
|
|
|
|
const struct tulip_txthresh_tab tlp_winb_txthresh_tab[] =
|
|
TLP_TXTHRESH_TAB_WINB;
|
|
|
|
const struct tulip_txthresh_tab tlp_dm9102_txthresh_tab[] =
|
|
TLP_TXTHRESH_TAB_DM9102;
|
|
|
|
void tlp_start __P((struct ifnet *));
|
|
void tlp_watchdog __P((struct ifnet *));
|
|
int tlp_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
int tlp_init __P((struct ifnet *));
|
|
void tlp_stop __P((struct ifnet *, int));
|
|
|
|
void tlp_shutdown __P((void *));
|
|
|
|
void tlp_rxdrain __P((struct tulip_softc *));
|
|
int tlp_add_rxbuf __P((struct tulip_softc *, int));
|
|
void tlp_idle __P((struct tulip_softc *, u_int32_t));
|
|
void tlp_srom_idle __P((struct tulip_softc *));
|
|
int tlp_srom_size __P((struct tulip_softc *));
|
|
|
|
int tlp_enable __P((struct tulip_softc *));
|
|
void tlp_disable __P((struct tulip_softc *));
|
|
void tlp_power __P((int, void *));
|
|
|
|
void tlp_filter_setup __P((struct tulip_softc *));
|
|
void tlp_winb_filter_setup __P((struct tulip_softc *));
|
|
void tlp_al981_filter_setup __P((struct tulip_softc *));
|
|
|
|
void tlp_rxintr __P((struct tulip_softc *));
|
|
void tlp_txintr __P((struct tulip_softc *));
|
|
|
|
void tlp_mii_tick __P((void *));
|
|
void tlp_mii_statchg __P((struct device *));
|
|
void tlp_winb_mii_statchg __P((struct device *));
|
|
void tlp_dm9102_mii_statchg __P((struct device *));
|
|
|
|
void tlp_mii_getmedia __P((struct tulip_softc *, struct ifmediareq *));
|
|
int tlp_mii_setmedia __P((struct tulip_softc *));
|
|
|
|
int tlp_bitbang_mii_readreg __P((struct device *, int, int));
|
|
void tlp_bitbang_mii_writereg __P((struct device *, int, int, int));
|
|
|
|
int tlp_pnic_mii_readreg __P((struct device *, int, int));
|
|
void tlp_pnic_mii_writereg __P((struct device *, int, int, int));
|
|
|
|
int tlp_al981_mii_readreg __P((struct device *, int, int));
|
|
void tlp_al981_mii_writereg __P((struct device *, int, int, int));
|
|
|
|
void tlp_2114x_preinit __P((struct tulip_softc *));
|
|
void tlp_2114x_mii_preinit __P((struct tulip_softc *));
|
|
void tlp_pnic_preinit __P((struct tulip_softc *));
|
|
void tlp_dm9102_preinit __P((struct tulip_softc *));
|
|
|
|
void tlp_21140_reset __P((struct tulip_softc *));
|
|
void tlp_21142_reset __P((struct tulip_softc *));
|
|
void tlp_pmac_reset __P((struct tulip_softc *));
|
|
void tlp_dm9102_reset __P((struct tulip_softc *));
|
|
|
|
void tlp_2114x_nway_tick __P((void *));
|
|
|
|
#define tlp_mchash(addr, sz) \
|
|
(ether_crc32_le((addr), ETHER_ADDR_LEN) & ((sz) - 1))
|
|
|
|
/*
|
|
* MII bit-bang glue.
|
|
*/
|
|
u_int32_t tlp_sio_mii_bitbang_read __P((struct device *));
|
|
void tlp_sio_mii_bitbang_write __P((struct device *, u_int32_t));
|
|
|
|
const struct mii_bitbang_ops tlp_sio_mii_bitbang_ops = {
|
|
tlp_sio_mii_bitbang_read,
|
|
tlp_sio_mii_bitbang_write,
|
|
{
|
|
MIIROM_MDO, /* MII_BIT_MDO */
|
|
MIIROM_MDI, /* MII_BIT_MDI */
|
|
MIIROM_MDC, /* MII_BIT_MDC */
|
|
0, /* MII_BIT_DIR_HOST_PHY */
|
|
MIIROM_MIIDIR, /* MII_BIT_DIR_PHY_HOST */
|
|
}
|
|
};
|
|
|
|
#ifdef TLP_DEBUG
|
|
#define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
|
|
printf x
|
|
#else
|
|
#define DPRINTF(sc, x) /* nothing */
|
|
#endif
|
|
|
|
#ifdef TLP_STATS
|
|
void tlp_print_stats __P((struct tulip_softc *));
|
|
#endif
|
|
|
|
/*
|
|
* Can be used to debug the SROM-related things, including contents.
|
|
* Initialized so that it's patchable.
|
|
*/
|
|
int tlp_srom_debug = 0;
|
|
|
|
/*
|
|
* tlp_attach:
|
|
*
|
|
* Attach a Tulip interface to the system.
|
|
*/
|
|
void
|
|
tlp_attach(sc, enaddr)
|
|
struct tulip_softc *sc;
|
|
const u_int8_t *enaddr;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
int i, error;
|
|
|
|
callout_init(&sc->sc_nway_callout);
|
|
callout_init(&sc->sc_tick_callout);
|
|
|
|
/*
|
|
* NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift!
|
|
*/
|
|
|
|
/*
|
|
* Setup the transmit threshold table.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_DE425:
|
|
case TULIP_CHIP_21040:
|
|
case TULIP_CHIP_21041:
|
|
sc->sc_txth = tlp_10_txthresh_tab;
|
|
break;
|
|
|
|
case TULIP_CHIP_DM9102:
|
|
case TULIP_CHIP_DM9102A:
|
|
sc->sc_txth = tlp_dm9102_txthresh_tab;
|
|
break;
|
|
|
|
default:
|
|
sc->sc_txth = tlp_10_100_txthresh_tab;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Setup the filter setup function.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_WB89C840F:
|
|
sc->sc_filter_setup = tlp_winb_filter_setup;
|
|
break;
|
|
|
|
case TULIP_CHIP_AL981:
|
|
case TULIP_CHIP_AN983:
|
|
case TULIP_CHIP_AN985:
|
|
sc->sc_filter_setup = tlp_al981_filter_setup;
|
|
break;
|
|
|
|
default:
|
|
sc->sc_filter_setup = tlp_filter_setup;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set up the media status change function.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_WB89C840F:
|
|
sc->sc_statchg = tlp_winb_mii_statchg;
|
|
break;
|
|
|
|
case TULIP_CHIP_DM9102:
|
|
case TULIP_CHIP_DM9102A:
|
|
sc->sc_statchg = tlp_dm9102_mii_statchg;
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* We may override this if we have special media
|
|
* handling requirements (e.g. flipping GPIO pins).
|
|
*
|
|
* The pure-MII statchg function covers the basics.
|
|
*/
|
|
sc->sc_statchg = tlp_mii_statchg;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Default to no FS|LS in setup packet descriptors. They're
|
|
* supposed to be zero according to the 21040 and 21143
|
|
* manuals, and some chips fall over badly if they're
|
|
* included. Yet, other chips seem to require them. Sigh.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_X3201_3:
|
|
sc->sc_setup_fsls = TDCTL_Tx_FS|TDCTL_Tx_LS;
|
|
break;
|
|
|
|
default:
|
|
sc->sc_setup_fsls = 0;
|
|
}
|
|
|
|
/*
|
|
* Set up various chip-specific quirks.
|
|
*
|
|
* Note that wherever we can, we use the "ring" option for
|
|
* transmit and receive descriptors. This is because some
|
|
* clone chips apparently have problems when using chaining,
|
|
* although some *only* support chaining.
|
|
*
|
|
* What we do is always program the "next" pointer, and then
|
|
* conditionally set the TDCTL_CH and TDCTL_ER bits in the
|
|
* appropriate places.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_21140:
|
|
case TULIP_CHIP_21140A:
|
|
case TULIP_CHIP_21142:
|
|
case TULIP_CHIP_21143:
|
|
case TULIP_CHIP_82C115: /* 21143-like */
|
|
case TULIP_CHIP_MX98713: /* 21140-like */
|
|
case TULIP_CHIP_MX98713A: /* 21143-like */
|
|
case TULIP_CHIP_MX98715: /* 21143-like */
|
|
case TULIP_CHIP_MX98715A: /* 21143-like */
|
|
case TULIP_CHIP_MX98715AEC_X: /* 21143-like */
|
|
case TULIP_CHIP_MX98725: /* 21143-like */
|
|
/*
|
|
* Run these chips in ring mode.
|
|
*/
|
|
sc->sc_tdctl_ch = 0;
|
|
sc->sc_tdctl_er = TDCTL_ER;
|
|
sc->sc_preinit = tlp_2114x_preinit;
|
|
break;
|
|
|
|
case TULIP_CHIP_82C168:
|
|
case TULIP_CHIP_82C169:
|
|
/*
|
|
* Run these chips in ring mode.
|
|
*/
|
|
sc->sc_tdctl_ch = 0;
|
|
sc->sc_tdctl_er = TDCTL_ER;
|
|
sc->sc_preinit = tlp_pnic_preinit;
|
|
|
|
/*
|
|
* These chips seem to have busted DMA engines; just put them
|
|
* in Store-and-Forward mode from the get-go.
|
|
*/
|
|
sc->sc_txthresh = TXTH_SF;
|
|
break;
|
|
|
|
case TULIP_CHIP_WB89C840F:
|
|
/*
|
|
* Run this chip in chained mode.
|
|
*/
|
|
sc->sc_tdctl_ch = TDCTL_CH;
|
|
sc->sc_tdctl_er = 0;
|
|
sc->sc_flags |= TULIPF_IC_FS;
|
|
break;
|
|
|
|
case TULIP_CHIP_DM9102:
|
|
case TULIP_CHIP_DM9102A:
|
|
/*
|
|
* Run these chips in chained mode.
|
|
*/
|
|
sc->sc_tdctl_ch = TDCTL_CH;
|
|
sc->sc_tdctl_er = 0;
|
|
sc->sc_preinit = tlp_dm9102_preinit;
|
|
|
|
/*
|
|
* These chips have a broken bus interface, so we
|
|
* can't use any optimized bus commands. For this
|
|
* reason, we tend to underrun pretty quickly, so
|
|
* just to Store-and-Forward mode from the get-go.
|
|
*/
|
|
sc->sc_txthresh = TXTH_DM9102_SF;
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* Default to running in ring mode.
|
|
*/
|
|
sc->sc_tdctl_ch = 0;
|
|
sc->sc_tdctl_er = TDCTL_ER;
|
|
}
|
|
|
|
/*
|
|
* Set up the MII bit-bang operations.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_WB89C840F: /* XXX direction bit different? */
|
|
sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops;
|
|
break;
|
|
|
|
default:
|
|
sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops;
|
|
}
|
|
|
|
SIMPLEQ_INIT(&sc->sc_txfreeq);
|
|
SIMPLEQ_INIT(&sc->sc_txdirtyq);
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct tulip_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
|
|
1, &sc->sc_cdnseg, 0)) != 0) {
|
|
printf("%s: unable to allocate control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
|
|
sizeof(struct tulip_control_data), (caddr_t *)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
printf("%s: unable to map control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct tulip_control_data), 1,
|
|
sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
|
|
printf("%s: unable to create control data DMA map, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct tulip_control_data), NULL,
|
|
0)) != 0) {
|
|
printf("%s: unable to load control data DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*
|
|
* Note that on the Xircom clone, transmit buffers must be
|
|
* 4-byte aligned. We're almost guaranteed to have to copy
|
|
* the packet in that case, so we just limit ourselves to
|
|
* one segment.
|
|
*
|
|
* On the DM9102, the transmit logic can only handle one
|
|
* DMA segment.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_X3201_3:
|
|
case TULIP_CHIP_DM9102:
|
|
case TULIP_CHIP_DM9102A:
|
|
sc->sc_ntxsegs = 1;
|
|
break;
|
|
|
|
default:
|
|
sc->sc_ntxsegs = TULIP_NTXSEGS;
|
|
}
|
|
for (i = 0; i < TULIP_TXQUEUELEN; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
sc->sc_ntxsegs, MCLBYTES, 0, 0,
|
|
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
|
|
printf("%s: unable to create tx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < TULIP_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
|
|
printf("%s: unable to create rx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_5;
|
|
}
|
|
sc->sc_rxsoft[i].rxs_mbuf = NULL;
|
|
}
|
|
|
|
/*
|
|
* From this point forward, the attachment cannot fail. A failure
|
|
* before this point releases all resources that may have been
|
|
* allocated.
|
|
*/
|
|
sc->sc_flags |= TULIPF_ATTACHED;
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
tlp_reset(sc);
|
|
|
|
/* Announce ourselves. */
|
|
printf("%s: %s%sEthernet address %s\n", sc->sc_dev.dv_xname,
|
|
sc->sc_name[0] != '\0' ? sc->sc_name : "",
|
|
sc->sc_name[0] != '\0' ? ", " : "",
|
|
ether_sprintf(enaddr));
|
|
|
|
/*
|
|
* Initialize our media structures. This may probe the MII, if
|
|
* present.
|
|
*/
|
|
(*sc->sc_mediasw->tmsw_init)(sc);
|
|
|
|
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = tlp_ioctl;
|
|
ifp->if_start = tlp_start;
|
|
ifp->if_watchdog = tlp_watchdog;
|
|
ifp->if_init = tlp_init;
|
|
ifp->if_stop = tlp_stop;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* We can support 802.1Q VLAN-sized frames.
|
|
*/
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
|
|
|
|
/*
|
|
* Attach the interface.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
#if NRND > 0
|
|
rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
|
|
RND_TYPE_NET, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Make sure the interface is shutdown during reboot.
|
|
*/
|
|
sc->sc_sdhook = shutdownhook_establish(tlp_shutdown, sc);
|
|
if (sc->sc_sdhook == NULL)
|
|
printf("%s: WARNING: unable to establish shutdown hook\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
/*
|
|
* Add a suspend hook to make sure we come back up after a
|
|
* resume.
|
|
*/
|
|
sc->sc_powerhook = powerhook_establish(tlp_power, sc);
|
|
if (sc->sc_powerhook == NULL)
|
|
printf("%s: WARNING: unable to establish power hook\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < TULIP_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_rxsoft[i].rxs_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < TULIP_TXQUEUELEN; i++) {
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
|
|
sizeof(struct tulip_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* tlp_activate:
|
|
*
|
|
* Handle device activation/deactivation requests.
|
|
*/
|
|
int
|
|
tlp_activate(self, act)
|
|
struct device *self;
|
|
enum devact act;
|
|
{
|
|
struct tulip_softc *sc = (void *) self;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
switch (act) {
|
|
case DVACT_ACTIVATE:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
|
|
case DVACT_DEACTIVATE:
|
|
if (sc->sc_flags & TULIPF_HAS_MII)
|
|
mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
|
|
MII_OFFSET_ANY);
|
|
if_deactivate(&sc->sc_ethercom.ec_if);
|
|
break;
|
|
}
|
|
splx(s);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* tlp_detach:
|
|
*
|
|
* Detach a Tulip interface.
|
|
*/
|
|
int
|
|
tlp_detach(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct tulip_rxsoft *rxs;
|
|
struct tulip_txsoft *txs;
|
|
int i;
|
|
|
|
/*
|
|
* Succeed now if there isn't any work to do.
|
|
*/
|
|
if ((sc->sc_flags & TULIPF_ATTACHED) == 0)
|
|
return (0);
|
|
|
|
/* Unhook our tick handler. */
|
|
if (sc->sc_tick)
|
|
callout_stop(&sc->sc_tick_callout);
|
|
|
|
if (sc->sc_flags & TULIPF_HAS_MII) {
|
|
/* Detach all PHYs */
|
|
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
}
|
|
|
|
/* Delete all remaining media. */
|
|
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
|
|
|
|
#if NRND > 0
|
|
rnd_detach_source(&sc->sc_rnd_source);
|
|
#endif
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
|
|
for (i = 0; i < TULIP_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
|
|
}
|
|
for (i = 0; i < TULIP_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
|
|
sizeof(struct tulip_control_data));
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
|
|
|
|
shutdownhook_disestablish(sc->sc_sdhook);
|
|
powerhook_disestablish(sc->sc_powerhook);
|
|
|
|
if (sc->sc_srom)
|
|
free(sc->sc_srom, M_DEVBUF);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* tlp_shutdown:
|
|
*
|
|
* Make sure the interface is stopped at reboot time.
|
|
*/
|
|
void
|
|
tlp_shutdown(arg)
|
|
void *arg;
|
|
{
|
|
struct tulip_softc *sc = arg;
|
|
|
|
tlp_stop(&sc->sc_ethercom.ec_if, 1);
|
|
}
|
|
|
|
/*
|
|
* tlp_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
void
|
|
tlp_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct tulip_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
struct tulip_txsoft *txs, *last_txs;
|
|
bus_dmamap_t dmamap;
|
|
int error, firsttx, nexttx, lasttx, ofree, seg;
|
|
|
|
DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n",
|
|
sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
|
|
|
|
/*
|
|
* If we want a filter setup, it means no more descriptors were
|
|
* available for the setup routine. Let it get a chance to wedge
|
|
* itself into the ring.
|
|
*/
|
|
if (sc->sc_flags & TULIPF_WANT_SETUP)
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
if (sc->sc_tick == tlp_2114x_nway_tick &&
|
|
(sc->sc_flags & TULIPF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of free descriptors and
|
|
* the first descriptor we'll use.
|
|
*/
|
|
ofree = sc->sc_txfree;
|
|
firsttx = sc->sc_txnext;
|
|
|
|
DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n",
|
|
sc->sc_dev.dv_xname, ofree, firsttx));
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
|
|
sc->sc_txfree != 0) {
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
m = NULL;
|
|
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the alloted number of segments, or we were
|
|
* short on resources. In this case, we'll copy and try
|
|
* again.
|
|
*
|
|
* Note that if we're only allowed 1 Tx segment, we
|
|
* have an alignment restriction. Do this test before
|
|
* attempting to load the DMA map, because it's more
|
|
* likely we'll trip the alignment test than the
|
|
* more-than-one-segment test.
|
|
*/
|
|
if ((sc->sc_ntxsegs == 1 && (mtod(m0, uintptr_t) & 3) != 0) ||
|
|
bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
printf("%s: unable to allocate Tx mbuf\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
printf("%s: unable to allocate Tx "
|
|
"cluster\n", sc->sc_dev.dv_xname);
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
|
|
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: unable to load Tx buffer, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet.
|
|
*/
|
|
if (dmamap->dm_nsegs > sc->sc_txfree) {
|
|
/*
|
|
* Not enough free descriptors to transmit this
|
|
* packet. We haven't committed to anything yet,
|
|
* so just unload the DMA map, put the packet
|
|
* back on the queue, and punt. Notify the upper
|
|
* layer that there are no more slots left.
|
|
*
|
|
* XXX We could allocate an mbuf and copy, but
|
|
* XXX it is worth it?
|
|
*/
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m != NULL) {
|
|
m_freem(m0);
|
|
m0 = m;
|
|
}
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
for (nexttx = sc->sc_txnext, seg = 0;
|
|
seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = TULIP_NEXTTX(nexttx)) {
|
|
/*
|
|
* If this is the first descriptor we're
|
|
* enqueueing, don't set the OWN bit just
|
|
* yet. That could cause a race condition.
|
|
* We'll do it below.
|
|
*/
|
|
sc->sc_txdescs[nexttx].td_status =
|
|
(nexttx == firsttx) ? 0 : htole32(TDSTAT_OWN);
|
|
sc->sc_txdescs[nexttx].td_bufaddr1 =
|
|
htole32(dmamap->dm_segs[seg].ds_addr);
|
|
sc->sc_txdescs[nexttx].td_ctl =
|
|
htole32((dmamap->dm_segs[seg].ds_len <<
|
|
TDCTL_SIZE1_SHIFT) | sc->sc_tdctl_ch |
|
|
(nexttx == (TULIP_NTXDESC - 1) ?
|
|
sc->sc_tdctl_er : 0));
|
|
lasttx = nexttx;
|
|
}
|
|
|
|
/* Set `first segment' and `last segment' appropriately. */
|
|
sc->sc_txdescs[sc->sc_txnext].td_ctl |= htole32(TDCTL_Tx_FS);
|
|
sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_LS);
|
|
|
|
#ifdef TLP_DEBUG
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
printf(" txsoft %p transmit chain:\n", txs);
|
|
for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) {
|
|
printf(" descriptor %d:\n", seg);
|
|
printf(" td_status: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[seg].td_status));
|
|
printf(" td_ctl: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[seg].td_ctl));
|
|
printf(" td_bufaddr1: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[seg].td_bufaddr1));
|
|
printf(" td_bufaddr2: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[seg].td_bufaddr2));
|
|
if (seg == lasttx)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Sync the descriptors we're using. */
|
|
TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later,
|
|
* and remember what txdirty will be once the packet is
|
|
* done.
