849 lines
29 KiB
C
849 lines
29 KiB
C
/*-
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Vern Paxson of Lawrence Berkeley Laboratory.
|
|
*
|
|
* The United States Government has rights in this work pursuant
|
|
* to contract no. DE-AC03-76SF00098 between the United States
|
|
* Department of Energy and the University of California.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)flexdef.h 5.4 (Berkeley) 2/14/91
|
|
*/
|
|
|
|
/* flexdef - definitions file for flex */
|
|
|
|
#ifndef FILE
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
/* always be prepared to generate an 8-bit scanner */
|
|
#define FLEX_8_BIT_CHARS
|
|
|
|
#ifdef FLEX_8_BIT_CHARS
|
|
#define CSIZE 256
|
|
#define Char unsigned char
|
|
#else
|
|
#define Char char
|
|
#define CSIZE 128
|
|
#endif
|
|
|
|
/* size of input alphabet - should be size of ASCII set */
|
|
#ifndef DEFAULT_CSIZE
|
|
#define DEFAULT_CSIZE 128
|
|
#endif
|
|
|
|
#ifndef PROTO
|
|
#ifdef __STDC__
|
|
#define PROTO(proto) proto
|
|
#else
|
|
#define PROTO(proto) ()
|
|
#endif
|
|
#endif
|
|
|
|
#include <string.h>
|
|
|
|
#ifdef AMIGA
|
|
#define bzero(s, n) setmem((char *)(s), n, '\0')
|
|
#ifndef abs
|
|
#define abs(x) ((x) < 0 ? -(x) : (x))
|
|
#endif
|
|
#else
|
|
#define bzero(s, n) (void) memset((char *)(s), '\0', n)
|
|
#endif
|
|
|
|
#ifdef VMS
|
|
#define unlink delete
|
|
#define SHORT_FILE_NAMES
|
|
#endif
|
|
|
|
/* maximum line length we'll have to deal with */
|
|
#define MAXLINE BUFSIZ
|
|
|
|
/* maximum size of file name */
|
|
#define FILENAMESIZE 1024
|
|
|
|
#ifndef min
|
|
#define min(x,y) ((x) < (y) ? (x) : (y))
|
|
#endif
|
|
#ifndef max
|
|
#define max(x,y) ((x) > (y) ? (x) : (y))
|
|
#endif
|
|
|
|
#ifdef MS_DOS
|
|
#ifndef abs
|
|
#define abs(x) ((x) < 0 ? -(x) : (x))
|
|
#endif
|
|
#define SHORT_FILE_NAMES
|
|
#endif
|
|
|
|
#define true 1
|
|
#define false 0
|
|
|
|
|
|
/* special chk[] values marking the slots taking by end-of-buffer and action
|
|
* numbers
|
|
*/
|
|
#define EOB_POSITION -1
|
|
#define ACTION_POSITION -2
|
|
|
|
/* number of data items per line for -f output */
|
|
#define NUMDATAITEMS 10
|
|
|
|
/* number of lines of data in -f output before inserting a blank line for
|
|
* readability.
|
|
*/
|
|
#define NUMDATALINES 10
|
|
|
|
/* transition_struct_out() definitions */
|
|
#define TRANS_STRUCT_PRINT_LENGTH 15
|
|
|
|
/* returns true if an nfa state has an epsilon out-transition slot
|
|
* that can be used. This definition is currently not used.
|
|
*/
|
|
#define FREE_EPSILON(state) \
|
|
(transchar[state] == SYM_EPSILON && \
|
|
trans2[state] == NO_TRANSITION && \
|
|
finalst[state] != state)
|
|
|
|
/* returns true if an nfa state has an epsilon out-transition character
|
|
* and both slots are free
|
|
*/
|
|
#define SUPER_FREE_EPSILON(state) \
|
|
(transchar[state] == SYM_EPSILON && \
|
|
trans1[state] == NO_TRANSITION) \
|
|
|
|
/* maximum number of NFA states that can comprise a DFA state. It's real
|
|
* big because if there's a lot of rules, the initial state will have a
|
|
* huge epsilon closure.
