NetBSD/sys/arch/mac68k/include/vmparam.h
1999-04-07 06:45:14 +00:00

293 lines
11 KiB
C

/* $NetBSD: vmparam.h,v 1.21 1999/04/07 06:45:14 scottr Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (C) 1993 Allen K. Briggs, Chris P. Caputo,
* Michael L. Finch, Bradley A. Grantham, and
* Lawrence A. Kesteloot
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Alice Group.
* 4. The names of the Alice Group or any of its members may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE ALICE GROUP ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE ALICE GROUP BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* from: Utah $Hdr: vmparam.h 1.16 91/01/18$
*
* @(#)vmparam.h 7.3 (Berkeley) 5/7/91
*/
#ifndef _MAC68K_VMPARAM_H_
#define _MAC68K_VMPARAM_H_
/*
* Machine dependent constants for mac68k -- mostly derived from hp300.
*/
/*
* USRTEXT is the start of the user text/data space, while USRSTACK
* is the top (end) of the user stack. LOWPAGES and HIGHPAGES are
* the number of pages from the beginning of the P0 region to the
* beginning of the text and from the beginning of the P1 region to the
* beginning of the stack respectively.
*
* NOTE: HP300 uses HIGHPAGES == (0x100000/NBPG) for HP/UX compatibility.
* Do we care? Obviously not at the moment.
*/
#define USRTEXT 8192
#define USRSTACK (-HIGHPAGES*NBPG) /* Start of user stack */
#define BTOPUSRSTACK (0x100000-HIGHPAGES) /* btop(USRSTACK) */
#define P1PAGES 0x100000
#define LOWPAGES 0
#define HIGHPAGES 3 /* UPAGES */
/*
* Virtual memory related constants, all in bytes
*/
#ifndef MAXTSIZ
#define MAXTSIZ (8*1024*1024) /* max text size */
#endif
#ifndef DFLDSIZ
#define DFLDSIZ (32*1024*1024) /* initial data size limit */
#endif
#ifndef MAXDSIZ
#define MAXDSIZ (64*1024*1024) /* max data size */
#endif
#ifndef DFLSSIZ
#define DFLSSIZ (2*1024*1024) /* initial stack size limit */
#endif
#ifndef MAXSSIZ
#define MAXSSIZ (32*1024*1024) /* max stack size */
#endif
/*
* Sizes of the system and user portions of the system page table.
*/
/* SYSPTSIZE IS SILLY; IT SHOULD BE COMPUTED AT BOOT TIME */
#define SYSPTSIZE (2 * NPTEPG) /* 8mb */
#define USRPTSIZE (1 * NPTEPG) /* 4mb */
/*
* PTEs for mapping user space into the kernel for phyio operations.
* One page is enough to handle 4Mb of simultaneous raw IO operations.
*/
#ifndef USRIOSIZE
#define USRIOSIZE (1 * NPTEPG) /* 4mb */
#endif
/*
* PTEs for system V style shared memory.
* This is basically slop for kmempt which we actually allocate (malloc) from.
*/
#ifndef SHMMAXPGS
#define SHMMAXPGS 1024 /* 4mb */
#endif
/*
* The size of the clock loop.
*/
#define LOOPPAGES (maxfree - firstfree)
/*
* The time for a process to be blocked before being very swappable.
* This is a number of seconds which the system takes as being a non-trivial
* amount of real time. You probably shouldn't change this;
* it is used in subtle ways (fractions and multiples of it are, that is, like
* half of a ``long time'', almost a long time, etc.)
* It is related to human patience and other factors which don't really
* change over time.
*/
#define MAXSLP 20
/*
* A swapped in process is given a small amount of core without being bothered
* by the page replacement algorithm. Basically this says that if you are
* swapped in you deserve some resources. We protect the last SAFERSS
* pages against paging and will just swap you out rather than paging you.
* Note that each process has at least UPAGES+CLSIZE pages which are not
* paged anyways (this is currently 8+2=10 pages or 5k bytes), so this
* number just means a swapped in process is given around 25k bytes.
* Just for fun: current memory prices are 4600$ a megabyte on VAX (4/22/81),
* so we loan each swapped in process memory worth 100$, or just admit
* that we don't consider it worthwhile and swap it out to disk which costs
* $30/mb or about $0.75.
* Update: memory prices have changed recently (9/96). At the current
* value of $6 per megabyte, we lend each swapped in process memory worth
* $0.15, or just admit that we don't consider it worthwhile and swap it out
* to disk which costs $0.20/MB, or just under half a cent.