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
txs->txs_lastdesc = lasttx;
|
|
txs->txs_ndescs = dmamap->dm_nsegs;
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txfree -= dmamap->dm_nsegs;
|
|
sc->sc_txnext = nexttx;
|
|
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
|
|
|
|
last_txs = txs;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif /* NBPFILTER > 0 */
|
|
}
|
|
|
|
if (txs == NULL || sc->sc_txfree == 0) {
|
|
/* No more slots left; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
|
|
if (sc->sc_txfree != ofree) {
|
|
DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
|
|
sc->sc_dev.dv_xname, lasttx, firsttx));
|
|
/*
|
|
* Cause a transmit interrupt to happen on the
|
|
* last packet we enqueued.
|
|
*/
|
|
sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_IC);
|
|
TULIP_CDTXSYNC(sc, lasttx, 1,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Some clone chips want IC on the *first* segment in
|
|
* the packet. Appease them.
|
|
*/
|
|
if ((sc->sc_flags & TULIPF_IC_FS) != 0 &&
|
|
last_txs->txs_firstdesc != lasttx) {
|
|
sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |=
|
|
htole32(TDCTL_Tx_IC);
|
|
TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/*
|
|
* The entire packet chain is set up. Give the
|
|
* first descriptor to the chip now.
|
|
*/
|
|
sc->sc_txdescs[firsttx].td_status |= htole32(TDSTAT_OWN);
|
|
TULIP_CDTXSYNC(sc, firsttx, 1,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Wake up the transmitter. */
|
|
/* XXX USE AUTOPOLLING? */
|
|
TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* tlp_watchdog: [ifnet interface function]
|
|
*
|
|
* Watchdog timer handler.
|
|
*/
|
|
void
|
|
tlp_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct tulip_softc *sc = ifp->if_softc;
|
|
int doing_setup, doing_transmit;
|
|
|
|
doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP);
|
|
doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
|
|
|
|
if (doing_setup && doing_transmit) {
|
|
printf("%s: filter setup and transmit timeout\n",
|
|
sc->sc_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
} else if (doing_transmit) {
|
|
printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
} else if (doing_setup)
|
|
printf("%s: filter setup timeout\n", sc->sc_dev.dv_xname);
|
|
else
|
|
printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
|
|
|
|
(void) tlp_init(ifp);
|
|
|
|
/* Try to get more packets going. */
|
|
tlp_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* tlp_ioctl: [ifnet interface function]
|
|
*
|
|
* Handle control requests from the operator.
|
|
*/
|
|
int
|
|
tlp_ioctl(ifp, cmd, data)
|
|
struct ifnet *ifp;
|
|
u_long cmd;
|
|
caddr_t data;
|
|
{
|
|
struct tulip_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
if (TULIP_IS_ENABLED(sc)) {
|
|
/*
|
|
* Multicast list has changed. Set the
|
|
* hardware filter accordingly.
|
|
*/
|
|
(*sc->sc_filter_setup)(sc);
|
|
}
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
if (TULIP_IS_ENABLED(sc))
|
|
tlp_start(ifp);
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* tlp_intr:
|
|
*
|
|
* Interrupt service routine.
|
|
*/
|
|
int
|
|
tlp_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct tulip_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
u_int32_t status, rxstatus, txstatus;
|
|
int handled = 0, txthresh;
|
|
|
|
DPRINTF(sc, ("%s: tlp_intr\n", sc->sc_dev.dv_xname));
|
|
|
|
#ifdef DEBUG
|
|
if (TULIP_IS_ENABLED(sc) == 0)
|
|
panic("%s: tlp_intr: not enabled\n", sc->sc_dev.dv_xname);
|
|
#endif
|
|
|
|
/*
|
|
* If the interface isn't running, the interrupt couldn't
|
|
* possibly have come from us.
|
|
*/
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
|
|
(sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
|
|
return (0);
|
|
|
|
/* Disable interrupts on the DM9102 (interrupt edge bug). */
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_DM9102:
|
|
case TULIP_CHIP_DM9102A:
|
|
TULIP_WRITE(sc, CSR_INTEN, 0);
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
|
|
for (;;) {
|
|
status = TULIP_READ(sc, CSR_STATUS);
|
|
if (status)
|
|
TULIP_WRITE(sc, CSR_STATUS, status);
|
|
|
|
if ((status & sc->sc_inten) == 0)
|
|
break;
|
|
|
|
handled = 1;
|
|
|
|
rxstatus = status & sc->sc_rxint_mask;
|
|
txstatus = status & sc->sc_txint_mask;
|
|
|
|
if (rxstatus) {
|
|
/* Grab new any new packets. */
|
|
tlp_rxintr(sc);
|
|
|
|
if (rxstatus & STATUS_RWT)
|
|
printf("%s: receive watchdog timeout\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
if (rxstatus & STATUS_RU) {
|
|
printf("%s: receive ring overrun\n",
|
|
sc->sc_dev.dv_xname);
|
|
/* Get the receive process going again. */
|
|
if (sc->sc_tdctl_er != TDCTL_ER) {
|
|
tlp_idle(sc, OPMODE_SR);
|
|
TULIP_WRITE(sc, CSR_RXLIST,
|
|
TULIP_CDRXADDR(sc, sc->sc_rxptr));
|
|
TULIP_WRITE(sc, CSR_OPMODE,
|
|
sc->sc_opmode);
|
|
}
|
|
TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (txstatus) {
|
|
/* Sweep up transmit descriptors. */
|
|
tlp_txintr(sc);
|
|
|
|
if (txstatus & STATUS_TJT)
|
|
printf("%s: transmit jabber timeout\n",
|
|
sc->sc_dev.dv_xname);
|
|
|
|
if (txstatus & STATUS_UNF) {
|
|
/*
|
|
* Increase our transmit threshold if
|
|
* another is available.
|
|
*/
|
|
txthresh = sc->sc_txthresh + 1;
|
|
if (sc->sc_txth[txthresh].txth_name != NULL) {
|
|
/* Idle the transmit process. */
|
|
tlp_idle(sc, OPMODE_ST);
|
|
|
|
sc->sc_txthresh = txthresh;
|
|
sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF);
|
|
sc->sc_opmode |=
|
|
sc->sc_txth[txthresh].txth_opmode;
|
|
printf("%s: transmit underrun; new "
|
|
"threshold: %s\n",
|
|
sc->sc_dev.dv_xname,
|
|
sc->sc_txth[txthresh].txth_name);
|
|
|
|
/*
|
|
* Set the new threshold and restart
|
|
* the transmit process.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_OPMODE,
|
|
sc->sc_opmode);
|
|
}
|
|
/*
|
|
* XXX Log every Nth underrun from
|
|
* XXX now on?
|
|
*/
|
|
}
|
|
}
|
|
|
|
if (status & (STATUS_TPS|STATUS_RPS)) {
|
|
if (status & STATUS_TPS)
|
|
printf("%s: transmit process stopped\n",
|
|
sc->sc_dev.dv_xname);
|
|
if (status & STATUS_RPS)
|
|
printf("%s: receive process stopped\n",
|
|
sc->sc_dev.dv_xname);
|
|
(void) tlp_init(ifp);
|
|
break;
|
|
}
|
|
|
|
if (status & STATUS_SE) {
|
|
const char *str;
|
|
switch (status & STATUS_EB) {
|
|
case STATUS_EB_PARITY:
|
|
str = "parity error";
|
|
break;
|
|
|
|
case STATUS_EB_MABT:
|
|
str = "master abort";
|
|
break;
|
|
|
|
case STATUS_EB_TABT:
|
|
str = "target abort";
|
|
break;
|
|
|
|
default:
|
|
str = "unknown error";
|
|
break;
|
|
}
|
|
printf("%s: fatal system error: %s\n",
|
|
sc->sc_dev.dv_xname, str);
|
|
(void) tlp_init(ifp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Not handled:
|
|
*
|
|
* Transmit buffer unavailable -- normal
|
|
* condition, nothing to do, really.
|
|
*
|
|
* General purpose timer experied -- we don't
|
|
* use the general purpose timer.
|
|
*
|
|
* Early receive interrupt -- not available on
|
|
* all chips, we just use RI. We also only
|
|
* use single-segment receive DMA, so this
|
|
* is mostly useless.
|
|
*/
|
|
}
|
|
|
|
/* Bring interrupts back up on the DM9102. */
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_DM9102:
|
|
case TULIP_CHIP_DM9102A:
|
|
TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten);
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
tlp_start(ifp);
|
|
|
|
#if NRND > 0
|
|
if (handled)
|
|
rnd_add_uint32(&sc->sc_rnd_source, status);
|
|
#endif
|
|
return (handled);
|
|
}
|
|
|
|
/*
|
|
* tlp_rxintr:
|
|
*
|
|
* Helper; handle receive interrupts.
|
|
*/
|
|
void
|
|
tlp_rxintr(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_header *eh;
|
|
struct tulip_rxsoft *rxs;
|
|
struct mbuf *m;
|
|
u_int32_t rxstat;
|
|
int i, len;
|
|
|
|
for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
|
|
TULIP_CDRXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
rxstat = le32toh(sc->sc_rxdescs[i].td_status);
|
|
|
|
if (rxstat & TDSTAT_OWN) {
|
|
/*
|
|
* We have processed all of the receive buffers.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure the packet fit in one buffer. This should
|
|
* always be the case. But the Lite-On PNIC, rev 33
|
|
* has an awful receive engine bug, which may require
|
|
* a very icky work-around.
|
|
*/
|
|
if ((rxstat & (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) !=
|
|
(TDSTAT_Rx_FS|TDSTAT_Rx_LS)) {
|
|
printf("%s: incoming packet spilled, resetting\n",
|
|
sc->sc_dev.dv_xname);
|
|
(void) tlp_init(ifp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If any collisions were seen on the wire, count one.
|
|
*/
|
|
if (rxstat & TDSTAT_Rx_CS)
|
|
ifp->if_collisions++;
|
|
|
|
/*
|
|
* If an error occurred, update stats, clear the status
|
|
* word, and leave the packet buffer in place. It will
|
|
* simply be reused the next time the ring comes around.
|
|
* If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
|
|
* error.
|
|
*/
|
|
if (rxstat & TDSTAT_ES &&
|
|
((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
|
|
(rxstat & (TDSTAT_Rx_DE | TDSTAT_Rx_RF |
|
|
TDSTAT_Rx_DB | TDSTAT_Rx_CE)) != 0)) {
|
|
#define PRINTERR(bit, str) \
|
|
if (rxstat & (bit)) \
|
|
printf("%s: receive error: %s\n", \
|
|
sc->sc_dev.dv_xname, str)
|
|
ifp->if_ierrors++;
|
|
PRINTERR(TDSTAT_Rx_DE, "descriptor error");
|
|
PRINTERR(TDSTAT_Rx_RF, "runt frame");
|
|
PRINTERR(TDSTAT_Rx_TL, "frame too long");
|
|
PRINTERR(TDSTAT_Rx_RE, "MII error");
|
|
PRINTERR(TDSTAT_Rx_DB, "dribbling bit");
|
|
PRINTERR(TDSTAT_Rx_CE, "CRC error");
|
|
#undef PRINTERR
|
|
TULIP_INIT_RXDESC(sc, i);
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
* No errors; receive the packet. Note the Tulip
|
|
* includes the CRC with every packet.
|
|
*/
|
|
len = TDSTAT_Rx_LENGTH(rxstat);
|
|
|
|
#ifdef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* Allocate a new mbuf cluster. If that fails, we are
|
|
* out of memory, and must drop the packet and recycle
|
|
* the buffer that's already attached to this descriptor.
|
|
*/
|
|
m = rxs->rxs_mbuf;
|
|
if (tlp_add_rxbuf(sc, i) != 0) {
|
|
ifp->if_ierrors++;
|
|
TULIP_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
#else
|
|
/*
|
|
* The Tulip's receive buffers must be 4-byte aligned.
|
|
* But this means that the data after the Ethernet header
|
|
* is misaligned. We must allocate a new buffer and
|
|
* copy the data, shifted forward 2 bytes.
|
|
*/
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
TULIP_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
if (len > (MHLEN - 2)) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
goto dropit;
|
|
}
|
|
}
|
|
m->m_data += 2;
|
|
|
|
/*
|
|
* Note that we use clusters for incoming frames, so the
|
|
* buffer is virtually contiguous.
|
|
*/
|
|
memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
|
|
|
|
/* Allow the receive descriptor to continue using its mbuf. */
|
|
TULIP_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
#endif /* __NO_STRICT_ALIGNMENT */
|
|
|
|
ifp->if_ipackets++;
|
|
eh = mtod(m, struct ether_header *);
|
|
m->m_flags |= M_HASFCS;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass this up to any BPF listeners, but only
|
|
* pass it up the stack if its for us.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif /* NPBFILTER > 0 */
|
|
|
|
/*
|
|
* We sometimes have to run the 21140 in Hash-Only
|
|
* mode. If we're in that mode, and not in promiscuous
|
|
* mode, and we have a unicast packet that isn't for
|
|
* us, then drop it.
|
|
*/
|
|
if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY &&
|
|
(ifp->if_flags & IFF_PROMISC) == 0 &&
|
|
ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
|
|
memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
|
|
ETHER_ADDR_LEN) != 0) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
/* Update the receive pointer. */
|
|
sc->sc_rxptr = i;
|
|
}
|
|
|
|
/*
|
|
* tlp_txintr:
|
|
*
|
|
* Helper; handle transmit interrupts.
|
|
*/
|
|
void
|
|
tlp_txintr(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct tulip_txsoft *txs;
|
|
u_int32_t txstat;
|
|
|
|
DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n",
|
|
sc->sc_dev.dv_xname, sc->sc_flags));
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
TULIP_CDTXSYNC(sc, txs->txs_lastdesc,
|
|
txs->txs_ndescs,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
#ifdef TLP_DEBUG
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
int i;
|
|
printf(" txsoft %p transmit chain:\n", txs);
|
|
for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) {
|
|
printf(" descriptor %d:\n", i);
|
|
printf(" td_status: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[i].td_status));
|
|
printf(" td_ctl: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[i].td_ctl));
|
|
printf(" td_bufaddr1: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[i].td_bufaddr1));
|
|
printf(" td_bufaddr2: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[i].td_bufaddr2));
|
|
if (i == txs->txs_lastdesc)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].td_status);
|
|
if (txstat & TDSTAT_OWN)
|
|
break;
|
|
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
|
|
sc->sc_txfree += txs->txs_ndescs;
|
|
|
|
if (txs->txs_mbuf == NULL) {
|
|
/*
|
|
* If we didn't have an mbuf, it was the setup
|
|
* packet.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if ((sc->sc_flags & TULIPF_DOING_SETUP) == 0)
|
|
panic("tlp_txintr: null mbuf, not doing setup");
|
|
#endif
|
|
TULIP_CDSPSYNC(sc, BUS_DMASYNC_POSTWRITE);
|
|
sc->sc_flags &= ~TULIPF_DOING_SETUP;
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
|
|
/*
|
|
* Check for errors and collisions.
|
|
*/
|
|
#ifdef TLP_STATS
|
|
if (txstat & TDSTAT_Tx_UF)
|
|
sc->sc_stats.ts_tx_uf++;
|
|
if (txstat & TDSTAT_Tx_TO)
|
|
sc->sc_stats.ts_tx_to++;
|
|
if (txstat & TDSTAT_Tx_EC)
|
|
sc->sc_stats.ts_tx_ec++;
|
|
if (txstat & TDSTAT_Tx_LC)
|
|
sc->sc_stats.ts_tx_lc++;
|
|
#endif
|
|
|
|
if (txstat & (TDSTAT_Tx_UF|TDSTAT_Tx_TO))
|
|
ifp->if_oerrors++;
|
|
|
|
if (txstat & TDSTAT_Tx_EC)
|
|
ifp->if_collisions += 16;
|
|
else
|
|
ifp->if_collisions += TDSTAT_Tx_COLLISIONS(txstat);
|
|
if (txstat & TDSTAT_Tx_LC)
|
|
ifp->if_collisions++;
|
|
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
/*
|
|
* If there are no more pending transmissions, cancel the watchdog
|
|
* timer.
|
|
*/
|
|
if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0)
|
|
ifp->if_timer = 0;
|
|
|
|
/*
|
|
* If we have a receive filter setup pending, do it now.
|
|
*/
|
|
if (sc->sc_flags & TULIPF_WANT_SETUP)
|
|
(*sc->sc_filter_setup)(sc);
|
|
}
|
|
|
|
#ifdef TLP_STATS
|
|
void
|
|
tlp_print_stats(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
|
|
sc->sc_dev.dv_xname,
|
|
sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
|
|
sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* tlp_reset:
|
|
*
|
|
* Perform a soft reset on the Tulip.
|
|
*/
|
|
void
|
|
tlp_reset(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
|
|
|
|
/*
|
|
* Xircom clone doesn't bring itself out of reset automatically.
|
|
* Instead, we have to wait at least 50 PCI cycles, and then
|
|
* clear SWR.
|
|
*/
|
|
if (sc->sc_chip == TULIP_CHIP_X3201_3) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_BUSMODE, 0);
|
|
}
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
/*
|
|
* Wait at least 50 PCI cycles for the reset to
|
|
* complete before peeking at the Tulip again.
|
|
* 10 uSec is a bit longer than 50 PCI cycles
|
|
* (at 33MHz), but it doesn't hurt have the extra
|
|
* wait.
|
|
*/
|
|
delay(10);
|
|
if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
|
|
break;
|
|
}
|
|
|
|
if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
|
|
printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
|
|
|
|
delay(1000);
|
|
|
|
/*
|
|
* If the board has any GPIO reset sequences to issue, do them now.
|
|
*/
|
|
if (sc->sc_reset != NULL)
|
|
(*sc->sc_reset)(sc);
|
|
}
|
|
|
|
/*
|
|
* tlp_init: [ ifnet interface function ]
|
|
*
|
|
* Initialize the interface. Must be called at splnet().
|
|
*/
|
|
int
|
|
tlp_init(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct tulip_softc *sc = ifp->if_softc;
|
|
struct tulip_txsoft *txs;
|
|
struct tulip_rxsoft *rxs;
|
|
int i, error = 0;
|
|
|
|
if ((error = tlp_enable(sc)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
tlp_stop(ifp, 0);
|
|
|
|
/*
|
|
* Initialize `opmode' to 0, and call the pre-init routine, if
|
|
* any. This is required because the 2114x and some of the
|
|
* clones require that the media-related bits in `opmode' be
|
|
* set before performing a soft-reset in order to get internal
|
|
* chip pathways are correct. Yay!
|
|
*/
|
|
sc->sc_opmode = 0;
|
|
if (sc->sc_preinit != NULL)
|
|
(*sc->sc_preinit)(sc);
|
|
|
|
/*
|
|
* Reset the Tulip to a known state.
|
|
*/
|
|
tlp_reset(sc);
|
|
|
|
/*
|
|
* Initialize the BUSMODE register.
|
|
*/
|
|
sc->sc_busmode = BUSMODE_BAR;
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_21140:
|
|
case TULIP_CHIP_21140A:
|
|
case TULIP_CHIP_21142:
|
|
case TULIP_CHIP_21143:
|
|
case TULIP_CHIP_82C115:
|
|
case TULIP_CHIP_MX98725:
|
|
/*
|
|
* If we're allowed to do so, use Memory Read Line
|
|
* and Memory Read Multiple.
|
|
*
|
|
* XXX Should we use Memory Write and Invalidate?
|
|
*/
|
|
if (sc->sc_flags & TULIPF_MRL)
|
|
sc->sc_busmode |= BUSMODE_RLE;
|
|
if (sc->sc_flags & TULIPF_MRM)
|
|
sc->sc_busmode |= BUSMODE_RME;
|
|
#if 0
|
|
if (sc->sc_flags & TULIPF_MWI)
|
|
sc->sc_busmode |= BUSMODE_WLE;
|
|
#endif
|
|
break;
|
|
|
|
case TULIP_CHIP_82C168:
|
|
case TULIP_CHIP_82C169:
|
|
sc->sc_busmode |= BUSMODE_PNIC_MBO;
|
|
if (sc->sc_maxburst == 0)
|
|
sc->sc_maxburst = 16;
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
switch (sc->sc_cacheline) {
|
|
default:
|
|
/*
|
|
* Note: We must *always* set these bits; a cache
|
|
* alignment of 0 is RESERVED.
|
|
*/
|
|
case 8:
|
|
sc->sc_busmode |= BUSMODE_CAL_8LW;
|
|
break;
|
|
case 16:
|
|
sc->sc_busmode |= BUSMODE_CAL_16LW;
|
|
break;
|
|
case 32:
|
|
sc->sc_busmode |= BUSMODE_CAL_32LW;
|
|
break;
|
|
}
|
|
switch (sc->sc_maxburst) {
|
|
case 1:
|
|
sc->sc_busmode |= BUSMODE_PBL_1LW;
|
|
break;
|
|
case 2:
|
|
sc->sc_busmode |= BUSMODE_PBL_2LW;
|
|
break;
|
|
case 4:
|
|
sc->sc_busmode |= BUSMODE_PBL_4LW;
|
|
break;
|
|
case 8:
|
|
sc->sc_busmode |= BUSMODE_PBL_8LW;
|
|
break;
|
|
case 16:
|
|
sc->sc_busmode |= BUSMODE_PBL_16LW;
|
|
break;
|
|
case 32:
|
|
sc->sc_busmode |= BUSMODE_PBL_32LW;
|
|
break;
|
|
default:
|
|
sc->sc_busmode |= BUSMODE_PBL_DEFAULT;
|
|
break;
|
|
}
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
/*
|
|
* Can't use BUSMODE_BLE or BUSMODE_DBO; not all chips
|
|
* support them, and even on ones that do, it doesn't
|
|
* always work. So we always access descriptors with
|
|
* little endian via htole32/le32toh.