|
|
*/
|
|
#define INITIAL_MAX_DFA_SIZE 750
|
|
#define MAX_DFA_SIZE_INCREMENT 750
|
|
|
|
|
|
/* a note on the following masks. They are used to mark accepting numbers
|
|
* as being special. As such, they implicitly limit the number of accepting
|
|
* numbers (i.e., rules) because if there are too many rules the rule numbers
|
|
* will overload the mask bits. Fortunately, this limit is \large/ (0x2000 ==
|
|
* 8192) so unlikely to actually cause any problems. A check is made in
|
|
* new_rule() to ensure that this limit is not reached.
|
|
*/
|
|
|
|
/* mask to mark a trailing context accepting number */
|
|
#define YY_TRAILING_MASK 0x2000
|
|
|
|
/* mask to mark the accepting number of the "head" of a trailing context rule */
|
|
#define YY_TRAILING_HEAD_MASK 0x4000
|
|
|
|
/* maximum number of rules, as outlined in the above note */
|
|
#define MAX_RULE (YY_TRAILING_MASK - 1)
|
|
|
|
|
|
/* NIL must be 0. If not, its special meaning when making equivalence classes
|
|
* (it marks the representative of a given e.c.) will be unidentifiable
|
|
*/
|
|
#define NIL 0
|
|
|
|
#define JAM -1 /* to mark a missing DFA transition */
|
|
#define NO_TRANSITION NIL
|
|
#define UNIQUE -1 /* marks a symbol as an e.c. representative */
|
|
#define INFINITY -1 /* for x{5,} constructions */
|
|
|
|
#define INITIAL_MAX_CCLS 100 /* max number of unique character classes */
|
|
#define MAX_CCLS_INCREMENT 100
|
|
|
|
/* size of table holding members of character classes */
|
|
#define INITIAL_MAX_CCL_TBL_SIZE 500
|
|
#define MAX_CCL_TBL_SIZE_INCREMENT 250
|
|
|
|
#define INITIAL_MAX_RULES 100 /* default maximum number of rules */
|
|
#define MAX_RULES_INCREMENT 100
|
|
|
|
#define INITIAL_MNS 2000 /* default maximum number of nfa states */
|
|
#define MNS_INCREMENT 1000 /* amount to bump above by if it's not enough */
|
|
|
|
#define INITIAL_MAX_DFAS 1000 /* default maximum number of dfa states */
|
|
#define MAX_DFAS_INCREMENT 1000
|
|
|
|
#define JAMSTATE -32766 /* marks a reference to the state that always jams */
|
|
|
|
/* enough so that if it's subtracted from an NFA state number, the result
|
|
* is guaranteed to be negative
|
|
*/
|
|
#define MARKER_DIFFERENCE 32000
|
|
#define MAXIMUM_MNS 31999
|
|
|
|
/* maximum number of nxt/chk pairs for non-templates */
|
|
#define INITIAL_MAX_XPAIRS 2000
|
|
#define MAX_XPAIRS_INCREMENT 2000
|
|
|
|
/* maximum number of nxt/chk pairs needed for templates */
|
|
#define INITIAL_MAX_TEMPLATE_XPAIRS 2500
|
|
#define MAX_TEMPLATE_XPAIRS_INCREMENT 2500
|
|
|
|
#define SYM_EPSILON (CSIZE + 1) /* to mark transitions on the symbol epsilon */
|
|
|
|
#define INITIAL_MAX_SCS 40 /* maximum number of start conditions */
|
|
#define MAX_SCS_INCREMENT 40 /* amount to bump by if it's not enough */
|
|
|
|
#define ONE_STACK_SIZE 500 /* stack of states with only one out-transition */
|
|
#define SAME_TRANS -1 /* transition is the same as "default" entry for state */
|
|
|
|
/* the following percentages are used to tune table compression:
|
|
|
|
* the percentage the number of out-transitions a state must be of the
|
|
* number of equivalence classes in order to be considered for table
|
|
* compaction by using protos
|
|
*/
|
|
#define PROTO_SIZE_PERCENTAGE 15
|
|
|
|
/* the percentage the number of homogeneous out-transitions of a state
|
|
* must be of the number of total out-transitions of the state in order
|
|
* that the state's transition table is first compared with a potential
|
|
* template of the most common out-transition instead of with the first
|
|
* proto in the proto queue
|
|
*/
|
|
#define CHECK_COM_PERCENTAGE 50
|
|
|
|
/* the percentage the number of differences between a state's transition
|
|
* table and the proto it was first compared with must be of the total
|
|
* number of out-transitions of the state in order to keep the first
|
|
* proto as a good match and not search any further
|
|
*/
|
|
#define FIRST_MATCH_DIFF_PERCENTAGE 10
|
|
|
|
/* the percentage the number of differences between a state's transition
|
|
* table and the most similar proto must be of the state's total number
|
|
* of out-transitions to use the proto as an acceptable close match
|
|
*/
|
|
#define ACCEPTABLE_DIFF_PERCENTAGE 50
|
|
|
|
/* the percentage the number of homogeneous out-transitions of a state
|
|
* must be of the number of total out-transitions of the state in order
|
|
* to consider making a template from the state
|
|
*/
|
|
#define TEMPLATE_SAME_PERCENTAGE 60
|
|
|
|
/* the percentage the number of differences between a state's transition
|
|
* table and the most similar proto must be of the state's total number
|
|
* of out-transitions to create a new proto from the state
|
|
*/
|
|
#define NEW_PROTO_DIFF_PERCENTAGE 20
|
|
|
|
/* the percentage the total number of out-transitions of a state must be
|
|
* of the number of equivalence classes in order to consider trying to
|
|
* fit the transition table into "holes" inside the nxt/chk table.
|
|
*/
|
|
#define INTERIOR_FIT_PERCENTAGE 15
|
|
|
|
/* size of region set aside to cache the complete transition table of
|
|
* protos on the proto queue to enable quick comparisons
|
|
*/
|
|
#define PROT_SAVE_SIZE 2000
|
|
|
|
#define MSP 50 /* maximum number of saved protos (protos on the proto queue) */
|
|
|
|
/* maximum number of out-transitions a state can have that we'll rummage
|
|
* around through the interior of the internal fast table looking for a
|
|
* spot for it
|
|
*/
|
|
#define MAX_XTIONS_FULL_INTERIOR_FIT 4
|
|
|
|
/* maximum number of rules which will be reported as being associated
|
|
* with a DFA state
|
|
*/
|
|
#define MAX_ASSOC_RULES 100
|
|
|
|
/* number that, if used to subscript an array, has a good chance of producing
|
|
* an error; should be small enough to fit into a short
|
|
*/
|
|
#define BAD_SUBSCRIPT -32767
|
|
|
|
/* absolute value of largest number that can be stored in a short, with a
|
|
* bit of slop thrown in for general paranoia.