*/
#define SAFERSS 4 /* nominal ``small'' resident set size
protected against replacement */
/*
* DISKRPM is used to estimate the number of paging i/o operations
* which one can expect from a single disk controller.
*/
#define DISKRPM 3600
/*
* Klustering constants. Klustering is the gathering
* of pages together for pagein/pageout, while clustering
* is the treatment of hardware page size as though it were
* larger than it really is.
*
* KLMAX gives maximum cluster size in CLSIZE page (cluster-page)
* units. Note that ctod(KLMAX*CLSIZE) must be <= DMMIN in dmap.h.
* ctob(KLMAX) should also be less than MAXPHYS (in vm_swp.c)
* unless you like "big push" panics.
*/
#define KLMAX (4/CLSIZE)
#define KLSEQL (2/CLSIZE) /* in klust if vadvise(VA_SEQL) */
#define KLIN (4/CLSIZE) /* default data/stack in klust */
#define KLTXT (4/CLSIZE) /* default text in klust */
#define KLOUT (4/CLSIZE)
/*
* KLSDIST is the advance or retard of the fifo reclaim for sequential
* processes data space.
*/
#define KLSDIST 3 /* klusters advance/retard for seq. fifo */
/*
* Paging thresholds (see vm_sched.c).
* Strategy of 1/19/85:
* lotsfree is 512k bytes, but at most 1/4 of memory
* desfree is 200k bytes, but at most 1/8 of memory
* Are these still valid in 1995?
*/
#define LOTSFREE (512 * 1024)
#define LOTSFREEFRACT 4
#define DESFREE (200 * 1024)
#define DESFREEFRACT 8
/*
* There are two clock hands, initially separated by HANDSPREAD bytes
* (but at most all of user memory). The amount of time to reclaim
* a page once the pageout process examines it increases with this
* distance and decreases as the scan rate rises.
*/
#define HANDSPREAD (2 * 1024 * 1024)
/*
* The number of times per second to recompute the desired paging rate
* and poke the pagedaemon.
*/
#define RATETOSCHEDPAGING 4
/*
* Believed threshold (in megabytes) for which interleaved
* swapping area is desirable.
*/
#define LOTSOFMEM 2
/*
* Mach derived constants
*/
/* user/kernel map constants */
#define VM_MIN_ADDRESS ((vaddr_t)0)
#define VM_MAXUSER_ADDRESS ((vaddr_t)(USRSTACK))
#define VM_MAX_ADDRESS ((vaddr_t)(0-(UPAGES*NBPG)))
#define VM_MIN_KERNEL_ADDRESS ((vaddr_t)0)
#define VM_MAX_KERNEL_ADDRESS ((vaddr_t)(0-NBPG))
/* virtual sizes (bytes) for various kernel submaps */
#define VM_MBUF_SIZE (NMBCLUSTERS*MCLBYTES)
#define VM_KMEM_SIZE (NKMEMCLUSTERS*CLBYTES)
#define VM_PHYS_SIZE (USRIOSIZE*CLBYTES)
/* # of kernel PT pages (initial only, can grow dynamically) */
#define VM_KERNEL_PT_PAGES ((vsize_t)2) /* XXX: SYSPTSIZE */
/* pcb base */
#define pcbb(p) ((u_int)(p)->p_addr)
/*
* Constants which control the way the VM system deals with memory segments.
* Most mac68k systems have only 1 physical memory segment, but some have 2.
*
* On the systems that have multiple segments, specifically the IIsi and
* IIci, the optimal configuration is to put the higher-density SIMMs in
* bank B. This is because the on-board video uses main memory in bank A
* for the framebuffer, and a memory controller prevents access during
* video refresh cycles. Even if both banks contain the same amount of
* RAM, a minimum of ~320KB will be subtracted from the amount in bank A
* for the framebuffer (if on-board video is in use).
*/
#define VM_PHYSSEG_MAX 2
#define VM_PHYSSEG_STRAT VM_PSTRAT_BIGFIRST
#define VM_PHYSSEG_NOADD
#define VM_NFREELIST 1
#define VM_FREELIST_DEFAULT 0
/*
* pmap-specific data stored in the vm_physmem[] array.
*/
struct pmap_physseg {
struct pv_entry *pvent; /* pv table for this seg */
char *attrs; /* page attributes for this seg */
};
#endif /* _MAC68K_VMPARAM_H_ */