|
|
*/
|
|
#endif
|
|
/*
|
|
* Big-endian bus requires BUSMODE_BLE anyway.
|
|
* Also, BUSMODE_DBO is needed because we assume
|
|
* descriptors are little endian.
|
|
*/
|
|
if (sc->sc_flags & TULIPF_BLE)
|
|
sc->sc_busmode |= BUSMODE_BLE;
|
|
if (sc->sc_flags & TULIPF_DBO)
|
|
sc->sc_busmode |= BUSMODE_DBO;
|
|
|
|
/*
|
|
* Some chips have a broken bus interface.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_DM9102:
|
|
case TULIP_CHIP_DM9102A:
|
|
sc->sc_busmode = 0;
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
|
|
TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode);
|
|
|
|
/*
|
|
* Initialize the OPMODE register. We don't write it until
|
|
* we're ready to begin the transmit and receive processes.
|
|
*
|
|
* Media-related OPMODE bits are set in the media callbacks
|
|
* for each specific chip/board.
|
|
*/
|
|
sc->sc_opmode |= OPMODE_SR | OPMODE_ST |
|
|
sc->sc_txth[sc->sc_txthresh].txth_opmode;
|
|
|
|
/*
|
|
* Magical mystery initialization on the Macronix chips.
|
|
* The MX98713 uses its own magic value, the rest share
|
|
* a common one.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_MX98713:
|
|
TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713);
|
|
break;
|
|
|
|
case TULIP_CHIP_MX98713A:
|
|
case TULIP_CHIP_MX98715:
|
|
case TULIP_CHIP_MX98715A:
|
|
case TULIP_CHIP_MX98715AEC_X:
|
|
case TULIP_CHIP_MX98725:
|
|
TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715);
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring.
|
|
*/
|
|
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
|
|
for (i = 0; i < TULIP_NTXDESC; i++) {
|
|
sc->sc_txdescs[i].td_ctl = htole32(sc->sc_tdctl_ch);
|
|
sc->sc_txdescs[i].td_bufaddr2 =
|
|
htole32(TULIP_CDTXADDR(sc, TULIP_NEXTTX(i)));
|
|
}
|
|
sc->sc_txdescs[TULIP_NTXDESC - 1].td_ctl |= htole32(sc->sc_tdctl_er);
|
|
TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
sc->sc_txfree = TULIP_NTXDESC;
|
|
sc->sc_txnext = 0;
|
|
|
|
/*
|
|
* Initialize the transmit job descriptors.
|
|
*/
|
|
SIMPLEQ_INIT(&sc->sc_txfreeq);
|
|
SIMPLEQ_INIT(&sc->sc_txdirtyq);
|
|
for (i = 0; i < TULIP_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
txs->txs_mbuf = NULL;
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
/*
|
|
* Initialize the receive descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
for (i = 0; i < TULIP_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf == NULL) {
|
|
if ((error = tlp_add_rxbuf(sc, i)) != 0) {
|
|
printf("%s: unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
tlp_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
} else
|
|
TULIP_INIT_RXDESC(sc, i);
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
|
|
/*
|
|
* Initialize the interrupt mask and enable interrupts.
|
|
*/
|
|
/* normal interrupts */
|
|
sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
|
|
|
|
/* abnormal interrupts */
|
|
sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
|
|
STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS;
|
|
|
|
sc->sc_rxint_mask = STATUS_RI|STATUS_RU|STATUS_RWT;
|
|
sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_WB89C840F:
|
|
/*
|
|
* Clear bits that we don't want that happen to
|
|
* overlap or don't exist.
|
|
*/
|
|
sc->sc_inten &= ~(STATUS_WINB_REI|STATUS_RWT);
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
|
|
sc->sc_rxint_mask &= sc->sc_inten;
|
|
sc->sc_txint_mask &= sc->sc_inten;
|
|
|
|
TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten);
|
|
TULIP_WRITE(sc, CSR_STATUS, 0xffffffff);
|
|
|
|
/*
|
|
* Give the transmit and receive rings to the Tulip.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext));
|
|
TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr));
|
|
|
|
/*
|
|
* On chips that do this differently, set the station address.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_WB89C840F:
|
|
{
|
|
/* XXX Do this with stream writes? */
|
|
bus_addr_t cpa = TULIP_CSR_OFFSET(sc, CSR_WINB_CPA0);
|
|
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
bus_space_write_1(sc->sc_st, sc->sc_sh,
|
|
cpa + i, LLADDR(ifp->if_sadl)[i]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TULIP_CHIP_AL981:
|
|
case TULIP_CHIP_AN983:
|
|
case TULIP_CHIP_AN985:
|
|
{
|
|
u_int32_t reg;
|
|
u_int8_t *enaddr = LLADDR(ifp->if_sadl);
|
|
|
|
reg = enaddr[0] |
|
|
(enaddr[1] << 8) |
|
|
(enaddr[2] << 16) |
|
|
(enaddr[3] << 24);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR0, reg);
|
|
|
|
reg = enaddr[4] |
|
|
(enaddr[5] << 8);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR1, reg);
|
|
}
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set the receive filter. This will start the transmit and
|
|
* receive processes.
|
|
*/
|
|
(*sc->sc_filter_setup)(sc);
|
|
|
|
/*
|
|
* Set the current media.
|
|
*/
|
|
(void) (*sc->sc_mediasw->tmsw_set)(sc);
|
|
|
|
/*
|
|
* Start the receive process.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
|
|
|
|
if (sc->sc_tick != NULL) {
|
|
/* Start the one second clock. */
|
|
callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Note that the interface is now running.
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
out:
|
|
if (error) {
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* tlp_enable:
|
|
*
|
|
* Enable the Tulip chip.
|
|
*/
|
|
int
|
|
tlp_enable(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
if (TULIP_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
|
|
if ((*sc->sc_enable)(sc) != 0) {
|
|
printf("%s: device enable failed\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (EIO);
|
|
}
|
|
sc->sc_flags |= TULIPF_ENABLED;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* tlp_disable:
|
|
*
|
|
* Disable the Tulip chip.
|
|
*/
|
|
void
|
|
tlp_disable(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
if (TULIP_IS_ENABLED(sc) && sc->sc_disable != NULL) {
|
|
(*sc->sc_disable)(sc);
|
|
sc->sc_flags &= ~TULIPF_ENABLED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* tlp_power:
|
|
*
|
|
* Power management (suspend/resume) hook.
|
|
*/
|
|
void
|
|
tlp_power(why, arg)
|
|
int why;
|
|
void *arg;
|
|
{
|
|
struct tulip_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
int s;
|
|
|
|
s = splnet();
|
|
switch (why) {
|
|
case PWR_SUSPEND:
|
|
case PWR_STANDBY:
|
|
tlp_stop(ifp, 0);
|
|
if (sc->sc_power != NULL)
|
|
(*sc->sc_power)(sc, why);
|
|
break;
|
|
case PWR_RESUME:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (sc->sc_power != NULL)
|
|
(*sc->sc_power)(sc, why);
|
|
tlp_init(ifp);
|
|
}
|
|
break;
|
|
case PWR_SOFTSUSPEND:
|
|
case PWR_SOFTSTANDBY:
|
|
case PWR_SOFTRESUME:
|
|
break;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* tlp_rxdrain:
|
|
*
|
|
* Drain the receive queue.
|
|
*/
|
|
void
|
|
tlp_rxdrain(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct tulip_rxsoft *rxs;
|
|
int i;
|
|
|
|
for (i = 0; i < TULIP_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* tlp_stop: [ ifnet interface function ]
|
|
*
|
|
* Stop transmission on the interface.
|
|
*/
|
|
void
|
|
tlp_stop(ifp, disable)
|
|
struct ifnet *ifp;
|
|
int disable;
|
|
{
|
|
struct tulip_softc *sc = ifp->if_softc;
|
|
struct tulip_txsoft *txs;
|
|
|
|
if (sc->sc_tick != NULL) {
|
|
/* Stop the one second clock. */
|
|
callout_stop(&sc->sc_tick_callout);
|
|
}
|
|
|
|
if (sc->sc_flags & TULIPF_HAS_MII) {
|
|
/* Down the MII. */
|
|
mii_down(&sc->sc_mii);
|
|
}
|
|
|
|
/* Disable interrupts. */
|
|
TULIP_WRITE(sc, CSR_INTEN, 0);
|
|
|
|
/* Stop the transmit and receive processes. */
|
|
sc->sc_opmode = 0;
|
|
TULIP_WRITE(sc, CSR_OPMODE, 0);
|
|
TULIP_WRITE(sc, CSR_RXLIST, 0);
|
|
TULIP_WRITE(sc, CSR_TXLIST, 0);
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
if (disable) {
|
|
tlp_rxdrain(sc);
|
|
tlp_disable(sc);
|
|
}
|
|
|
|
sc->sc_flags &= ~(TULIPF_WANT_SETUP|TULIPF_DOING_SETUP);
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
|
|
/*
|
|
* Reset the chip (needed on some flavors to actually disable it).
|
|
*/
|
|
tlp_reset(sc);
|
|
}
|
|
|
|
#define SROM_EMIT(sc, x) \
|
|
do { \
|
|
TULIP_WRITE((sc), CSR_MIIROM, (x)); \
|
|
delay(2); \
|
|
} while (0)
|
|
|
|
/*
|
|
* tlp_srom_idle:
|
|
*
|
|
* Put the SROM in idle state.
|
|
*/
|
|
void
|
|
tlp_srom_idle(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
u_int32_t miirom;
|
|
int i;
|
|
|
|
miirom = MIIROM_SR;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
miirom |= MIIROM_RD;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
miirom |= MIIROM_SROMCS;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
SROM_EMIT(sc, miirom|MIIROM_SROMSK);
|
|
|
|
/* Strobe the clock 32 times. */
|
|
for (i = 0; i < 32; i++) {
|
|
SROM_EMIT(sc, miirom);
|
|
SROM_EMIT(sc, miirom|MIIROM_SROMSK);
|
|
}
|
|
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
miirom &= ~MIIROM_SROMCS;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
SROM_EMIT(sc, 0);
|
|
}
|
|
|
|
/*
|
|
* tlp_srom_size:
|
|
*
|
|
* Determine the number of address bits in the SROM.
|
|
*/
|
|
int
|
|
tlp_srom_size(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
u_int32_t miirom;
|
|
int x;
|
|
|
|
/* Select the SROM. */
|
|
miirom = MIIROM_SR;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
miirom |= MIIROM_RD;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
/* Send CHIP SELECT for one clock tick. */
|
|
miirom |= MIIROM_SROMCS;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
/* Shift in the READ opcode. */
|
|
for (x = 3; x > 0; x--) {
|
|
if (TULIP_SROM_OPC_READ & (1 << (x - 1)))
|
|
miirom |= MIIROM_SROMDI;
|
|
else
|
|
miirom &= ~MIIROM_SROMDI;
|
|
SROM_EMIT(sc, miirom);
|
|
SROM_EMIT(sc, miirom|MIIROM_SROMSK);
|
|
SROM_EMIT(sc, miirom);
|
|
}
|
|
|
|
/* Shift in address and look for dummy 0 bit. */
|
|
for (x = 1; x <= 12; x++) {
|
|
miirom &= ~MIIROM_SROMDI;
|
|
SROM_EMIT(sc, miirom);
|
|
SROM_EMIT(sc, miirom|MIIROM_SROMSK);
|
|
if (!TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO))
|
|
break;
|
|
SROM_EMIT(sc, miirom);
|
|
}
|
|
|
|
/* Clear CHIP SELECT. */
|
|
miirom &= ~MIIROM_SROMCS;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
/* Deselect the SROM. */
|
|
SROM_EMIT(sc, 0);
|
|
|
|
if (x < 4 || x > 12) {
|
|
printf("%s: broken MicroWire interface detected; "
|
|
"setting SROM size to 1Kb\n", sc->sc_dev.dv_xname);
|
|
return (6);
|
|
} else {
|
|
if (tlp_srom_debug)
|
|
printf("%s: SROM size is 2^%d*16 bits (%d bytes)\n",
|
|
sc->sc_dev.dv_xname, x, (1 << (x + 4)) >> 3);
|
|
return (x);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* tlp_read_srom:
|
|
*
|
|
* Read the Tulip SROM.
|
|
*/
|
|
int
|
|
tlp_read_srom(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
int size;
|
|
u_int32_t miirom;
|
|
u_int16_t datain;
|
|
int i, x;
|
|
|
|
tlp_srom_idle(sc);
|
|
|
|
sc->sc_srom_addrbits = tlp_srom_size(sc);
|
|
if (sc->sc_srom_addrbits == 0)
|
|
return (0);
|
|
size = TULIP_ROM_SIZE(sc->sc_srom_addrbits);
|
|
sc->sc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
|
|
|
|
/* Select the SROM. */
|
|
miirom = MIIROM_SR;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
miirom |= MIIROM_RD;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
for (i = 0; i < size; i += 2) {
|
|
/* Send CHIP SELECT for one clock tick. */
|
|
miirom |= MIIROM_SROMCS;
|
|
SROM_EMIT(sc, miirom);
|
|
|
|
/* Shift in the READ opcode. */
|
|
for (x = 3; x > 0; x--) {
|
|
if (TULIP_SROM_OPC_READ & (1 << (x - 1)))
|
|
miirom |= MIIROM_SROMDI;
|
|
else
|
|
miirom &= ~MIIROM_SROMDI;
|
|
SROM_EMIT(sc, miirom);
|
|
SROM_EMIT(sc, miirom|MIIROM_SROMSK);
|
|
SROM_EMIT(sc, miirom);
|
|
}
|
|
|
|
/* Shift in address. */
|
|
for (x = sc->sc_srom_addrbits; x > 0; x--) {
|
|
if (i & (1 << x))
|
|
miirom |= MIIROM_SROMDI;
|
|
else
|
|
miirom &= ~MIIROM_SROMDI;
|
|
SROM_EMIT(sc, miirom);
|
|
SROM_EMIT(sc, miirom|MIIROM_SROMSK);
|
|
SROM_EMIT(sc, miirom);
|
|
}
|
|
|
|
/* Shift out data. */
|
|
miirom &= ~MIIROM_SROMDI;
|
|
datain = 0;
|
|
for (x = 16; x > 0; x--) {
|
|
SROM_EMIT(sc, miirom|MIIROM_SROMSK);
|
|
if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO))
|
|
datain |= (1 << (x - 1));
|
|
SROM_EMIT(sc, miirom);
|
|
}
|
|
sc->sc_srom[i] = datain & 0xff;
|
|
sc->sc_srom[i + 1] = datain >> 8;
|
|
|
|
/* Clear CHIP SELECT. */
|
|
miirom &= ~MIIROM_SROMCS;
|
|
SROM_EMIT(sc, miirom);
|
|
}
|
|
|
|
/* Deselect the SROM. */
|
|
SROM_EMIT(sc, 0);
|
|
|
|
/* ...and idle it. */
|
|
tlp_srom_idle(sc);
|
|
|
|
if (tlp_srom_debug) {
|
|
printf("SROM CONTENTS:");
|
|
for (i = 0; i < size; i++) {
|
|
if ((i % 8) == 0)
|
|
printf("\n\t");
|
|
printf("0x%02x ", sc->sc_srom[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
#undef SROM_EMIT
|
|
|
|
/*
|
|
* tlp_add_rxbuf:
|
|
*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
int
|
|
tlp_add_rxbuf(sc, idx)
|
|
struct tulip_softc *sc;
|
|
int idx;
|
|
{
|
|
struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (rxs->rxs_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
|
|
rxs->rxs_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: can't load rx DMA map %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, idx, error);
|
|
panic("tlp_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
TULIP_INIT_RXDESC(sc, idx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* tlp_srom_crcok:
|
|
*
|
|
* Check the CRC of the Tulip SROM.
|
|
*/
|
|
int
|
|
tlp_srom_crcok(romdata)
|
|
const u_int8_t *romdata;
|
|
{
|
|
u_int32_t crc;
|
|
|
|
crc = ether_crc32_le(romdata, TULIP_ROM_CRC32_CHECKSUM);
|
|
crc = (crc & 0xffff) ^ 0xffff;
|
|
if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM))
|
|
return (1);
|
|
|
|
/*
|
|
* Try an alternate checksum.
|
|
*/
|
|
crc = ether_crc32_le(romdata, TULIP_ROM_CRC32_CHECKSUM1);
|
|
crc = (crc & 0xffff) ^ 0xffff;
|
|
if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM1))
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* tlp_isv_srom:
|
|
*
|
|
* Check to see if the SROM is in the new standardized format.
|
|
*/
|
|
int
|
|
tlp_isv_srom(romdata)
|
|
const u_int8_t *romdata;
|
|
{
|
|
int i;
|
|
u_int16_t cksum;
|
|
|
|
if (tlp_srom_crcok(romdata)) {
|
|
/*
|
|
* SROM CRC checks out; must be in the new format.
|
|
*/
|
|
return (1);
|
|
}
|
|
|
|
cksum = TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM);
|
|
if (cksum == 0xffff || cksum == 0) {
|
|
/*
|
|
* No checksum present. Check the SROM ID; 18 bytes of 0
|
|
* followed by 1 (version) followed by the number of
|
|
* adapters which use this SROM (should be non-zero).
|
|
*/
|
|
for (i = 0; i < TULIP_ROM_SROM_FORMAT_VERION; i++) {
|
|
if (romdata[i] != 0)
|
|
return (0);
|
|
}
|
|
if (romdata[TULIP_ROM_SROM_FORMAT_VERION] != 1)
|
|
return (0);
|
|
if (romdata[TULIP_ROM_CHIP_COUNT] == 0)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* tlp_isv_srom_enaddr:
|
|
*
|
|
* Get the Ethernet address from an ISV SROM.
|
|
*/
|
|
int
|
|
tlp_isv_srom_enaddr(sc, enaddr)
|
|
struct tulip_softc *sc;
|
|
u_int8_t *enaddr;
|
|
{
|
|
int i, devcnt;
|
|
|
|
if (tlp_isv_srom(sc->sc_srom) == 0)
|
|
return (0);
|
|
|
|
devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
|
|
for (i = 0; i < devcnt; i++) {
|
|
if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
|
|
break;
|
|
if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
|
|
sc->sc_devno)
|
|
break;
|
|
}
|
|
|
|
if (i == devcnt)
|
|
return (0);
|
|
|
|
memcpy(enaddr, &sc->sc_srom[TULIP_ROM_IEEE_NETWORK_ADDRESS],
|
|
ETHER_ADDR_LEN);
|
|
enaddr[5] += i;
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* tlp_parse_old_srom:
|
|
*
|
|
* Parse old-format SROMs.
|
|
*
|
|
* This routine is largely lifted from Matt Thomas's `de' driver.
|
|
*/
|
|
int
|
|
tlp_parse_old_srom(sc, enaddr)
|
|
struct tulip_softc *sc;
|
|
u_int8_t *enaddr;
|
|
{
|
|
static const u_int8_t testpat[] =
|
|
{ 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa };
|
|
int i;
|
|
u_int32_t cksum;
|
|
|
|
if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) {
|
|
/*
|
|
* Some vendors (e.g. ZNYX) don't use the standard
|
|
* DEC Address ROM format, but rather just have an
|
|
* Ethernet address in the first 6 bytes, maybe a
|
|
* 2 byte checksum, and then all 0xff's.
|
|
*
|
|
* On the other hand, Cobalt Networks interfaces
|
|
* simply have the address in the first six bytes
|
|
* with the rest zeroed out.
|
|
*/
|
|
for (i = 8; i < 32; i++) {
|
|
if (sc->sc_srom[i] != 0xff &&
|
|
sc->sc_srom[i] != 0)
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Sanity check the Ethernet address:
|
|
*
|
|
* - Make sure it's not multicast or locally
|
|
* assigned
|
|
* - Make sure it has a non-0 OUI
|
|
*/
|
|
if (sc->sc_srom[0] & 3)
|
|
return (0);
|
|
if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 &&
|
|
sc->sc_srom[2] == 0)
|
|
return (0);
|
|
|
|
memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Standard DEC Address ROM test.
|
|
*/
|
|
|
|
if (memcmp(&sc->sc_srom[24], testpat, 8) != 0)
|
|
return (0);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (sc->sc_srom[i] != sc->sc_srom[15 - i])
|
|
return (0);
|
|
}
|
|
|
|
memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
|
|
|
|
cksum = *(u_int16_t *) &enaddr[0];
|
|
|
|
cksum <<= 1;
|
|
if (cksum > 0xffff)
|
|
cksum -= 0xffff;
|
|
|
|
cksum += *(u_int16_t *) &enaddr[2];
|
|
if (cksum > 0xffff)
|
|
cksum -= 0xffff;
|
|
|
|
cksum <<= 1;
|
|
if (cksum > 0xffff)
|
|
cksum -= 0xffff;
|
|
|
|
cksum += *(u_int16_t *) &enaddr[4];
|
|
if (cksum >= 0xffff)
|
|
cksum -= 0xffff;
|
|
|
|
if (cksum != *(u_int16_t *) &sc->sc_srom[6])
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* tlp_filter_setup:
|
|
*
|
|
* Set the Tulip's receive filter.
|
|
*/
|
|
void
|
|
tlp_filter_setup(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
__volatile u_int32_t *sp;
|
|
struct tulip_txsoft *txs;
|
|
u_int8_t enaddr[ETHER_ADDR_LEN];
|
|
u_int32_t hash, hashsize;
|
|
int cnt;
|
|
|
|
DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n",
|
|
sc->sc_dev.dv_xname, sc->sc_flags));
|
|
|
|
memcpy(enaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
|
|
|
|
/*
|
|
* If there are transmissions pending, wait until they have
|
|
* completed.
|
|
*/
|
|
if (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ||
|
|
(sc->sc_flags & TULIPF_DOING_SETUP) != 0) {
|
|
sc->sc_flags |= TULIPF_WANT_SETUP;
|
|
DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n",
|
|
sc->sc_dev.dv_xname));
|
|
return;
|
|
}
|
|
sc->sc_flags &= ~TULIPF_WANT_SETUP;
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_82C115:
|
|
hashsize = TULIP_PNICII_HASHSIZE;
|
|
break;
|
|
|
|
default:
|
|
hashsize = TULIP_MCHASHSIZE;
|
|
}
|
|
|
|
/*
|
|
* If we're running, idle the transmit and receive engines. If
|
|
* we're NOT running, we're being called from tlp_init(), and our
|
|
* writing OPMODE will start the transmit and receive processes
|
|
* in motion.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
tlp_idle(sc, OPMODE_ST|OPMODE_SR);
|
|
|
|
sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
sc->sc_opmode |= OPMODE_PR;
|
|
goto allmulti;
|
|
}
|
|
|
|
/*
|
|
* Try Perfect filtering first.
|
|
*/
|
|
|
|
sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
|
|
sp = TULIP_CDSP(sc);
|
|
memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
|
|
cnt = 0;
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
if (cnt == (TULIP_MAXADDRS - 2)) {
|
|
/*
|
|
* We already have our multicast limit (still need
|
|
* our station address and broadcast). Go to
|
|
* Hash-Perfect mode.
|
|
*/
|
|
goto hashperfect;
|
|
}
|
|
cnt++;
|
|
*sp++ = TULIP_SP_FIELD(enm->enm_addrlo, 0);
|
|
*sp++ = TULIP_SP_FIELD(enm->enm_addrlo, 1);
|
|
*sp++ = TULIP_SP_FIELD(enm->enm_addrlo, 2);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
/* ...and the broadcast address. */
|
|
cnt++;
|
|
*sp++ = TULIP_SP_FIELD_C(0xffff);
|
|
*sp++ = TULIP_SP_FIELD_C(0xffff);
|
|
*sp++ = TULIP_SP_FIELD_C(0xffff);
|
|
}
|
|
|
|
/* Pad the rest with our station address. */
|
|
for (; cnt < TULIP_MAXADDRS; cnt++) {
|
|
*sp++ = TULIP_SP_FIELD(enaddr, 0);
|
|
*sp++ = TULIP_SP_FIELD(enaddr, 1);
|
|
*sp++ = TULIP_SP_FIELD(enaddr, 2);
|
|
}
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
goto setit;
|
|
|
|
hashperfect:
|
|
/*
|
|
* Try Hash-Perfect mode.
|
|
*/
|
|
|
|
/*
|
|
* Some 21140 chips have broken Hash-Perfect modes. On these
|
|
* chips, we simply use Hash-Only mode, and put our station
|
|
* address into the filter.
|
|
*/
|
|
if (sc->sc_chip == TULIP_CHIP_21140)
|
|
sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY;
|
|
else
|
|
sc->sc_filtmode = TDCTL_Tx_FT_HASH;
|
|
sp = TULIP_CDSP(sc);
|
|
memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
hash = tlp_mchash(enm->enm_addrlo, hashsize);
|
|
sp[hash >> 4] |= htole32(1 << (hash & 0xf));
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
/* ...and the broadcast address. */
|
|
hash = tlp_mchash(etherbroadcastaddr, hashsize);
|
|
sp[hash >> 4] |= htole32(1 << (hash & 0xf));
|
|
}
|
|
|
|
if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
|
|
/* ...and our station address. */
|
|
hash = tlp_mchash(enaddr, hashsize);
|
|
sp[hash >> 4] |= htole32(1 << (hash & 0xf));
|
|
} else {
|
|
/*
|
|
* Hash-Perfect mode; put our station address after
|
|
* the hash table.
|
|
*/
|
|
sp[39] = TULIP_SP_FIELD(enaddr, 0);
|
|
sp[40] = TULIP_SP_FIELD(enaddr, 1);
|
|
sp[41] = TULIP_SP_FIELD(enaddr, 2);
|
|
}
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
goto setit;
|
|
|
|
allmulti:
|
|
/*
|
|
* Use Perfect filter mode. First address is the broadcast address,
|
|
* and pad the rest with our station address. We'll set Pass-all-
|
|
* multicast in OPMODE below.
|
|
*/
|
|
sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
|
|
sp = TULIP_CDSP(sc);
|
|
memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
|
|
cnt = 0;
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
cnt++;
|
|
*sp++ = TULIP_SP_FIELD_C(0xffff);
|
|
*sp++ = TULIP_SP_FIELD_C(0xffff);
|
|
*sp++ = TULIP_SP_FIELD_C(0xffff);
|
|
}
|
|
for (; cnt < TULIP_MAXADDRS; cnt++) {
|
|
*sp++ = TULIP_SP_FIELD(enaddr, 0);
|
|
*sp++ = TULIP_SP_FIELD(enaddr, 1);
|
|
*sp++ = TULIP_SP_FIELD(enaddr, 2);
|
|
}
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
|
|
setit:
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
sc->sc_opmode |= OPMODE_PM;
|
|
|
|
/* Sync the setup packet buffer. */
|
|
TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Fill in the setup packet descriptor.
|
|
*/
|
|
txs = SIMPLEQ_FIRST(&sc->sc_txfreeq);
|
|
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
txs->txs_lastdesc = sc->sc_txnext;
|
|
txs->txs_ndescs = 1;
|
|
txs->txs_mbuf = NULL;
|
|
|
|
sc->sc_txdescs[sc->sc_txnext].td_bufaddr1 =
|
|
htole32(TULIP_CDSPADDR(sc));
|
|
sc->sc_txdescs[sc->sc_txnext].td_ctl =
|
|
htole32((TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) |
|
|
sc->sc_filtmode | TDCTL_Tx_SET | sc->sc_setup_fsls |
|
|
TDCTL_Tx_IC | sc->sc_tdctl_ch |
|
|
(sc->sc_txnext == (TULIP_NTXDESC - 1) ? sc->sc_tdctl_er : 0));
|
|
sc->sc_txdescs[sc->sc_txnext].td_status = htole32(TDSTAT_OWN);
|
|
TULIP_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndescs,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txfree -= 1;
|
|
sc->sc_txnext = TULIP_NEXTTX(sc->sc_txnext);
|
|
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
|
|
|
|
/*
|
|
* Set the OPMODE register. This will also resume the
|
|
* transmit transmit process we idled above.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
|
|
sc->sc_flags |= TULIPF_DOING_SETUP;
|
|
|
|
/*
|
|
* Kick the transmitter; this will cause the Tulip to
|
|
* read the setup descriptor.
|
|
*/
|
|
/* XXX USE AUTOPOLLING? */
|
|
TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
|
|
|
|
/* Set up a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
|
|
DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", sc->sc_dev.dv_xname));
|
|
}
|
|
|
|
/*
|
|
* tlp_winb_filter_setup:
|
|
*
|
|
* Set the Winbond 89C840F's receive filter.
|
|
*/
|
|
void
|
|
tlp_winb_filter_setup(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
u_int32_t hash, mchash[2];
|
|
|
|
DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n",
|
|
sc->sc_dev.dv_xname, sc->sc_flags));
|
|
|
|
sc->sc_opmode &= ~(OPMODE_WINB_APP|OPMODE_WINB_AMP|OPMODE_WINB_ABP);
|
|
|
|
if (ifp->if_flags & IFF_MULTICAST)
|
|
sc->sc_opmode |= OPMODE_WINB_AMP;
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
sc->sc_opmode |= OPMODE_WINB_ABP;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
sc->sc_opmode |= OPMODE_WINB_APP;
|
|
goto allmulti;
|
|
}
|
|
|
|
mchash[0] = mchash[1] = 0;
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
/*
|
|
* According to the FreeBSD `wb' driver, yes, you
|
|
* really do invert the hash.
|
|
*/
|
|
hash =
|
|
(~(ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26))
|
|
& 0x3f;
|
|
mchash[hash >> 5] |= 1 << (hash & 0x1f);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
goto setit;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
mchash[0] = mchash[1] = 0xffffffff;
|
|
|
|
setit:
|
|
TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]);
|
|
TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]);
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n",
|
|
sc->sc_dev.dv_xname));
|
|
}
|
|
|
|
/*
|
|
* tlp_al981_filter_setup:
|
|
*
|
|
* Set the ADMtek AL981's receive filter.
|
|
*/
|
|
void
|
|
tlp_al981_filter_setup(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
u_int32_t hash, mchash[2];
|
|
|
|
/*
|
|
* If the chip is running, we need to reset the interface,
|
|
* and will revisit here (with IFF_RUNNING) clear. The
|
|
* chip seems to really not like to have its multicast
|
|
* filter programmed without a reset.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
(void) tlp_init(ifp);
|
|
return;
|
|
}
|
|
|
|
DPRINTF(sc, ("%s: tlp_al981_filter_setup: sc_flags 0x%08x\n",
|
|
sc->sc_dev.dv_xname, sc->sc_flags));
|
|
|
|
sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
sc->sc_opmode |= OPMODE_PR;
|
|
goto allmulti;
|
|
}
|
|
|
|
mchash[0] = mchash[1] = 0;
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
|
|
mchash[hash >> 5] |= 1 << (hash & 0x1f);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
goto setit;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
mchash[0] = mchash[1] = 0xffffffff;
|
|
|
|
setit:
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_MAR0, mchash[0]);
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_MAR1, mchash[1]);
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
DPRINTF(sc, ("%s: tlp_al981_filter_setup: returning\n",
|
|
sc->sc_dev.dv_xname));
|
|
}
|
|
|
|
/*
|
|
* tlp_idle:
|
|
*
|
|
* Cause the transmit and/or receive processes to go idle.
|
|
*/
|
|
void
|
|
tlp_idle(sc, bits)
|
|
struct tulip_softc *sc;
|
|
u_int32_t bits;
|
|
{
|
|
static const char * const tlp_tx_state_names[] = {
|
|
"STOPPED",
|
|
"RUNNING - FETCH",
|
|
"RUNNING - WAIT",
|
|
"RUNNING - READING",
|
|
"-- RESERVED --",
|
|
"RUNNING - SETUP",
|
|
"SUSPENDED",
|
|
"RUNNING - CLOSE",
|
|
};
|
|
static const char * const tlp_rx_state_names[] = {
|
|
"STOPPED",
|
|
"RUNNING - FETCH",
|
|
"RUNNING - CHECK",
|
|
"RUNNING - WAIT",
|
|
"SUSPENDED",
|
|
"RUNNING - CLOSE",
|
|
"RUNNING - FLUSH",
|
|
"RUNNING - QUEUE",
|
|
};
|
|
static const char * const dm9102_tx_state_names[] = {
|
|
"STOPPED",
|
|
"RUNNING - FETCH",
|
|
"RUNNING - SETUP",
|
|
"RUNNING - READING",
|
|
"RUNNING - CLOSE - CLEAR OWNER",
|
|
"RUNNING - WAIT",
|
|
"RUNNING - CLOSE - WRITE STATUS",
|
|
"SUSPENDED",
|
|
};
|
|
static const char * const dm9102_rx_state_names[] = {
|
|
"STOPPED",
|
|
"RUNNING - FETCH",
|
|
"RUNNING - WAIT",
|
|
"RUNNING - QUEUE",
|
|
"RUNNING - CLOSE - CLEAR OWNER",
|
|
"RUNNING - CLOSE - WRITE STATUS",
|
|
"SUSPENDED",
|
|
"RUNNING - FLUSH",
|
|
};
|
|
|
|
const char * const *tx_state_names, * const *rx_state_names;
|
|
u_int32_t csr, ackmask = 0;
|
|
int i;
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_DM9102:
|
|
case TULIP_CHIP_DM9102A:
|
|
tx_state_names = dm9102_tx_state_names;
|
|
rx_state_names = dm9102_rx_state_names;
|
|
break;
|
|
|
|
default:
|
|
tx_state_names = tlp_tx_state_names;
|
|
rx_state_names = tlp_rx_state_names;
|
|
break;
|
|
}
|
|
|
|
if (bits & OPMODE_ST)
|
|
ackmask |= STATUS_TPS;
|
|
|
|
if (bits & OPMODE_SR)
|
|
ackmask |= STATUS_RPS;
|
|
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits);
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
|
|
break;
|
|
delay(10);
|
|
}
|
|
|
|
csr = TULIP_READ(sc, CSR_STATUS);
|
|
if ((csr & ackmask) != ackmask) {
|
|
if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
|
|
(csr & STATUS_TS) != STATUS_TS_STOPPED) {
|
|
printf("%s: transmit process failed to idle: "
|
|
"state %s\n", sc->sc_dev.dv_xname,
|
|
tx_state_names[(csr & STATUS_TS) >> 20]);
|
|
}
|
|
if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
|
|
(csr & STATUS_RS) != STATUS_RS_STOPPED) {
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_AN983:
|
|
case TULIP_CHIP_AN985:
|
|
/*
|
|
* Filter the message out on noisy chips.
|
|
*/
|
|
break;
|
|
default:
|
|
printf("%s: receive process failed to idle: "
|
|
"state %s\n", sc->sc_dev.dv_xname,
|
|
rx_state_names[(csr & STATUS_RS) >> 17]);
|
|
}
|
|
}
|
|
}
|
|
TULIP_WRITE(sc, CSR_STATUS, ackmask);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Generic media support functions.
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* tlp_mediastatus: [ifmedia interface function]
|
|
*
|
|
* Query the current media.
|
|
*/
|
|
void
|
|
tlp_mediastatus(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct tulip_softc *sc = ifp->if_softc;
|
|
|
|
if (TULIP_IS_ENABLED(sc) == 0) {
|
|
ifmr->ifm_active = IFM_ETHER | IFM_NONE;
|
|
ifmr->ifm_status = 0;
|
|
return;
|
|
}
|
|
|
|
(*sc->sc_mediasw->tmsw_get)(sc, ifmr);
|
|
}
|
|
|
|
/*
|
|
* tlp_mediachange: [ifmedia interface function]
|
|
*
|
|
* Update the current media.
|
|
*/
|
|
int
|
|
tlp_mediachange(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct tulip_softc *sc = ifp->if_softc;
|
|
|
|
if ((ifp->if_flags & IFF_UP) == 0)
|
|
return (0);
|
|
return ((*sc->sc_mediasw->tmsw_set)(sc));
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Support functions for MII-attached media.
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* tlp_mii_tick:
|
|
*
|
|
* One second timer, used to tick the MII.
|
|
*/
|
|
void
|
|
tlp_mii_tick(arg)
|
|
void *arg;
|
|
{
|
|
struct tulip_softc *sc = arg;
|
|
int s;
|
|
|
|
if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
|
|
return;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* tlp_mii_statchg: [mii interface function]
|
|
*
|
|
* Callback from PHY when media changes.
|
|
*/
|
|
void
|
|
tlp_mii_statchg(self)
|
|
struct device *self;
|
|
{
|
|
struct tulip_softc *sc = (struct tulip_softc *)self;
|
|
|
|
/* Idle the transmit and receive processes. */
|
|
tlp_idle(sc, OPMODE_ST|OPMODE_SR);
|
|
|
|
sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_HBD);
|
|
|
|
if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
|
|
sc->sc_opmode |= OPMODE_TTM;
|
|
else
|
|
sc->sc_opmode |= OPMODE_HBD;
|
|
|
|
if (sc->sc_mii.mii_media_active & IFM_FDX)
|
|
sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
|
|
|
|
/*
|
|
* Write new OPMODE bits. This also restarts the transmit
|
|
* and receive processes.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
}
|
|
|
|
/*
|
|
* tlp_winb_mii_statchg: [mii interface function]
|
|
*
|
|
* Callback from PHY when media changes. This version is
|
|
* for the Winbond 89C840F, which has different OPMODE bits.
|
|
*/
|
|
void
|
|
tlp_winb_mii_statchg(self)
|
|
struct device *self;
|
|
{
|
|
struct tulip_softc *sc = (struct tulip_softc *)self;
|
|
|
|
/* Idle the transmit and receive processes. */
|
|
tlp_idle(sc, OPMODE_ST|OPMODE_SR);
|
|
|
|
sc->sc_opmode &= ~(OPMODE_WINB_FES|OPMODE_FD);
|
|
|
|
if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX)
|
|
sc->sc_opmode |= OPMODE_WINB_FES;
|
|
|
|
if (sc->sc_mii.mii_media_active & IFM_FDX)
|
|
sc->sc_opmode |= OPMODE_FD;
|
|
|
|
/*
|
|
* Write new OPMODE bits. This also restarts the transmit
|
|
* and receive processes.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
}
|
|
|
|
/*
|
|
* tlp_dm9102_mii_statchg: [mii interface function]
|
|
*
|
|
* Callback from PHY when media changes. This version is
|
|
* for the DM9102.
|
|
*/
|
|
void
|
|
tlp_dm9102_mii_statchg(self)
|
|
struct device *self;
|
|
{
|
|
struct tulip_softc *sc = (struct tulip_softc *)self;
|
|
|
|
/*
|
|
* Don't idle the transmit and receive processes, here. It
|
|
* seems to fail, and just causes excess noise.
|
|
*/
|
|
sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD);
|
|
|
|
if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_100_TX)
|
|
sc->sc_opmode |= OPMODE_TTM;
|
|
|
|
if (sc->sc_mii.mii_media_active & IFM_FDX)
|
|
sc->sc_opmode |= OPMODE_FD;
|
|
|
|
/*
|
|
* Write new OPMODE bits.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
}
|
|
|
|
/*
|
|
* tlp_mii_getmedia:
|
|
*
|
|
* Callback from ifmedia to request current media status.
|
|
*/
|
|
void
|
|
tlp_mii_getmedia(sc, ifmr)
|
|
struct tulip_softc *sc;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
|
|
mii_pollstat(&sc->sc_mii);
|
|
ifmr->ifm_status = sc->sc_mii.mii_media_status;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media_active;
|
|
}
|
|
|
|
/*
|
|
* tlp_mii_setmedia:
|
|
*
|
|
* Callback from ifmedia to request new media setting.
|
|
*/
|
|
int
|
|
tlp_mii_setmedia(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_21142:
|
|
case TULIP_CHIP_21143:
|
|
/* Disable the internal Nway engine. */
|
|
TULIP_WRITE(sc, CSR_SIATXRX, 0);
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
mii_mediachg(&sc->sc_mii);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* tlp_bitbang_mii_readreg:
|
|
*
|
|
* Read a PHY register via bit-bang'ing the MII.
|
|
*/
|
|
int
|
|
tlp_bitbang_mii_readreg(self, phy, reg)
|
|
struct device *self;
|
|
int phy, reg;
|
|
{
|
|
struct tulip_softc *sc = (void *) self;
|
|
|
|
return (mii_bitbang_readreg(self, sc->sc_bitbang_ops, phy, reg));
|
|
}
|
|
|
|
/*
|
|
* tlp_bitbang_mii_writereg:
|
|
*
|
|
* Write a PHY register via bit-bang'ing the MII.
|
|
*/
|
|
void
|
|
tlp_bitbang_mii_writereg(self, phy, reg, val)
|
|
struct device *self;
|
|
int phy, reg, val;
|
|
{
|
|
struct tulip_softc *sc = (void *) self;
|
|
|
|
mii_bitbang_writereg(self, sc->sc_bitbang_ops, phy, reg, val);
|
|
}
|
|
|
|
/*
|
|
* tlp_sio_mii_bitbang_read:
|
|
*
|
|
* Read the MII serial port for the MII bit-bang module.
|
|
*/
|
|
u_int32_t
|
|
tlp_sio_mii_bitbang_read(self)
|
|
struct device *self;
|
|
{
|
|
struct tulip_softc *sc = (void *) self;
|
|
|
|
return (TULIP_READ(sc, CSR_MIIROM));
|
|
}
|
|
|
|
/*
|
|
* tlp_sio_mii_bitbang_write:
|
|
*
|
|
* Write the MII serial port for the MII bit-bang module.
|
|
*/
|
|
void
|
|
tlp_sio_mii_bitbang_write(self, val)
|
|
struct device *self;
|
|
u_int32_t val;
|
|
{
|
|
struct tulip_softc *sc = (void *) self;
|
|
|
|
TULIP_WRITE(sc, CSR_MIIROM, val);
|
|
}
|
|
|
|
/*
|
|
* tlp_pnic_mii_readreg:
|
|
*
|
|
* Read a PHY register on the Lite-On PNIC.
|
|
*/
|
|
int
|
|
tlp_pnic_mii_readreg(self, phy, reg)
|
|
struct device *self;
|
|
int phy, reg;
|
|
{
|
|
struct tulip_softc *sc = (void *) self;
|
|
u_int32_t val;
|
|
int i;
|
|
|
|
TULIP_WRITE(sc, CSR_PNIC_MII,
|
|
PNIC_MII_MBO | PNIC_MII_RESERVED |
|
|
PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) |
|
|
(reg << PNIC_MII_REGSHIFT));
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
delay(10);
|
|
val = TULIP_READ(sc, CSR_PNIC_MII);
|
|
if ((val & PNIC_MII_BUSY) == 0) {
|
|
if ((val & PNIC_MII_DATA) == PNIC_MII_DATA)
|
|
return (0);
|
|
else
|
|
return (val & PNIC_MII_DATA);
|
|
}
|
|
}
|
|
printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* tlp_pnic_mii_writereg:
|
|
*
|
|
* Write a PHY register on the Lite-On PNIC.
|
|
*/
|
|
void
|
|
tlp_pnic_mii_writereg(self, phy, reg, val)
|
|
struct device *self;
|
|
int phy, reg, val;
|
|
{
|
|
struct tulip_softc *sc = (void *) self;
|
|
int i;
|
|
|
|
TULIP_WRITE(sc, CSR_PNIC_MII,
|
|
PNIC_MII_MBO | PNIC_MII_RESERVED |
|
|
PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) |
|
|
(reg << PNIC_MII_REGSHIFT) | val);
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
delay(10);
|
|
if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0)
|
|
return;
|
|
}
|
|
printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
|
|
}
|
|
|
|
const bus_addr_t tlp_al981_phy_regmap[] = {
|
|
CSR_ADM_BMCR,
|
|
CSR_ADM_BMSR,
|
|
CSR_ADM_PHYIDR1,
|
|
CSR_ADM_PHYIDR2,
|
|
CSR_ADM_ANAR,
|
|
CSR_ADM_ANLPAR,
|
|
CSR_ADM_ANER,
|
|
|
|
CSR_ADM_XMC,
|
|
CSR_ADM_XCIIS,
|
|
CSR_ADM_XIE,
|
|
CSR_ADM_100CTR,
|
|
};
|
|
const int tlp_al981_phy_regmap_size = sizeof(tlp_al981_phy_regmap) /
|
|
sizeof(tlp_al981_phy_regmap[0]);
|
|
|
|
/*
|
|
* tlp_al981_mii_readreg:
|
|
*
|
|
* Read a PHY register on the ADMtek AL981.
|
|
*/
|
|
int
|
|
tlp_al981_mii_readreg(self, phy, reg)
|
|
struct device *self;
|
|
int phy, reg;
|
|
{
|
|
struct tulip_softc *sc = (struct tulip_softc *)self;
|
|
|
|
/* AL981 only has an internal PHY. */
|
|
if (phy != 0)
|
|
return (0);
|
|
|
|
if (reg >= tlp_al981_phy_regmap_size)
|
|
return (0);
|
|
|
|
return (bus_space_read_4(sc->sc_st, sc->sc_sh,
|
|
tlp_al981_phy_regmap[reg]) & 0xffff);
|
|
}
|
|
|
|
/*
|
|
* tlp_al981_mii_writereg:
|
|
*
|
|
* Write a PHY register on the ADMtek AL981.
|
|
*/
|
|
void
|
|
tlp_al981_mii_writereg(self, phy, reg, val)
|
|
struct device *self;
|
|
int phy, reg, val;
|
|
{
|
|
struct tulip_softc *sc = (struct tulip_softc *)self;
|
|
|
|
/* AL981 only has an internal PHY. */
|
|
if (phy != 0)
|
|
return;
|
|
|
|
if (reg >= tlp_al981_phy_regmap_size)
|
|
return;
|
|
|
|
bus_space_write_4(sc->sc_st, sc->sc_sh,
|
|
tlp_al981_phy_regmap[reg], val);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Chip-specific pre-init and reset functions.
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* tlp_2114x_preinit:
|
|
*
|
|
* Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143.
|
|
*/
|
|
void
|
|
tlp_2114x_preinit(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
|
|
struct tulip_21x4x_media *tm = ife->ifm_aux;
|
|
|
|
/*
|
|
* Whether or not we're in MII or SIA/SYM mode, the media info
|
|
* contains the appropriate OPMODE bits.
|
|
*
|
|
* Also, we always set the Must-Be-One bit.
|
|
*/
|
|
sc->sc_opmode |= OPMODE_MBO | tm->tm_opmode;
|
|
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
}
|
|
|
|
/*
|
|
* tlp_2114x_mii_preinit:
|
|
*
|
|
* Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143.
|
|
* This version is used by boards which only have MII and don't have
|
|
* an ISV SROM.
|
|
*/
|
|
void
|
|
tlp_2114x_mii_preinit(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
/*
|
|
* Always set the Must-Be-One bit, and Port Select (to select MII).
|
|
* We'll never be called during a media change.
|
|
*/
|
|
sc->sc_opmode |= OPMODE_MBO|OPMODE_PS;
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
}
|
|
|
|
/*
|
|
* tlp_pnic_preinit:
|
|
*
|
|
* Pre-init function for the Lite-On 82c168 and 82c169.
|
|
*/
|
|
void
|
|
tlp_pnic_preinit(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
if (sc->sc_flags & TULIPF_HAS_MII) {
|
|
/*
|
|
* MII case: just set the port-select bit; we will never
|
|
* be called during a media change.
|
|
*/
|
|
sc->sc_opmode |= OPMODE_PS;
|
|
} else {
|
|
/*
|
|
* ENDEC/PCS/Nway mode; enable the Tx backoff counter.
|
|
*/
|
|
sc->sc_opmode |= OPMODE_PNIC_TBEN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* tlp_dm9102_preinit:
|
|
*
|
|
* Pre-init function for the Davicom DM9102.
|
|
*/
|
|
void
|
|
tlp_dm9102_preinit(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_DM9102:
|
|
sc->sc_opmode |= OPMODE_MBO|OPMODE_HBD|OPMODE_PS;
|
|
break;
|
|
|
|
case TULIP_CHIP_DM9102A:
|
|
/*
|
|
* XXX Figure out how to actually deal with the HomePNA
|
|
* XXX portion of the DM9102A.
|
|
*/
|
|
sc->sc_opmode |= OPMODE_MBO|OPMODE_HBD;
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
}
|
|
|
|
/*
|
|
* tlp_21140_reset:
|
|
*
|
|
* Issue a reset sequence on the 21140 via the GPIO facility.
|
|
*/
|
|
void
|
|
tlp_21140_reset(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
|
|
struct tulip_21x4x_media *tm = ife->ifm_aux;
|
|
int i;
|
|
|
|
/* First, set the direction on the GPIO pins. */
|
|
TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
|
|
|
|
/* Now, issue the reset sequence. */
|
|
for (i = 0; i < tm->tm_reset_length; i++) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_reset_offset + i]);
|
|
}
|
|
|
|
/* Now, issue the selection sequence. */
|
|
for (i = 0; i < tm->tm_gp_length; i++) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_gp_offset + i]);
|
|
}
|
|
|
|
/* If there were no sequences, just lower the pins. */
|
|
if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0)
|
|
TULIP_WRITE(sc, CSR_GPP, 0);
|
|
}
|
|
|
|
/*
|
|
* tlp_21142_reset:
|
|
*
|
|
* Issue a reset sequence on the 21142 via the GPIO facility.
|
|
*/
|
|
void
|
|
tlp_21142_reset(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
|
|
struct tulip_21x4x_media *tm = ife->ifm_aux;
|
|
const u_int8_t *cp;
|
|
int i;
|
|
|
|
cp = &sc->sc_srom[tm->tm_reset_offset];
|
|
for (i = 0; i < tm->tm_reset_length; i++, cp += 2) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16);
|
|
}
|
|
|
|
cp = &sc->sc_srom[tm->tm_gp_offset];
|
|
for (i = 0; i < tm->tm_gp_length; i++, cp += 2) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_SIAGEN, TULIP_ROM_GETW(cp, 0) << 16);
|
|
}
|
|
|
|
/* If there were no sequences, just lower the pins. */
|
|
if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_SIAGEN, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* tlp_pmac_reset:
|
|
*
|
|
* Reset routine for Macronix chips.
|
|
*/
|
|
void
|
|
tlp_pmac_reset(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_82C115:
|
|
case TULIP_CHIP_MX98715:
|
|
case TULIP_CHIP_MX98715A:
|
|
case TULIP_CHIP_MX98725:
|
|
/*
|
|
* Set the LED operating mode. This information is located
|
|
* in the EEPROM at byte offset 0x77, per the MX98715A and
|
|
* MX98725 application notes.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_MIIROM, sc->sc_srom[0x77] << 24);
|
|
break;
|
|
case TULIP_CHIP_MX98715AEC_X:
|
|
/*
|
|
* Set the LED operating mode. This information is located
|
|
* in the EEPROM at byte offset 0x76, per the MX98715AEC
|
|
* application note.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_MIIROM, ((0xf & sc->sc_srom[0x76]) << 28)
|
|
| ((0xf0 & sc->sc_srom[0x76]) << 20));
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* tlp_dm9102_reset:
|
|
*
|
|
* Reset routine for the Davicom DM9102.
|
|
*/
|
|
void
|
|
tlp_dm9102_reset(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
TULIP_WRITE(sc, CSR_DM_PHYSTAT, DM_PHYSTAT_GEPC|DM_PHYSTAT_GPED);
|
|
delay(100);
|
|
TULIP_WRITE(sc, CSR_DM_PHYSTAT, 0);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Chip/board-specific media switches. The ones here are ones that
|
|
* are potentially common to multiple front-ends.
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* This table is a common place for all sorts of media information,
|
|
* keyed off of the SROM media code for that media.
|
|
*
|
|
* Note that we explicitly configure the 21142/21143 to always advertise
|
|
* NWay capabilities when using the UTP port.
|
|
* XXX Actually, we don't yet.
|
|
*/
|
|
const struct tulip_srom_to_ifmedia tulip_srom_to_ifmedia_table[] = {
|
|
{ TULIP_ROM_MB_MEDIA_TP, IFM_10_T, 0,
|
|
"10baseT",
|
|
OPMODE_TTM,
|
|
{ SIACONN_21040_10BASET,
|
|
SIATXRX_21040_10BASET,
|
|
SIAGEN_21040_10BASET },
|
|
|
|
{ SIACONN_21041_10BASET,
|
|
SIATXRX_21041_10BASET,
|
|
SIAGEN_21041_10BASET },
|
|
|
|
{ SIACONN_21142_10BASET,
|
|
SIATXRX_21142_10BASET,
|
|
SIAGEN_21142_10BASET } },
|
|
|
|
{ TULIP_ROM_MB_MEDIA_BNC, IFM_10_2, 0,
|
|
"10base2",
|
|
0,
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ SIACONN_21041_BNC,
|
|
SIATXRX_21041_BNC,
|
|
SIAGEN_21041_BNC },
|
|
|
|
{ SIACONN_21142_BNC,
|
|
SIATXRX_21142_BNC,
|
|
SIAGEN_21142_BNC } },
|
|
|
|
{ TULIP_ROM_MB_MEDIA_AUI, IFM_10_5, 0,
|
|
"10base5",
|
|
0,
|
|
{ SIACONN_21040_AUI,
|
|
SIATXRX_21040_AUI,
|
|
SIAGEN_21040_AUI },
|
|
|
|
{ SIACONN_21041_AUI,
|
|
SIATXRX_21041_AUI,
|
|
SIAGEN_21041_AUI },
|
|
|
|
{ SIACONN_21142_AUI,
|
|
SIATXRX_21142_AUI,
|
|
SIAGEN_21142_AUI } },
|
|
|
|
{ TULIP_ROM_MB_MEDIA_100TX, IFM_100_TX, 0,
|
|
"100baseTX",
|
|
OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD,
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
SIAGEN_ABM } },
|
|
|
|
{ TULIP_ROM_MB_MEDIA_TP_FDX, IFM_10_T, IFM_FDX,
|
|
"10baseT-FDX",
|
|
OPMODE_TTM|OPMODE_FD|OPMODE_HBD,
|
|
{ SIACONN_21040_10BASET_FDX,
|
|
SIATXRX_21040_10BASET_FDX,
|
|
SIAGEN_21040_10BASET_FDX },
|
|
|
|
{ SIACONN_21041_10BASET_FDX,
|
|
SIATXRX_21041_10BASET_FDX,
|
|
SIAGEN_21041_10BASET_FDX },
|
|
|
|
{ SIACONN_21142_10BASET_FDX,
|
|
SIATXRX_21142_10BASET_FDX,
|
|
SIAGEN_21142_10BASET_FDX } },
|
|
|
|
{ TULIP_ROM_MB_MEDIA_100TX_FDX, IFM_100_TX, IFM_FDX,
|
|
"100baseTX-FDX",
|
|
OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_FD|OPMODE_HBD,
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
SIAGEN_ABM } },
|
|
|
|
{ TULIP_ROM_MB_MEDIA_100T4, IFM_100_T4, 0,
|
|
"100baseT4",
|
|
OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD,
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
SIAGEN_ABM } },
|
|
|
|
{ TULIP_ROM_MB_MEDIA_100FX, IFM_100_FX, 0,
|
|
"100baseFX",
|
|
OPMODE_PS|OPMODE_PCS|OPMODE_HBD,
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
SIAGEN_ABM } },
|
|
|
|
{ TULIP_ROM_MB_MEDIA_100FX_FDX, IFM_100_FX, IFM_FDX,
|
|
"100baseFX-FDX",
|
|
OPMODE_PS|OPMODE_PCS|OPMODE_FD|OPMODE_HBD,
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
SIAGEN_ABM } },
|
|
|
|
{ 0, 0, 0,
|
|
NULL,
|
|
0,
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
0 },
|
|
|
|
{ 0,
|
|
0,
|
|
0 } },
|
|
};
|
|
|
|
const struct tulip_srom_to_ifmedia *tlp_srom_to_ifmedia __P((u_int8_t));
|
|
void tlp_srom_media_info __P((struct tulip_softc *,
|
|
const struct tulip_srom_to_ifmedia *, struct tulip_21x4x_media *));
|
|
void tlp_add_srom_media __P((struct tulip_softc *, int,
|
|
void (*)(struct tulip_softc *, struct ifmediareq *),
|
|
int (*)(struct tulip_softc *), const u_int8_t *, int));
|
|
void tlp_print_media __P((struct tulip_softc *));
|
|
void tlp_nway_activate __P((struct tulip_softc *, int));
|
|
void tlp_get_minst __P((struct tulip_softc *));
|
|
|
|
const struct tulip_srom_to_ifmedia *
|
|
tlp_srom_to_ifmedia(sm)
|
|
u_int8_t sm;
|
|
{
|
|
const struct tulip_srom_to_ifmedia *tsti;
|
|
|
|
for (tsti = tulip_srom_to_ifmedia_table;
|
|
tsti->tsti_name != NULL; tsti++) {
|
|
if (tsti->tsti_srom == sm)
|
|
return (tsti);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
tlp_srom_media_info(sc, tsti, tm)
|
|
struct tulip_softc *sc;
|
|
const struct tulip_srom_to_ifmedia *tsti;
|
|
struct tulip_21x4x_media *tm;
|
|
{
|
|
|
|
tm->tm_name = tsti->tsti_name;
|
|
tm->tm_opmode = tsti->tsti_opmode;
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_DE425:
|
|
case TULIP_CHIP_21040:
|
|
tm->tm_sia = tsti->tsti_21040; /* struct assignment */
|
|
break;
|
|
|
|
case TULIP_CHIP_21041:
|
|
tm->tm_sia = tsti->tsti_21041; /* struct assignment */
|
|
break;
|
|
|
|
case TULIP_CHIP_21142:
|
|
case TULIP_CHIP_21143:
|
|
case TULIP_CHIP_82C115:
|
|
case TULIP_CHIP_MX98715:
|
|
case TULIP_CHIP_MX98715A:
|
|
case TULIP_CHIP_MX98715AEC_X:
|
|
case TULIP_CHIP_MX98725:
|
|
tm->tm_sia = tsti->tsti_21142; /* struct assignment */
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
tlp_add_srom_media(sc, type, get, set, list, cnt)
|
|
struct tulip_softc *sc;
|
|
int type;
|
|
void (*get) __P((struct tulip_softc *, struct ifmediareq *));
|
|
int (*set) __P((struct tulip_softc *));
|
|
const u_int8_t *list;
|
|
int cnt;
|
|
{
|
|
struct tulip_21x4x_media *tm;
|
|
const struct tulip_srom_to_ifmedia *tsti;
|
|
int i;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
tsti = tlp_srom_to_ifmedia(list[i]);
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
tlp_srom_media_info(sc, tsti, tm);
|
|
tm->tm_type = type;
|
|
tm->tm_get = get;
|
|
tm->tm_set = set;
|
|
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
|
|
tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
|
|
}
|
|
}
|
|
|
|
void
|
|
tlp_print_media(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife;
|
|
struct tulip_21x4x_media *tm;
|
|
const char *sep = "";
|
|
|
|
#define PRINT(str) printf("%s%s", sep, str); sep = ", "
|
|
|
|
printf("%s: ", sc->sc_dev.dv_xname);
|
|
for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
|
|
ife != NULL; ife = TAILQ_NEXT(ife, ifm_list)) {
|
|
tm = ife->ifm_aux;
|
|
if (tm == NULL) {
|
|
#ifdef DIAGNOSTIC
|
|
if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
|
|
panic("tlp_print_media");
|
|
#endif
|
|
PRINT("auto");
|
|
} else if (tm->tm_type != TULIP_ROM_MB_21140_MII &&
|
|
tm->tm_type != TULIP_ROM_MB_21142_MII) {
|
|
PRINT(tm->tm_name);
|
|
}
|
|
}
|
|
printf("\n");
|
|
|
|
#undef PRINT
|
|
}
|
|
|
|
void
|
|
tlp_nway_activate(sc, media)
|
|
struct tulip_softc *sc;
|
|
int media;
|
|
{
|
|
struct ifmedia_entry *ife;
|
|
|
|
ife = ifmedia_match(&sc->sc_mii.mii_media, media, 0);
|
|
#ifdef DIAGNOSTIC
|
|
if (ife == NULL)
|
|
panic("tlp_nway_activate");
|
|
#endif
|
|
sc->sc_nway_active = ife;
|
|
}
|
|
|
|
void
|
|
tlp_get_minst(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
if ((sc->sc_media_seen &
|
|
~((1 << TULIP_ROM_MB_21140_MII) |
|
|
(1 << TULIP_ROM_MB_21142_MII))) == 0) {
|
|
/*
|
|
* We have not yet seen any SIA/SYM media (but are
|
|
* about to; that's why we're called!), so assign
|
|
* the current media instance to be the `internal media'
|
|
* instance, and advance it so any MII media gets a
|
|
* fresh one (used to selecting/isolating a PHY).
|
|
*/
|
|
sc->sc_tlp_minst = sc->sc_mii.mii_instance++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SIA Utility functions.
|
|
*/
|
|
void tlp_sia_update_link __P((struct tulip_softc *));
|
|
void tlp_sia_get __P((struct tulip_softc *, struct ifmediareq *));
|
|
int tlp_sia_set __P((struct tulip_softc *));
|
|
void tlp_sia_fixup __P((struct tulip_softc *));
|
|
|
|
void
|
|
tlp_sia_update_link(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife;
|
|
struct tulip_21x4x_media *tm;
|
|
u_int32_t siastat;
|
|
|
|
ife = TULIP_CURRENT_MEDIA(sc);
|
|
tm = ife->ifm_aux;
|
|
|
|
sc->sc_flags &= ~(TULIPF_LINK_UP|TULIPF_LINK_VALID);
|
|
|
|
siastat = TULIP_READ(sc, CSR_SIASTAT);
|
|
|
|
/*
|
|
* Note that when we do SIA link tests, we are assuming that
|
|
* the chip is really in the mode that the current media setting
|
|
* reflects. If we're not, then the link tests will not be
|
|
* accurate!
|
|
*/
|
|
switch (IFM_SUBTYPE(ife->ifm_media)) {
|
|
case IFM_10_T:
|
|
sc->sc_flags |= TULIPF_LINK_VALID;
|
|
if ((siastat & SIASTAT_LS10) == 0)
|
|
sc->sc_flags |= TULIPF_LINK_UP;
|
|
break;
|
|
|
|
case IFM_100_TX:
|
|
case IFM_100_T4:
|
|
sc->sc_flags |= TULIPF_LINK_VALID;
|
|
if ((siastat & SIASTAT_LS100) == 0)
|
|
sc->sc_flags |= TULIPF_LINK_UP;
|
|
break;
|
|
}
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_21142:
|
|
case TULIP_CHIP_21143:
|
|
/*
|
|
* On these chips, we can tell more information about
|
|
* AUI/BNC. Note that the AUI/BNC selection is made
|
|
* in a different register; for our purpose, it's all
|
|
* AUI.
|
|
*/
|
|
switch (IFM_SUBTYPE(ife->ifm_media)) {
|
|
case IFM_10_2:
|
|
case IFM_10_5:
|
|
sc->sc_flags |= TULIPF_LINK_VALID;
|
|
if (siastat & SIASTAT_ARA) {
|
|
TULIP_WRITE(sc, CSR_SIASTAT, SIASTAT_ARA);
|
|
sc->sc_flags |= TULIPF_LINK_UP;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* If we're SYM media and can detect the link
|
|
* via the GPIO facility, prefer that status
|
|
* over LS100.
|
|
*/
|
|
if (tm->tm_type == TULIP_ROM_MB_21143_SYM &&
|
|
tm->tm_actmask != 0) {
|
|
sc->sc_flags = (sc->sc_flags &
|
|
~TULIPF_LINK_UP) | TULIPF_LINK_VALID;
|
|
if (TULIP_ISSET(sc, CSR_SIAGEN,
|
|
tm->tm_actmask) == tm->tm_actdata)
|
|
sc->sc_flags |= TULIPF_LINK_UP;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
tlp_sia_get(sc, ifmr)
|
|
struct tulip_softc *sc;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct ifmedia_entry *ife;
|
|
|
|
ifmr->ifm_status = 0;
|
|
|
|
tlp_sia_update_link(sc);
|
|
|
|
ife = TULIP_CURRENT_MEDIA(sc);
|
|
|
|
if (sc->sc_flags & TULIPF_LINK_VALID)
|
|
ifmr->ifm_status |= IFM_AVALID;
|
|
if (sc->sc_flags & TULIPF_LINK_UP)
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
ifmr->ifm_active = ife->ifm_media;
|
|
}
|
|
|
|
void
|
|
tlp_sia_fixup(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife;
|
|
struct tulip_21x4x_media *tm;
|
|
u_int32_t siaconn, siatxrx, siagen;
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_82C115:
|
|
case TULIP_CHIP_MX98713A:
|
|
case TULIP_CHIP_MX98715:
|
|
case TULIP_CHIP_MX98715A:
|
|
case TULIP_CHIP_MX98715AEC_X:
|
|
case TULIP_CHIP_MX98725:
|
|
siaconn = PMAC_SIACONN_MASK;
|
|
siatxrx = PMAC_SIATXRX_MASK;
|
|
siagen = PMAC_SIAGEN_MASK;
|
|
break;
|
|
|
|
default:
|
|
/* No fixups required on any other chips. */
|
|
return;
|
|
}
|
|
|
|
for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
|
|
ife != NULL; ife = TAILQ_NEXT(ife, ifm_list)) {
|
|
tm = ife->ifm_aux;
|
|
if (tm == NULL)
|
|
continue;
|
|
|
|
tm->tm_siaconn &= siaconn;
|
|
tm->tm_siatxrx &= siatxrx;
|
|
tm->tm_siagen &= siagen;
|
|
}
|
|
}
|
|
|
|
int
|
|
tlp_sia_set(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife;
|
|
struct tulip_21x4x_media *tm;
|
|
|
|
ife = TULIP_CURRENT_MEDIA(sc);
|
|
tm = ife->ifm_aux;
|
|
|
|
/*
|
|
* XXX This appears to be necessary on a bunch of the clone chips.
|
|
*/
|
|
delay(20000);
|
|
|
|
/*
|
|
* Idle the chip.
|
|
*/
|
|
tlp_idle(sc, OPMODE_ST|OPMODE_SR);
|
|
|
|
/*
|
|
* Program the SIA. It's important to write in this order,
|
|
* resetting the SIA first.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_SIACONN, 0); /* SRL bit clear */
|
|
delay(1000);
|
|
|
|
TULIP_WRITE(sc, CSR_SIATXRX, tm->tm_siatxrx);
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_21142:
|
|
case TULIP_CHIP_21143:
|
|
TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpctl);
|
|
TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpdata);
|
|
break;
|
|
default:
|
|
TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen);
|
|
}
|
|
|
|
TULIP_WRITE(sc, CSR_SIACONN, tm->tm_siaconn);
|
|
|
|
/*
|
|
* Set the OPMODE bits for this media and write OPMODE.
|
|
* This will resume the transmit and receive processes.
|
|
*/
|
|
sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode;
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* 21140 GPIO utility functions.
|
|
*/
|
|
void tlp_21140_gpio_update_link __P((struct tulip_softc *));
|
|
|
|
void
|
|
tlp_21140_gpio_update_link(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife;
|
|
struct tulip_21x4x_media *tm;
|
|
|
|
ife = TULIP_CURRENT_MEDIA(sc);
|
|
tm = ife->ifm_aux;
|
|
|
|
sc->sc_flags &= ~(TULIPF_LINK_UP|TULIPF_LINK_VALID);
|
|
|
|
if (tm->tm_actmask != 0) {
|
|
sc->sc_flags |= TULIPF_LINK_VALID;
|
|
if (TULIP_ISSET(sc, CSR_GPP, tm->tm_actmask) ==
|
|
tm->tm_actdata)
|
|
sc->sc_flags |= TULIPF_LINK_UP;
|
|
}
|
|
}
|
|
|
|
void
|
|
tlp_21140_gpio_get(sc, ifmr)
|
|
struct tulip_softc *sc;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct ifmedia_entry *ife;
|
|
|
|
ifmr->ifm_status = 0;
|
|
|
|
tlp_21140_gpio_update_link(sc);
|
|
|
|
ife = TULIP_CURRENT_MEDIA(sc);
|
|
|
|
if (sc->sc_flags & TULIPF_LINK_VALID)
|
|
ifmr->ifm_status |= IFM_AVALID;
|
|
if (sc->sc_flags & TULIPF_LINK_UP)
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
ifmr->ifm_active = ife->ifm_media;
|
|
}
|
|
|
|
int
|
|
tlp_21140_gpio_set(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife;
|
|
struct tulip_21x4x_media *tm;
|
|
|
|
ife = TULIP_CURRENT_MEDIA(sc);
|
|
tm = ife->ifm_aux;
|
|
|
|
/*
|
|
* Idle the chip.
|
|
*/
|
|
tlp_idle(sc, OPMODE_ST|OPMODE_SR);
|
|
|
|
/*
|
|
* Set the GPIO pins for this media, to flip any
|
|
* relays, etc.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_GPP, tm->tm_gpdata);
|
|
|
|
/*
|
|
* Set the OPMODE bits for this media and write OPMODE.
|
|
* This will resume the transmit and receive processes.
|
|
*/
|
|
sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode;
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* 21040 and 21041 media switches.
|
|
*/
|
|
void tlp_21040_tmsw_init __P((struct tulip_softc *));
|
|
void tlp_21040_tp_tmsw_init __P((struct tulip_softc *));
|
|
void tlp_21040_auibnc_tmsw_init __P((struct tulip_softc *));
|
|
void tlp_21041_tmsw_init __P((struct tulip_softc *));
|
|
|
|
const struct tulip_mediasw tlp_21040_mediasw = {
|
|
tlp_21040_tmsw_init, tlp_sia_get, tlp_sia_set
|
|
};
|
|
|
|
const struct tulip_mediasw tlp_21040_tp_mediasw = {
|
|
tlp_21040_tp_tmsw_init, tlp_sia_get, tlp_sia_set
|
|
};
|
|
|
|
const struct tulip_mediasw tlp_21040_auibnc_mediasw = {
|
|
tlp_21040_auibnc_tmsw_init, tlp_sia_get, tlp_sia_set
|
|
};
|
|
|
|
const struct tulip_mediasw tlp_21041_mediasw = {
|
|
tlp_21041_tmsw_init, tlp_sia_get, tlp_sia_set
|
|
};
|
|
|
|
|
|
void
|
|
tlp_21040_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
static const u_int8_t media[] = {
|
|
TULIP_ROM_MB_MEDIA_TP,
|
|
TULIP_ROM_MB_MEDIA_TP_FDX,
|
|
TULIP_ROM_MB_MEDIA_AUI,
|
|
};
|
|
struct tulip_21x4x_media *tm;
|
|
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
|
|
tlp_add_srom_media(sc, 0, NULL, NULL, media, 3);
|
|
|
|
/*
|
|
* No SROM type for External SIA.
|
|
*/
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
tm->tm_name = "manual";
|
|
tm->tm_opmode = 0;
|
|
tm->tm_siaconn = SIACONN_21040_EXTSIA;
|
|
tm->tm_siatxrx = SIATXRX_21040_EXTSIA;
|
|
tm->tm_siagen = SIAGEN_21040_EXTSIA;
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_MAKEWORD(IFM_ETHER, IFM_MANUAL, 0, sc->sc_tlp_minst), 0, tm);
|
|
|
|
/*
|
|
* XXX Autosense not yet supported.
|
|
*/
|
|
|
|
/* XXX This should be auto-sense. */
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
|
|
|
|
tlp_print_media(sc);
|
|
}
|
|
|
|
void
|
|
tlp_21040_tp_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
static const u_int8_t media[] = {
|
|
TULIP_ROM_MB_MEDIA_TP,
|
|
TULIP_ROM_MB_MEDIA_TP_FDX,
|
|
};
|
|
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
|
|
tlp_add_srom_media(sc, 0, NULL, NULL, media, 2);
|
|
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
|
|
|
|
tlp_print_media(sc);
|
|
}
|
|
|
|
void
|
|
tlp_21040_auibnc_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
static const u_int8_t media[] = {
|
|
TULIP_ROM_MB_MEDIA_AUI,
|
|
};
|
|
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
|
|
tlp_add_srom_media(sc, 0, NULL, NULL, media, 1);
|
|
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5);
|
|
|
|
tlp_print_media(sc);
|
|
}
|
|
|
|
void
|
|
tlp_21041_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
static const u_int8_t media[] = {
|
|
TULIP_ROM_MB_MEDIA_TP,
|
|
TULIP_ROM_MB_MEDIA_TP_FDX,
|
|
TULIP_ROM_MB_MEDIA_BNC,
|
|
TULIP_ROM_MB_MEDIA_AUI,
|
|
};
|
|
int i, defmedia, devcnt, leaf_offset, mb_offset, m_cnt;
|
|
const struct tulip_srom_to_ifmedia *tsti;
|
|
struct tulip_21x4x_media *tm;
|
|
u_int16_t romdef;
|
|
u_int8_t mb;
|
|
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
|
|
if (tlp_isv_srom(sc->sc_srom) == 0) {
|
|
not_isv_srom:
|
|
/*
|
|
* If we have a board without the standard 21041 SROM format,
|
|
* we just assume all media are present and try and pick a
|
|
* reasonable default.
|
|
*/
|
|
tlp_add_srom_media(sc, 0, NULL, NULL, media, 4);
|
|
|
|
/*
|
|
* XXX Autosense not yet supported.
|
|
*/
|
|
|
|
/* XXX This should be auto-sense. */
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
|
|
|
|
tlp_print_media(sc);
|
|
return;
|
|
}
|
|
|
|
devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
|
|
for (i = 0; i < devcnt; i++) {
|
|
if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
|
|
break;
|
|
if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
|
|
sc->sc_devno)
|
|
break;
|
|
}
|
|
|
|
if (i == devcnt)
|
|
goto not_isv_srom;
|
|
|
|
leaf_offset = TULIP_ROM_GETW(sc->sc_srom,
|
|
TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i));
|
|
mb_offset = leaf_offset + TULIP_ROM_IL_MEDIAn_BLOCK_BASE;
|
|
m_cnt = sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT];
|
|
|
|
for (; m_cnt != 0;
|
|
m_cnt--, mb_offset += TULIP_ROM_MB_SIZE(mb)) {
|
|
mb = sc->sc_srom[mb_offset];
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
switch (mb & TULIP_ROM_MB_MEDIA_CODE) {
|
|
case TULIP_ROM_MB_MEDIA_TP_FDX:
|
|
case TULIP_ROM_MB_MEDIA_TP:
|
|
case TULIP_ROM_MB_MEDIA_BNC:
|
|
case TULIP_ROM_MB_MEDIA_AUI:
|
|
tsti = tlp_srom_to_ifmedia(mb &
|
|
TULIP_ROM_MB_MEDIA_CODE);
|
|
|
|
tlp_srom_media_info(sc, tsti, tm);
|
|
|
|
/*
|
|
* Override our default SIA settings if the
|
|
* SROM contains its own.
|
|
*/
|
|
if (mb & TULIP_ROM_MB_EXT) {
|
|
tm->tm_siaconn = TULIP_ROM_GETW(sc->sc_srom,
|
|
mb_offset + TULIP_ROM_MB_CSR13);
|
|
tm->tm_siatxrx = TULIP_ROM_GETW(sc->sc_srom,
|
|
mb_offset + TULIP_ROM_MB_CSR14);
|
|
tm->tm_siagen = TULIP_ROM_GETW(sc->sc_srom,
|
|
mb_offset + TULIP_ROM_MB_CSR15);
|
|
}
|
|
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
|
|
tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
|
|
break;
|
|
|
|
default:
|
|
printf("%s: unknown media code 0x%02x\n",
|
|
sc->sc_dev.dv_xname,
|
|
mb & TULIP_ROM_MB_MEDIA_CODE);
|
|
free(tm, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX Autosense not yet supported.
|
|
*/
|
|
|
|
romdef = TULIP_ROM_GETW(sc->sc_srom, leaf_offset +
|
|
TULIP_ROM_IL_SELECT_CONN_TYPE);
|
|
switch (romdef) {
|
|
case SELECT_CONN_TYPE_TP:
|
|
case SELECT_CONN_TYPE_TP_AUTONEG:
|
|
case SELECT_CONN_TYPE_TP_NOLINKPASS:
|
|
defmedia = IFM_ETHER|IFM_10_T;
|
|
break;
|
|
|
|
case SELECT_CONN_TYPE_TP_FDX:
|
|
defmedia = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
break;
|
|
|
|
case SELECT_CONN_TYPE_BNC:
|
|
defmedia = IFM_ETHER|IFM_10_2;
|
|
break;
|
|
|
|
case SELECT_CONN_TYPE_AUI:
|
|
defmedia = IFM_ETHER|IFM_10_5;
|
|
break;
|
|
#if 0 /* XXX */
|
|
case SELECT_CONN_TYPE_ASENSE:
|
|
case SELECT_CONN_TYPE_ASENSE_AUTONEG:
|
|
defmedia = IFM_ETHER|IFM_AUTO;
|
|
break;
|
|
#endif
|
|
default:
|
|
defmedia = 0;
|
|
}
|
|
|
|
if (defmedia == 0) {
|
|
/*
|
|
* XXX We should default to auto-sense.
|
|
*/
|
|
defmedia = IFM_ETHER|IFM_10_T;
|
|
}
|
|
|
|
ifmedia_set(&sc->sc_mii.mii_media, defmedia);
|
|
|
|
tlp_print_media(sc);
|
|
}
|
|
|
|
/*
|
|
* DECchip 2114x ISV media switch.
|
|
*/
|
|
void tlp_2114x_isv_tmsw_init __P((struct tulip_softc *));
|
|
void tlp_2114x_isv_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
|
|
int tlp_2114x_isv_tmsw_set __P((struct tulip_softc *));
|
|
|
|
const struct tulip_mediasw tlp_2114x_isv_mediasw = {
|
|
tlp_2114x_isv_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set
|
|
};
|
|
|
|
void tlp_2114x_nway_get __P((struct tulip_softc *, struct ifmediareq *));
|
|
int tlp_2114x_nway_set __P((struct tulip_softc *));
|
|
|
|
void tlp_2114x_nway_statchg __P((struct device *));
|
|
int tlp_2114x_nway_service __P((struct tulip_softc *, int));
|
|
void tlp_2114x_nway_auto __P((struct tulip_softc *));
|
|
void tlp_2114x_nway_status __P((struct tulip_softc *));
|
|
|
|
void
|
|
tlp_2114x_isv_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ifmedia_entry *ife;
|
|
struct mii_softc *phy;
|
|
struct tulip_21x4x_media *tm;
|
|
const struct tulip_srom_to_ifmedia *tsti;
|
|
int i, devcnt, leaf_offset, m_cnt, type, length;
|
|
int defmedia, miidef;
|
|
u_int16_t word;
|
|
u_int8_t *cp, *ncp;
|
|
|
|
defmedia = miidef = 0;
|
|
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
|
|
sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
|
|
sc->sc_mii.mii_statchg = sc->sc_statchg;
|
|
|
|
/*
|
|
* Ignore `instance'; we may get a mixture of SIA and MII
|
|
* media, and `instance' is used to isolate or select the
|
|
* PHY on the MII as appropriate. Note that duplicate media
|
|
* are disallowed, so ignoring `instance' is safe.
|
|
*/
|
|
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
|
|
devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
|
|
for (i = 0; i < devcnt; i++) {
|
|
if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
|
|
break;
|
|
if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
|
|
sc->sc_devno)
|
|
break;
|
|
}
|
|
|
|
if (i == devcnt) {
|
|
printf("%s: unable to locate info leaf in SROM\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
|
|
leaf_offset = TULIP_ROM_GETW(sc->sc_srom,
|
|
TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i));
|
|
|
|
/* XXX SELECT CONN TYPE */
|
|
|
|
cp = &sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT];
|
|
|
|
/*
|
|
* On some chips, the first thing in the Info Leaf is the
|
|
* GPIO pin direction data.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_21140:
|
|
case TULIP_CHIP_21140A:
|
|
case TULIP_CHIP_MX98713:
|
|
case TULIP_CHIP_AX88140:
|
|
case TULIP_CHIP_AX88141:
|
|
sc->sc_gp_dir = *cp++;
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
|
|
/* Get the media count. */
|
|
m_cnt = *cp++;
|
|
|
|
for (; m_cnt != 0; cp = ncp, m_cnt--) {
|
|
/*
|
|
* Determine the type and length of this media block.
|
|
* The 21143 is spec'd to always use extended format blocks,
|
|
* but some cards don't set the bit to indicate this.
|
|
* Hopefully there are no cards which really don't use
|
|
* extended format blocks.
|
|
*/
|
|
if ((*cp & 0x80) == 0 && sc->sc_chip != TULIP_CHIP_21143) {
|
|
length = 4;
|
|
type = TULIP_ROM_MB_21140_GPR;
|
|
} else {
|
|
length = (*cp++ & 0x7f) - 1;
|
|
type = *cp++ & 0x3f;
|
|
}
|
|
|
|
/* Compute the start of the next block. */
|
|
ncp = cp + length;
|
|
|
|
/* Now, parse the block. */
|
|
switch (type) {
|
|
case TULIP_ROM_MB_21140_GPR:
|
|
tlp_get_minst(sc);
|
|
sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_GPR;
|
|
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
|
|
tm->tm_type = TULIP_ROM_MB_21140_GPR;
|
|
tm->tm_get = tlp_21140_gpio_get;
|
|
tm->tm_set = tlp_21140_gpio_set;
|
|
|
|
/* First is the media type code. */
|
|
tsti = tlp_srom_to_ifmedia(cp[0] &
|
|
TULIP_ROM_MB_MEDIA_CODE);
|
|
if (tsti == NULL) {
|
|
/* Invalid media code. */
|
|
free(tm, M_DEVBUF);
|
|
break;
|
|
}
|
|
|
|
/* Get defaults. */
|
|
tlp_srom_media_info(sc, tsti, tm);
|
|
|
|
/* Next is any GPIO info for this media. */
|
|
tm->tm_gpdata = cp[1];
|
|
|
|
/*
|
|
* Next is a word containing OPMODE information
|
|
* and info on how to detect if this media is
|
|
* active.
|
|
*/
|
|
word = TULIP_ROM_GETW(cp, 2);
|
|
tm->tm_opmode &= OPMODE_FD;
|
|
tm->tm_opmode |= TULIP_ROM_MB_OPMODE(word);
|
|
if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) {
|
|
tm->tm_actmask =
|
|
TULIP_ROM_MB_BITPOS(word);
|
|
tm->tm_actdata =
|
|
(word & TULIP_ROM_MB_POLARITY) ?
|
|
0 : tm->tm_actmask;
|
|
}
|
|
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
|
|
tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
|
|
break;
|
|
|
|
case TULIP_ROM_MB_21140_MII:
|
|
sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_MII;
|
|
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
|
|
tm->tm_type = TULIP_ROM_MB_21140_MII;
|
|
tm->tm_get = tlp_mii_getmedia;
|
|
tm->tm_set = tlp_mii_setmedia;
|
|
tm->tm_opmode = OPMODE_PS;
|
|
|
|
if (sc->sc_reset == NULL)
|
|
sc->sc_reset = tlp_21140_reset;
|
|
|
|
/* First is the PHY number. */
|
|
tm->tm_phyno = *cp++;
|
|
|
|
/* Next is the MII select sequence length and offset. */
|
|
tm->tm_gp_length = *cp++;
|
|
tm->tm_gp_offset = cp - &sc->sc_srom[0];
|
|
cp += tm->tm_gp_length;
|
|
|
|
/* Next is the MII reset sequence length and offset. */
|
|
tm->tm_reset_length = *cp++;
|
|
tm->tm_reset_offset = cp - &sc->sc_srom[0];
|
|
cp += tm->tm_reset_length;
|
|
|
|
/*
|
|
* The following items are left in the media block
|
|
* that we don't particularly care about:
|
|
*
|
|
* capabilities W
|
|
* advertisement W
|
|
* full duplex W
|
|
* tx threshold W
|
|
*
|
|
* These appear to be bits in the PHY registers,
|
|
* which our MII code handles on its own.
|
|
*/
|
|
|
|
/*
|
|
* Before we probe the MII bus, we need to reset
|
|
* it and issue the selection sequence.
|
|
*/
|
|
|
|
/* Set the direction of the pins... */
|
|
TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
|
|
|
|
for (i = 0; i < tm->tm_reset_length; i++) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_GPP,
|
|
sc->sc_srom[tm->tm_reset_offset + i]);
|
|
}
|
|
|
|
for (i = 0; i < tm->tm_gp_length; i++) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_GPP,
|
|
sc->sc_srom[tm->tm_gp_offset + i]);
|
|
}
|
|
|
|
/* If there were no sequences, just lower the pins. */
|
|
if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_GPP, 0);
|
|
}
|
|
|
|
/*
|
|
* Now, probe the MII for the PHY. Note, we know
|
|
* the location of the PHY on the bus, but we don't
|
|
* particularly care; the MII code just likes to
|
|
* search the whole thing anyhow.
|
|
*/
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
|
|
MII_PHY_ANY, tm->tm_phyno, 0);
|
|
|
|
/*
|
|
* Now, search for the PHY we hopefully just
|
|
* configured. If it's not configured into the
|
|
* kernel, we lose. The PHY's default media always
|
|
* takes priority.
|
|
*/
|
|
for (phy = LIST_FIRST(&sc->sc_mii.mii_phys);
|
|
phy != NULL;
|
|
phy = LIST_NEXT(phy, mii_list))
|
|
if (phy->mii_offset == tm->tm_phyno)
|
|
break;
|
|
if (phy == NULL) {
|
|
printf("%s: unable to configure MII\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
|
|
sc->sc_flags |= TULIPF_HAS_MII;
|
|
sc->sc_tick = tlp_mii_tick;
|
|
miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0,
|
|
phy->mii_inst);
|
|
|
|
/*
|
|
* Okay, now that we've found the PHY and the MII
|
|
* layer has added all of the media associated
|
|
* with that PHY, we need to traverse the media
|
|
* list, and add our `tm' to each entry's `aux'
|
|
* pointer.
|
|
*
|
|
* We do this by looking for media with our
|
|
* PHY's `instance'.
|
|
*/
|
|
for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
|
|
ife != NULL;
|
|
ife = TAILQ_NEXT(ife, ifm_list)) {
|
|
if (IFM_INST(ife->ifm_media) != phy->mii_inst)
|
|
continue;
|
|
ife->ifm_aux = tm;
|
|
}
|
|
break;
|
|
|
|
case TULIP_ROM_MB_21142_SIA:
|
|
tlp_get_minst(sc);
|
|
sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_SIA;
|
|
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
|
|
tm->tm_type = TULIP_ROM_MB_21142_SIA;
|
|
tm->tm_get = tlp_sia_get;
|
|
tm->tm_set = tlp_sia_set;
|
|
|
|
/* First is the media type code. */
|
|
tsti = tlp_srom_to_ifmedia(cp[0] &
|
|
TULIP_ROM_MB_MEDIA_CODE);
|
|
if (tsti == NULL) {
|
|
/* Invalid media code. */
|
|
free(tm, M_DEVBUF);
|
|
break;
|
|
}
|
|
|
|
/* Get defaults. */
|
|
tlp_srom_media_info(sc, tsti, tm);
|
|
|
|
/*
|
|
* Override our default SIA settings if the
|
|
* SROM contains its own.
|
|
*/
|
|
if (cp[0] & 0x40) {
|
|
tm->tm_siaconn = TULIP_ROM_GETW(cp, 1);
|
|
tm->tm_siatxrx = TULIP_ROM_GETW(cp, 3);
|
|
tm->tm_siagen = TULIP_ROM_GETW(cp, 5);
|
|
cp += 7;
|
|
} else
|
|
cp++;
|
|
|
|
/* Next is GPIO control/data. */
|
|
tm->tm_gpctl = TULIP_ROM_GETW(cp, 0) << 16;
|
|
tm->tm_gpdata = TULIP_ROM_GETW(cp, 2) << 16;
|
|
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
|
|
tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
|
|
break;
|
|
|
|
case TULIP_ROM_MB_21142_MII:
|
|
sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_MII;
|
|
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
|
|
tm->tm_type = TULIP_ROM_MB_21142_MII;
|
|
tm->tm_get = tlp_mii_getmedia;
|
|
tm->tm_set = tlp_mii_setmedia;
|
|
tm->tm_opmode = OPMODE_PS;
|
|
|
|
if (sc->sc_reset == NULL)
|
|
sc->sc_reset = tlp_21142_reset;
|
|
|
|
/* First is the PHY number. */
|
|
tm->tm_phyno = *cp++;
|
|
|
|
/* Next is the MII select sequence length and offset. */
|
|
tm->tm_gp_length = *cp++;
|
|
tm->tm_gp_offset = cp - &sc->sc_srom[0];
|
|
cp += tm->tm_gp_length * 2;
|
|
|
|
/* Next is the MII reset sequence length and offset. */
|
|
tm->tm_reset_length = *cp++;
|
|
tm->tm_reset_offset = cp - &sc->sc_srom[0];
|
|
cp += tm->tm_reset_length * 2;
|
|
|
|
/*
|
|
* The following items are left in the media block
|
|
* that we don't particularly care about:
|
|
*
|
|
* capabilities W
|
|
* advertisement W
|
|
* full duplex W
|
|
* tx threshold W
|
|
* MII interrupt W
|
|
*
|
|
* These appear to be bits in the PHY registers,
|
|
* which our MII code handles on its own.
|
|
*/
|
|
|
|
/*
|
|
* Before we probe the MII bus, we need to reset
|
|
* it and issue the selection sequence.
|
|
*/
|
|
|
|
cp = &sc->sc_srom[tm->tm_reset_offset];
|
|
for (i = 0; i < tm->tm_reset_length; i++, cp += 2) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_SIAGEN,
|
|
TULIP_ROM_GETW(cp, 0) << 16);
|
|
}
|
|
|
|
cp = &sc->sc_srom[tm->tm_gp_offset];
|
|
for (i = 0; i < tm->tm_gp_length; i++, cp += 2) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_SIAGEN,
|
|
TULIP_ROM_GETW(cp, 0) << 16);
|
|
}
|
|
|
|
/* If there were no sequences, just lower the pins. */
|
|
if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
|
|
delay(10);
|
|
TULIP_WRITE(sc, CSR_SIAGEN, 0);
|
|
}
|
|
|
|
/*
|
|
* Now, probe the MII for the PHY. Note, we know
|
|
* the location of the PHY on the bus, but we don't
|
|
* particularly care; the MII code just likes to
|
|
* search the whole thing anyhow.
|
|
*/
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
|
|
MII_PHY_ANY, tm->tm_phyno, 0);
|
|
|
|
/*
|
|
* Now, search for the PHY we hopefully just
|
|
* configured. If it's not configured into the
|
|
* kernel, we lose. The PHY's default media always
|
|
* takes priority.
|
|
*/
|
|
for (phy = LIST_FIRST(&sc->sc_mii.mii_phys);
|
|
phy != NULL;
|
|
phy = LIST_NEXT(phy, mii_list))
|
|
if (phy->mii_offset == tm->tm_phyno)
|
|
break;
|
|
if (phy == NULL) {
|
|
printf("%s: unable to configure MII\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
|
|
sc->sc_flags |= TULIPF_HAS_MII;
|
|
sc->sc_tick = tlp_mii_tick;
|
|
miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0,
|
|
phy->mii_inst);
|
|
|
|
/*
|
|
* Okay, now that we've found the PHY and the MII
|
|
* layer has added all of the media associated
|
|
* with that PHY, we need to traverse the media
|
|
* list, and add our `tm' to each entry's `aux'
|
|
* pointer.
|
|
*
|
|
* We do this by looking for media with our
|
|
* PHY's `instance'.
|
|
*/
|
|
for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
|
|
ife != NULL;
|
|
ife = TAILQ_NEXT(ife, ifm_list)) {
|
|
if (IFM_INST(ife->ifm_media) != phy->mii_inst)
|
|
continue;
|
|
ife->ifm_aux = tm;
|
|
}
|
|
break;
|
|
|
|
case TULIP_ROM_MB_21143_SYM:
|
|
tlp_get_minst(sc);
|
|
sc->sc_media_seen |= 1 << TULIP_ROM_MB_21143_SYM;
|
|
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
|
|
tm->tm_type = TULIP_ROM_MB_21143_SYM;
|
|
tm->tm_get = tlp_sia_get;
|
|
tm->tm_set = tlp_sia_set;
|
|
|
|
/* First is the media type code. */
|
|
tsti = tlp_srom_to_ifmedia(cp[0] &
|
|
TULIP_ROM_MB_MEDIA_CODE);
|
|
if (tsti == NULL) {
|
|
/* Invalid media code. */
|
|
free(tm, M_DEVBUF);
|
|
break;
|
|
}
|
|
|
|
/* Get defaults. */
|
|
tlp_srom_media_info(sc, tsti, tm);
|
|
|
|
/* Next is GPIO control/data. */
|
|
tm->tm_gpctl = TULIP_ROM_GETW(cp, 1) << 16;
|
|
tm->tm_gpdata = TULIP_ROM_GETW(cp, 3) << 16;
|
|
|
|
/*
|
|
* Next is a word containing OPMODE information
|
|
* and info on how to detect if this media is
|
|
* active.
|
|
*/
|
|
word = TULIP_ROM_GETW(cp, 5);
|
|
tm->tm_opmode &= OPMODE_FD;
|
|
tm->tm_opmode |= TULIP_ROM_MB_OPMODE(word);
|
|
if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) {
|
|
tm->tm_actmask =
|
|
TULIP_ROM_MB_BITPOS(word);
|
|
tm->tm_actdata =
|
|
(word & TULIP_ROM_MB_POLARITY) ?
|
|
0 : tm->tm_actmask;
|
|
}
|
|
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
|
|
tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
|
|
break;
|
|
|
|
case TULIP_ROM_MB_21143_RESET:
|
|
printf("%s: 21143 reset block\n", sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
default:
|
|
printf("%s: unknown ISV media block type 0x%02x\n",
|
|
sc->sc_dev.dv_xname, type);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deal with the case where no media is configured.
|
|
*/
|
|
if (TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list) == NULL) {
|
|
printf("%s: no media found!\n", sc->sc_dev.dv_xname);
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Pick the default media.
|
|
*/
|
|
if (miidef != 0)
|
|
defmedia = miidef;
|
|
else {
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_21140:
|
|
case TULIP_CHIP_21140A:
|
|
/* XXX should come from SROM */
|
|
defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0);
|
|
break;
|
|
|
|
case TULIP_CHIP_21142:
|
|
case TULIP_CHIP_21143:
|
|
case TULIP_CHIP_MX98713A:
|
|
case TULIP_CHIP_MX98715:
|
|
case TULIP_CHIP_MX98715A:
|
|
case TULIP_CHIP_MX98715AEC_X:
|
|
case TULIP_CHIP_MX98725:
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
tm->tm_name = "auto";
|
|
tm->tm_get = tlp_2114x_nway_get;
|
|
tm->tm_set = tlp_2114x_nway_set;
|
|
|
|
defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0);
|
|
ifmedia_add(&sc->sc_mii.mii_media, defmedia, 0, tm);
|
|
|
|
sc->sc_statchg = tlp_2114x_nway_statchg;
|
|
sc->sc_tick = tlp_2114x_nway_tick;
|
|
break;
|
|
|
|
default:
|
|
defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ifmedia_set(&sc->sc_mii.mii_media, defmedia);
|
|
|
|
/*
|
|
* Display any non-MII media we've located.
|
|
*/
|
|
if (sc->sc_media_seen &
|
|
~((1 << TULIP_ROM_MB_21140_MII) | (1 << TULIP_ROM_MB_21142_MII)))
|
|
tlp_print_media(sc);
|
|
|
|
tlp_sia_fixup(sc);
|
|
}
|
|
|
|
void
|
|
tlp_2114x_nway_get(sc, ifmr)
|
|
struct tulip_softc *sc;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
|
|
(void) tlp_2114x_nway_service(sc, MII_POLLSTAT);
|
|
ifmr->ifm_status = sc->sc_mii.mii_media_status;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media_active;
|
|
}
|
|
|
|
int
|
|
tlp_2114x_nway_set(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
return (tlp_2114x_nway_service(sc, MII_MEDIACHG));
|
|
}
|
|
|
|
void
|
|
tlp_2114x_nway_statchg(self)
|
|
struct device *self;
|
|
{
|
|
struct tulip_softc *sc = (struct tulip_softc *)self;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)
|
|
return;
|
|
|
|
/* Idle the transmit and receive processes. */
|
|
tlp_idle(sc, OPMODE_ST|OPMODE_SR);
|
|
|
|
sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_PS|OPMODE_PCS|
|
|
OPMODE_SCR|OPMODE_HBD);
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)
|
|
sc->sc_opmode |= OPMODE_TTM;
|
|
else
|
|
sc->sc_opmode |= OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD;
|
|
|
|
if (mii->mii_media_active & IFM_FDX)
|
|
sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
|
|
|
|
/*
|
|
* Write new OPMODE bits. This also restarts the transmit
|
|
* and receive processes.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
}
|
|
|
|
void
|
|
tlp_2114x_nway_tick(arg)
|
|
void *arg;
|
|
{
|
|
struct tulip_softc *sc = arg;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
int s, ticks;
|
|
|
|
if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
|
|
return;
|
|
|
|
s = splnet();
|
|
tlp_2114x_nway_service(sc, MII_TICK);
|
|
if ((sc->sc_flags & TULIPF_LINK_UP) == 0 &&
|
|
(mii->mii_media_status & IFM_ACTIVE) != 0 &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->sc_flags |= TULIPF_LINK_UP;
|
|
tlp_start(&sc->sc_ethercom.ec_if);
|
|
} else if ((sc->sc_flags & TULIPF_LINK_UP) != 0 &&
|
|
(mii->mii_media_status & IFM_ACTIVE) == 0) {
|
|
sc->sc_flags &= ~TULIPF_LINK_UP;
|
|
}
|
|
splx(s);
|
|
|
|
if ((sc->sc_flags & TULIPF_LINK_UP) == 0)
|
|
ticks = hz >> 3;
|
|
else
|
|
ticks = hz;
|
|
callout_reset(&sc->sc_tick_callout, ticks, tlp_2114x_nway_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Support for the 2114X internal NWay block. This is constructed
|
|
* somewhat like a PHY driver for simplicity.
|
|
*/
|
|
|
|
int
|
|
tlp_2114x_nway_service(sc, cmd)
|
|
struct tulip_softc *sc;
|
|
int cmd;
|
|
{
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
|
|
|
|
if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
|
|
return (0);
|
|
|
|
switch (cmd) {
|
|
case MII_POLLSTAT:
|
|
/* Nothing special to do here. */
|
|
break;
|
|
|
|
case MII_MEDIACHG:
|
|
switch (IFM_SUBTYPE(ife->ifm_media)) {
|
|
case IFM_AUTO:
|
|
goto restart;
|
|
default:
|
|
/* Manual setting doesn't go through here. */
|
|
printf("tlp_2114x_nway_service: oops!\n");
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
|
|
case MII_TICK:
|
|
/*
|
|
* Only used for autonegotiation.
|
|
*/
|
|
if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
|
|
break;
|
|
|
|
/*
|
|
* Check to see if we have link. If we do, we don't
|
|
* need to restart the autonegotiation process.
|
|
*/
|
|
#if 0
|
|
if (mii->mii_media_status & IFM_ACTIVE)
|
|
#else
|
|
if (sc->sc_flags & TULIPF_LINK_UP)
|
|
#endif
|
|
break;
|
|
|
|
/*
|
|
* Only retry autonegotiation every 5 seconds.
|
|
*/
|
|
if (++sc->sc_nway_ticks != (5 << 3))
|
|
break;
|
|
|
|
restart:
|
|
sc->sc_nway_ticks = 0;
|
|
ife->ifm_data = IFM_NONE;
|
|
tlp_2114x_nway_auto(sc);
|
|
break;
|
|
}
|
|
|
|
/* Update the media status. */
|
|
tlp_2114x_nway_status(sc);
|
|
|
|
/*
|
|
* Callback if something changed. Manually configuration goes through
|
|
* tlp_sia_set() anyway, so ignore that here.
|
|
*/
|
|
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO &&
|
|
ife->ifm_data != mii->mii_media_active) {
|
|
(*sc->sc_statchg)(&sc->sc_dev);
|
|
ife->ifm_data = mii->mii_media_active;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
tlp_2114x_nway_auto(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
uint32_t siastat;
|
|
|
|
tlp_idle(sc, OPMODE_ST|OPMODE_SR);
|
|
|
|
sc->sc_opmode &= ~(OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_TTM);
|
|
sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
|
|
TULIP_WRITE(sc, CSR_SIACONN, 0);
|
|
delay(1000);
|
|
TULIP_WRITE(sc, CSR_SIACONN, SIACONN_SRL);
|
|
|
|
TULIP_WRITE(sc, CSR_SIATXRX, 0x3ffff);
|
|
|
|
siastat = TULIP_READ(sc, CSR_SIASTAT);
|
|
siastat &= ~(SIASTAT_ANS|SIASTAT_LPC|SIASTAT_TRA|SIASTAT_ARA|SIASTAT_LS100|SIASTAT_LS10|SIASTAT_MRA);
|
|
siastat |= SIASTAT_ANS_TXDIS;
|
|
TULIP_WRITE(sc, CSR_SIASTAT, siastat);
|
|
}
|
|
|
|
void
|
|
tlp_2114x_nway_status(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
uint32_t siatxrx, siastat, anlpar;
|
|
|
|
mii->mii_media_status = IFM_AVALID;
|
|
mii->mii_media_active = IFM_ETHER;
|
|
|
|
if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
|
|
return;
|
|
|
|
siastat = TULIP_READ(sc, CSR_SIASTAT);
|
|
siatxrx = TULIP_READ(sc, CSR_SIATXRX);
|
|
|
|
if (siatxrx & SIATXRX_ANE) {
|
|
if ((siastat & SIASTAT_ANS) != SIASTAT_ANS_FLPGOOD) {
|
|
/* Erg, still trying, I guess... */
|
|
mii->mii_media_active |= IFM_NONE;
|
|
return;
|
|
}
|
|
|
|
if (~siastat & (SIASTAT_LS10 | SIASTAT_LS100))
|
|
mii->mii_media_status |= IFM_ACTIVE;
|
|
|
|
if (siastat & SIASTAT_LPN) {
|
|
anlpar = SIASTAT_GETLPC(siastat);
|
|
if (anlpar & ANLPAR_T4 /* &&
|
|
sc->mii_capabilities & BMSR_100TXHDX */)
|
|
mii->mii_media_active |= IFM_100_T4;
|
|
else if (anlpar & ANLPAR_TX_FD /* &&
|
|
sc->mii_capabilities & BMSR_100TXFDX */)
|
|
mii->mii_media_active |= IFM_100_TX|IFM_FDX;
|
|
else if (anlpar & ANLPAR_TX /* &&
|
|
sc->mii_capabilities & BMSR_100TXHDX */)
|
|
mii->mii_media_active |= IFM_100_TX;
|
|
else if (anlpar & ANLPAR_10_FD)
|
|
mii->mii_media_active |= IFM_10_T|IFM_FDX;
|
|
else if (anlpar & ANLPAR_10)
|
|
mii->mii_media_active |= IFM_10_T;
|
|
else
|
|
mii->mii_media_active |= IFM_NONE;
|
|
} else {
|
|
/*
|
|
* If the other side doesn't support NWAY, then the
|
|
* best we can do is determine if we have a 10Mbps or
|
|
* 100Mbps link. There's no way to know if the link
|
|
* is full or half duplex, so we default to half duplex
|
|
* and hope that the user is clever enough to manually
|
|
* change the media settings if we're wrong.
|
|
*/
|
|
if ((siastat & SIASTAT_LS100) == 0)
|
|
mii->mii_media_active |= IFM_100_TX;
|
|
else if ((siastat & SIASTAT_LS10) == 0)
|
|
mii->mii_media_active |= IFM_10_T;
|
|
else
|
|
mii->mii_media_active |= IFM_NONE;
|
|
}
|
|
} else {
|
|
if (~siastat & (SIASTAT_LS10 | SIASTAT_LS100))
|
|
mii->mii_media_status |= IFM_ACTIVE;
|
|
|
|
if (sc->sc_opmode & OPMODE_TTM)
|
|
mii->mii_media_active |= IFM_10_T;
|
|
else
|
|
mii->mii_media_active |= IFM_100_TX;
|
|
if (sc->sc_opmode & OPMODE_FD)
|
|
mii->mii_media_active |= IFM_FDX;
|
|
}
|
|
}
|
|
|
|
void
|
|
tlp_2114x_isv_tmsw_get(sc, ifmr)
|
|
struct tulip_softc *sc;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
|
|
struct tulip_21x4x_media *tm = ife->ifm_aux;
|
|
|
|
(*tm->tm_get)(sc, ifmr);
|
|
}
|
|
|
|
int
|
|
tlp_2114x_isv_tmsw_set(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
|
|
struct tulip_21x4x_media *tm = ife->ifm_aux;
|
|
|
|
/*
|
|
* Check to see if we need to reset the chip, and do it. The
|
|
* reset path will get the OPMODE register right the next
|
|
* time through.
|
|
*/
|
|
if (TULIP_MEDIA_NEEDSRESET(sc, tm->tm_opmode))
|
|
return (tlp_init(&sc->sc_ethercom.ec_if));
|
|
|
|
return ((*tm->tm_set)(sc));
|
|
}
|
|
|
|
/*
|
|
* MII-on-SIO media switch. Handles only MII attached to the SIO.
|
|
*/
|
|
void tlp_sio_mii_tmsw_init __P((struct tulip_softc *));
|
|
|
|
const struct tulip_mediasw tlp_sio_mii_mediasw = {
|
|
tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
|
|
};
|
|
|
|
void
|
|
tlp_sio_mii_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/*
|
|
* We don't attach any media info structures to the ifmedia
|
|
* entries, so if we're using a pre-init function that needs
|
|
* that info, override it to one that doesn't.
|
|
*/
|
|
if (sc->sc_preinit == tlp_2114x_preinit)
|
|
sc->sc_preinit = tlp_2114x_mii_preinit;
|
|
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
|
|
sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
|
|
sc->sc_mii.mii_statchg = sc->sc_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else {
|
|
sc->sc_flags |= TULIPF_HAS_MII;
|
|
sc->sc_tick = tlp_mii_tick;
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Lite-On PNIC media switch. Must handle MII or internal NWAY.
|
|
*/
|
|
void tlp_pnic_tmsw_init __P((struct tulip_softc *));
|
|
void tlp_pnic_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
|
|
int tlp_pnic_tmsw_set __P((struct tulip_softc *));
|
|
|
|
const struct tulip_mediasw tlp_pnic_mediasw = {
|
|
tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set
|
|
};
|
|
|
|
void tlp_pnic_nway_statchg __P((struct device *));
|
|
void tlp_pnic_nway_tick __P((void *));
|
|
int tlp_pnic_nway_service __P((struct tulip_softc *, int));
|
|
void tlp_pnic_nway_reset __P((struct tulip_softc *));
|
|
int tlp_pnic_nway_auto __P((struct tulip_softc *, int));
|
|
void tlp_pnic_nway_auto_timeout __P((void *));
|
|
void tlp_pnic_nway_status __P((struct tulip_softc *));
|
|
void tlp_pnic_nway_acomp __P((struct tulip_softc *));
|
|
|
|
void
|
|
tlp_pnic_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
const char *sep = "";
|
|
|
|
#define ADD(m, c) ifmedia_add(&sc->sc_mii.mii_media, (m), (c), NULL)
|
|
#define PRINT(str) printf("%s%s", sep, str); sep = ", "
|
|
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = tlp_pnic_mii_readreg;
|
|
sc->sc_mii.mii_writereg = tlp_pnic_mii_writereg;
|
|
sc->sc_mii.mii_statchg = sc->sc_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
/* XXX What about AUI/BNC support? */
|
|
printf("%s: ", sc->sc_dev.dv_xname);
|
|
|
|
tlp_pnic_nway_reset(sc);
|
|
|
|
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0),
|
|
PNIC_NWAY_TW|PNIC_NWAY_CAP10T);
|
|
PRINT("10baseT");
|
|
|
|
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0),
|
|
PNIC_NWAY_TW|PNIC_NWAY_FD|PNIC_NWAY_CAP10TFDX);
|
|
PRINT("10baseT-FDX");
|
|
|
|
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0),
|
|
PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_CAP100TX);
|
|
PRINT("100baseTX");
|
|
|
|
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0),
|
|
PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_FD|
|
|
PNIC_NWAY_CAP100TXFDX);
|
|
PRINT("100baseTX-FDX");
|
|
|
|
ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0),
|
|
PNIC_NWAY_TW|PNIC_NWAY_RN|PNIC_NWAY_NW|
|
|
PNIC_NWAY_CAP10T|PNIC_NWAY_CAP10TFDX|
|
|
PNIC_NWAY_CAP100TXFDX|PNIC_NWAY_CAP100TX);
|
|
PRINT("auto");
|
|
|
|
printf("\n");
|
|
|
|
sc->sc_statchg = tlp_pnic_nway_statchg;
|
|
sc->sc_tick = tlp_pnic_nway_tick;
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
} else {
|
|
sc->sc_flags |= TULIPF_HAS_MII;
|
|
sc->sc_tick = tlp_mii_tick;
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
|
|
#undef ADD
|
|
#undef PRINT
|
|
}
|
|
|
|
void
|
|
tlp_pnic_tmsw_get(sc, ifmr)
|
|
struct tulip_softc *sc;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
|
|
if (sc->sc_flags & TULIPF_HAS_MII)
|
|
tlp_mii_getmedia(sc, ifmr);
|
|
else {
|
|
mii->mii_media_status = 0;
|
|
mii->mii_media_active = IFM_NONE;
|
|
tlp_pnic_nway_service(sc, MII_POLLSTAT);
|
|
ifmr->ifm_status = sc->sc_mii.mii_media_status;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media_active;
|
|
}
|
|
}
|
|
|
|
int
|
|
tlp_pnic_tmsw_set(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
|
|
if (sc->sc_flags & TULIPF_HAS_MII) {
|
|
/*
|
|
* Make sure the built-in Tx jabber timer is disabled.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS);
|
|
|
|
return (tlp_mii_setmedia(sc));
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
|
mii->mii_media_status = 0;
|
|
mii->mii_media_active = IFM_NONE;
|
|
return (tlp_pnic_nway_service(sc, MII_MEDIACHG));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
tlp_pnic_nway_statchg(self)
|
|
struct device *self;
|
|
{
|
|
struct tulip_softc *sc = (struct tulip_softc *)self;
|
|
|
|
/* Idle the transmit and receive processes. */
|
|
tlp_idle(sc, OPMODE_ST|OPMODE_SR);
|
|
|
|
sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_PS|OPMODE_PCS|
|
|
OPMODE_SCR|OPMODE_HBD);
|
|
|
|
if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
|
|
sc->sc_opmode |= OPMODE_TTM;
|
|
TULIP_WRITE(sc, CSR_GPP,
|
|
GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) |
|
|
GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
|
|
} else {
|
|
sc->sc_opmode |= OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD;
|
|
TULIP_WRITE(sc, CSR_GPP,
|
|
GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) |
|
|
GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
|
|
}
|
|
|
|
if (sc->sc_mii.mii_media_active & IFM_FDX)
|
|
sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
|
|
|
|
/*
|
|
* Write new OPMODE bits. This also restarts the transmit
|
|
* and receive processes.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
|
|
}
|
|
|
|
void
|
|
tlp_pnic_nway_tick(arg)
|
|
void *arg;
|
|
{
|
|
struct tulip_softc *sc = arg;
|
|
int s;
|
|
|
|
if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
|
|
return;
|
|
|
|
s = splnet();
|
|
tlp_pnic_nway_service(sc, MII_TICK);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_tick_callout, hz, tlp_pnic_nway_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Support for the Lite-On PNIC internal NWay block. This is constructed
|
|
* somewhat like a PHY driver for simplicity.
|
|
*/
|
|
|
|
int
|
|
tlp_pnic_nway_service(sc, cmd)
|
|
struct tulip_softc *sc;
|
|
int cmd;
|
|
{
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
|
|
|
|
if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
|
|
return (0);
|
|
|
|
switch (cmd) {
|
|
case MII_POLLSTAT:
|
|
/* Nothing special to do here. */
|
|
break;
|
|
|
|
case MII_MEDIACHG:
|
|
switch (IFM_SUBTYPE(ife->ifm_media)) {
|
|
case IFM_AUTO:
|
|
(void) tlp_pnic_nway_auto(sc, 1);
|
|
break;
|
|
case IFM_100_T4:
|
|
/*
|
|
* XXX Not supported as a manual setting right now.
|
|
*/
|
|
return (EINVAL);
|
|
default:
|
|
/*
|
|
* NWAY register data is stored in the ifmedia entry.
|
|
*/
|
|
TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
|
|
}
|
|
break;
|
|
|
|
case MII_TICK:
|
|
/*
|
|
* Only used for autonegotiation.
|
|
*/
|
|
if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
|
|
return (0);
|
|
|
|
/*
|
|
* Check to see if we have link. If we do, we don't
|
|
* need to restart the autonegotiation process.
|
|
*/
|
|
if (sc->sc_flags & TULIPF_LINK_UP)
|
|
return (0);
|
|
|
|
/*
|
|
* Only retry autonegotiation every 5 seconds.
|
|
*/
|
|
if (++sc->sc_nway_ticks != 5)
|
|
return (0);
|
|
|
|
sc->sc_nway_ticks = 0;
|
|
tlp_pnic_nway_reset(sc);
|
|
if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN)
|
|
return (0);
|
|
break;
|
|
}
|
|
|
|
/* Update the media status. */
|
|
tlp_pnic_nway_status(sc);
|
|
|
|
/* Callback if something changed. */
|
|
if ((sc->sc_nway_active == NULL ||
|
|
sc->sc_nway_active->ifm_media != mii->mii_media_active) ||
|
|
cmd == MII_MEDIACHG) {
|
|
(*sc->sc_statchg)(&sc->sc_dev);
|
|
tlp_nway_activate(sc, mii->mii_media_active);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
tlp_pnic_nway_reset(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS);
|
|
delay(100);
|
|
TULIP_WRITE(sc, CSR_PNIC_NWAY, 0);
|
|
}
|
|
|
|
int
|
|
tlp_pnic_nway_auto(sc, waitfor)
|
|
struct tulip_softc *sc;
|
|
int waitfor;
|
|
{
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
|
|
u_int32_t reg;
|
|
int i;
|
|
|
|
if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0)
|
|
TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
|
|
|
|
if (waitfor) {
|
|
/* Wait 500ms for it to complete. */
|
|
for (i = 0; i < 500; i++) {
|
|
reg = TULIP_READ(sc, CSR_PNIC_NWAY);
|
|
if (reg & PNIC_NWAY_LPAR_MASK) {
|
|
tlp_pnic_nway_acomp(sc);
|
|
return (0);
|
|
}
|
|
delay(1000);
|
|
}
|
|
#if 0
|
|
if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
|
|
printf("%s: autonegotiation failed to complete\n",
|
|
sc->sc_dev.dv_xname);
|
|
#endif
|
|
|
|
/*
|
|
* Don't need to worry about clearing DOINGAUTO.
|
|
* If that's set, a timeout is pending, and it will
|
|
* clear the flag.
|
|
*/
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Just let it finish asynchronously. This is for the benefit of
|
|
* the tick handler driving autonegotiation. Don't want 500ms
|
|
* delays all the time while the system is running!
|
|
*/
|
|
if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) {
|
|
sc->sc_flags |= TULIPF_DOINGAUTO;
|
|
callout_reset(&sc->sc_nway_callout, hz >> 1,
|
|
tlp_pnic_nway_auto_timeout, sc);
|
|
}
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
void
|
|
tlp_pnic_nway_auto_timeout(arg)
|
|
void *arg;
|
|
{
|
|
struct tulip_softc *sc = arg;
|
|
u_int32_t reg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
sc->sc_flags &= ~TULIPF_DOINGAUTO;
|
|
reg = TULIP_READ(sc, CSR_PNIC_NWAY);
|
|
#if 0
|
|
if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
|
|
printf("%s: autonegotiation failed to complete\n",
|
|
sc->sc_dev.dv_xname);
|
|
#endif
|
|
|
|
tlp_pnic_nway_acomp(sc);
|
|
|
|
/* Update the media status. */
|
|
(void) tlp_pnic_nway_service(sc, MII_POLLSTAT);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
tlp_pnic_nway_status(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
u_int32_t reg;
|
|
|
|
mii->mii_media_status = IFM_AVALID;
|
|
mii->mii_media_active = IFM_ETHER;
|
|
|
|
reg = TULIP_READ(sc, CSR_PNIC_NWAY);
|
|
|
|
if (sc->sc_flags & TULIPF_LINK_UP)
|
|
mii->mii_media_status |= IFM_ACTIVE;
|
|
|
|
if (reg & PNIC_NWAY_NW) {
|
|
if ((reg & PNIC_NWAY_LPAR_MASK) == 0) {
|
|
/* Erg, still trying, I guess... */
|
|
mii->mii_media_active |= IFM_NONE;
|
|
return;
|
|
}
|
|
|
|
#if 0
|
|
if (reg & PNIC_NWAY_LPAR100T4)
|
|
mii->mii_media_active |= IFM_100_T4;
|
|
else
|
|
#endif
|
|
if (reg & PNIC_NWAY_LPAR100TXFDX)
|
|
mii->mii_media_active |= IFM_100_TX|IFM_FDX;
|
|
else if (reg & PNIC_NWAY_LPAR100TX)
|
|
mii->mii_media_active |= IFM_100_TX;
|
|
else if (reg & PNIC_NWAY_LPAR10TFDX)
|
|
mii->mii_media_active |= IFM_10_T|IFM_FDX;
|
|
else if (reg & PNIC_NWAY_LPAR10T)
|
|
mii->mii_media_active |= IFM_10_T;
|
|
else
|
|
mii->mii_media_active |= IFM_NONE;
|
|
} else {
|
|
if (reg & PNIC_NWAY_100)
|
|
mii->mii_media_active |= IFM_100_TX;
|
|
else
|
|
mii->mii_media_active |= IFM_10_T;
|
|
if (reg & PNIC_NWAY_FD)
|
|
mii->mii_media_active |= IFM_FDX;
|
|
}
|
|
}
|
|
|
|
void
|
|
tlp_pnic_nway_acomp(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
u_int32_t reg;
|
|
|
|
reg = TULIP_READ(sc, CSR_PNIC_NWAY);
|
|
reg &= ~(PNIC_NWAY_FD|PNIC_NWAY_100|PNIC_NWAY_RN);
|
|
|
|
if (reg & (PNIC_NWAY_LPAR100TXFDX|PNIC_NWAY_LPAR100TX))
|
|
reg |= PNIC_NWAY_100;
|
|
if (reg & (PNIC_NWAY_LPAR10TFDX|PNIC_NWAY_LPAR100TXFDX))
|
|
reg |= PNIC_NWAY_FD;
|
|
|
|
TULIP_WRITE(sc, CSR_PNIC_NWAY, reg);
|
|
}
|
|
|
|
/*
|
|
* Macronix PMAC and Lite-On PNIC-II media switch:
|
|
*
|
|
* MX98713 and MX98713A 21140-like MII or GPIO media.
|
|
*
|
|
* MX98713A 21143-like MII or SIA/SYM media.
|
|
*
|
|
* MX98715, MX98715A, MX98725, 21143-like SIA/SYM media.
|
|
* 82C115, MX98715AEC-C, -E
|
|
*
|
|
* So, what we do here is fake MII-on-SIO or ISV media info, and
|
|
* use the ISV media switch get/set functions to handle the rest.
|
|
*/
|
|
|
|
void tlp_pmac_tmsw_init __P((struct tulip_softc *));
|
|
|
|
const struct tulip_mediasw tlp_pmac_mediasw = {
|
|
tlp_pmac_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set
|
|
};
|
|
|
|
const struct tulip_mediasw tlp_pmac_mii_mediasw = {
|
|
tlp_pmac_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
|
|
};
|
|
|
|
void
|
|
tlp_pmac_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
static const u_int8_t media[] = {
|
|
TULIP_ROM_MB_MEDIA_TP,
|
|
TULIP_ROM_MB_MEDIA_TP_FDX,
|
|
TULIP_ROM_MB_MEDIA_100TX,
|
|
TULIP_ROM_MB_MEDIA_100TX_FDX,
|
|
};
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct tulip_21x4x_media *tm;
|
|
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
|
|
sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
|
|
sc->sc_mii.mii_statchg = sc->sc_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
if (sc->sc_chip == TULIP_CHIP_MX98713 ||
|
|
sc->sc_chip == TULIP_CHIP_MX98713A) {
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
|
|
MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL) {
|
|
sc->sc_flags |= TULIPF_HAS_MII;
|
|
sc->sc_tick = tlp_mii_tick;
|
|
sc->sc_preinit = tlp_2114x_mii_preinit;
|
|
sc->sc_mediasw = &tlp_pmac_mii_mediasw;
|
|
ifmedia_set(&sc->sc_mii.mii_media,
|
|
IFM_ETHER|IFM_AUTO);
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_MX98713:
|
|
tlp_add_srom_media(sc, TULIP_ROM_MB_21140_GPR,
|
|
tlp_21140_gpio_get, tlp_21140_gpio_set, media, 4);
|
|
|
|
/*
|
|
* XXX Should implement auto-sense for this someday,
|
|
* XXX when we do the same for the 21140.
|
|
*/
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
|
|
break;
|
|
|
|
default:
|
|
tlp_add_srom_media(sc, TULIP_ROM_MB_21142_SIA,
|
|
tlp_sia_get, tlp_sia_set, media, 2);
|
|
tlp_add_srom_media(sc, TULIP_ROM_MB_21143_SYM,
|
|
tlp_sia_get, tlp_sia_set, media + 2, 2);
|
|
|
|
tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
tm->tm_name = "auto";
|
|
tm->tm_get = tlp_2114x_nway_get;
|
|
tm->tm_set = tlp_2114x_nway_set;
|
|
ifmedia_add(&sc->sc_mii.mii_media,
|
|
IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0, tm);
|
|
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
sc->sc_statchg = tlp_2114x_nway_statchg;
|
|
sc->sc_tick = tlp_2114x_nway_tick;
|
|
break;
|
|
}
|
|
|
|
tlp_print_media(sc);
|
|
tlp_sia_fixup(sc);
|
|
|
|
/* Set the LED modes. */
|
|
tlp_pmac_reset(sc);
|
|
|
|
sc->sc_reset = tlp_pmac_reset;
|
|
}
|
|
|
|
/*
|
|
* ADMtek AL981 media switch. Only has internal PHY.
|
|
*/
|
|
void tlp_al981_tmsw_init __P((struct tulip_softc *));
|
|
|
|
const struct tulip_mediasw tlp_al981_mediasw = {
|
|
tlp_al981_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
|
|
};
|
|
|
|
void
|
|
tlp_al981_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = tlp_al981_mii_readreg;
|
|
sc->sc_mii.mii_writereg = tlp_al981_mii_writereg;
|
|
sc->sc_mii.mii_statchg = sc->sc_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else {
|
|
sc->sc_flags |= TULIPF_HAS_MII;
|
|
sc->sc_tick = tlp_mii_tick;
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ADMtek AN983/985 media switch. Only has internal PHY, but
|
|
* on an SIO-like interface. Unfortunately, we can't use the
|
|
* standard SIO media switch, because the AN985 "ghosts" the
|
|
* singly PHY at every address.
|
|
*/
|
|
void tlp_an985_tmsw_init __P((struct tulip_softc *));
|
|
|
|
const struct tulip_mediasw tlp_an985_mediasw = {
|
|
tlp_an985_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
|
|
};
|
|
|
|
void
|
|
tlp_an985_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
|
|
sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
|
|
sc->sc_mii.mii_statchg = sc->sc_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, 1,
|
|
MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else {
|
|
sc->sc_flags |= TULIPF_HAS_MII;
|
|
sc->sc_tick = tlp_mii_tick;
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Davicom DM9102 media switch. Internal PHY and possibly HomePNA.
|
|
*/
|
|
void tlp_dm9102_tmsw_init __P((struct tulip_softc *));
|
|
void tlp_dm9102_tmsw_getmedia __P((struct tulip_softc *,
|
|
struct ifmediareq *));
|
|
int tlp_dm9102_tmsw_setmedia __P((struct tulip_softc *));
|
|
|
|
const struct tulip_mediasw tlp_dm9102_mediasw = {
|
|
tlp_dm9102_tmsw_init, tlp_dm9102_tmsw_getmedia,
|
|
tlp_dm9102_tmsw_setmedia
|
|
};
|
|
|
|
void
|
|
tlp_dm9102_tmsw_init(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
u_int32_t opmode;
|
|
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
|
|
sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
|
|
sc->sc_mii.mii_statchg = sc->sc_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
|
|
tlp_mediastatus);
|
|
|
|
/* PHY block already reset via tlp_reset(). */
|
|
|
|
/*
|
|
* Configure OPMODE properly for the internal MII interface.
|
|
*/
|
|
switch (sc->sc_chip) {
|
|
case TULIP_CHIP_DM9102:
|
|
opmode = OPMODE_MBO|OPMODE_HBD|OPMODE_PS;
|
|
break;
|
|
|
|
case TULIP_CHIP_DM9102A:
|
|
opmode = OPMODE_MBO|OPMODE_HBD;
|
|
break;
|
|
|
|
default:
|
|
/* Nothing. */
|
|
break;
|
|
}
|
|
|
|
TULIP_WRITE(sc, CSR_OPMODE, opmode);
|
|
|
|
/* Now, probe the internal MII for the internal PHY. */
|
|
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
|
|
/*
|
|
* XXX Figure out what to do about the HomePNA portion
|
|
* XXX of the DM9102A.
|
|
*/
|
|
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else {
|
|
sc->sc_flags |= TULIPF_HAS_MII;
|
|
sc->sc_tick = tlp_mii_tick;
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
}
|
|
|
|
void
|
|
tlp_dm9102_tmsw_getmedia(sc, ifmr)
|
|
struct tulip_softc *sc;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
|
|
/* XXX HomePNA on DM9102A. */
|
|
tlp_mii_getmedia(sc, ifmr);
|
|
}
|
|
|
|
int
|
|
tlp_dm9102_tmsw_setmedia(sc)
|
|
struct tulip_softc *sc;
|
|
{
|
|
|
|
/* XXX HomePNA on DM9102A. */
|
|
return (tlp_mii_setmedia(sc));
|
|
}
|