|
|
*/
|
|
#define MAX_SHORT 32766
|
|
|
|
|
|
/* Declarations for global variables. */
|
|
|
|
/* variables for symbol tables:
|
|
* sctbl - start-condition symbol table
|
|
* ndtbl - name-definition symbol table
|
|
* ccltab - character class text symbol table
|
|
*/
|
|
|
|
struct hash_entry
|
|
{
|
|
struct hash_entry *prev, *next;
|
|
char *name;
|
|
char *str_val;
|
|
int int_val;
|
|
} ;
|
|
|
|
typedef struct hash_entry *hash_table[];
|
|
|
|
#define NAME_TABLE_HASH_SIZE 101
|
|
#define START_COND_HASH_SIZE 101
|
|
#define CCL_HASH_SIZE 101
|
|
|
|
extern struct hash_entry *ndtbl[NAME_TABLE_HASH_SIZE];
|
|
extern struct hash_entry *sctbl[START_COND_HASH_SIZE];
|
|
extern struct hash_entry *ccltab[CCL_HASH_SIZE];
|
|
|
|
|
|
/* variables for flags:
|
|
* printstats - if true (-v), dump statistics
|
|
* syntaxerror - true if a syntax error has been found
|
|
* eofseen - true if we've seen an eof in the input file
|
|
* ddebug - if true (-d), make a "debug" scanner
|
|
* trace - if true (-T), trace processing
|
|
* spprdflt - if true (-s), suppress the default rule
|
|
* interactive - if true (-I), generate an interactive scanner
|
|
* caseins - if true (-i), generate a case-insensitive scanner
|
|
* useecs - if true (-Ce flag), use equivalence classes
|
|
* fulltbl - if true (-Cf flag), don't compress the DFA state table
|
|
* usemecs - if true (-Cm flag), use meta-equivalence classes
|
|
* fullspd - if true (-F flag), use Jacobson method of table representation
|
|
* gen_line_dirs - if true (i.e., no -L flag), generate #line directives
|
|
* performance_report - if true (i.e., -p flag), generate a report relating
|
|
* to scanner performance
|
|
* backtrack_report - if true (i.e., -b flag), generate "lex.backtrack" file
|
|
* listing backtracking states
|
|
* csize - size of character set for the scanner we're generating;
|
|
* 128 for 7-bit chars and 256 for 8-bit
|
|
* yymore_used - if true, yymore() is used in input rules
|
|
* reject - if true, generate backtracking tables for REJECT macro
|
|
* real_reject - if true, scanner really uses REJECT (as opposed to just
|
|
* having "reject" set for variable trailing context)
|
|
* continued_action - true if this rule's action is to "fall through" to
|
|
* the next rule's action (i.e., the '|' action)
|
|
* yymore_really_used - has a REALLY_xxx value indicating whether a
|
|
* %used or %notused was used with yymore()
|
|
* reject_really_used - same for REJECT
|
|
*/
|
|
|
|
extern int printstats, syntaxerror, eofseen, ddebug, trace, spprdflt;
|
|
extern int interactive, caseins, useecs, fulltbl, usemecs;
|
|
extern int fullspd, gen_line_dirs, performance_report, backtrack_report, csize;
|
|
extern int yymore_used, reject, real_reject, continued_action;
|
|
|
|
#define REALLY_NOT_DETERMINED 0
|
|
#define REALLY_USED 1
|
|
#define REALLY_NOT_USED 2
|
|
extern int yymore_really_used, reject_really_used;
|
|
|
|
|
|
/* variables used in the flex input routines:
|
|
* datapos - characters on current output line
|
|
* dataline - number of contiguous lines of data in current data
|
|
* statement. Used to generate readable -f output
|
|
* linenum - current input line number
|
|
* skelfile - the skeleton file
|
|
* yyin - input file
|
|
* temp_action_file - temporary file to hold actions
|
|
* backtrack_file - file to summarize backtracking states to
|
|
* infilename - name of input file
|
|
* action_file_name - name of the temporary file
|
|
* input_files - array holding names of input files
|
|
* num_input_files - size of input_files array
|
|
* program_name - name with which program was invoked
|
|
*/
|
|
|
|
extern int datapos, dataline, linenum;
|
|
extern FILE *skelfile, *yyin, *temp_action_file, *backtrack_file;
|
|
extern char *infilename;
|
|
extern char *action_file_name;
|
|
extern char **input_files;
|
|
extern int num_input_files;
|
|
extern char *program_name;
|
|
|
|
|
|
/* variables for stack of states having only one out-transition:
|
|
* onestate - state number
|
|
* onesym - transition symbol
|
|
* onenext - target state
|
|
* onedef - default base entry
|
|
* onesp - stack pointer
|
|
*/
|
|
|
|
extern int onestate[ONE_STACK_SIZE], onesym[ONE_STACK_SIZE];
|
|
extern int onenext[ONE_STACK_SIZE], onedef[ONE_STACK_SIZE], onesp;
|
|
|
|
|
|
/* variables for nfa machine data:
|
|
* current_mns - current maximum on number of NFA states
|
|
* num_rules - number of the last accepting state; also is number of
|
|
* rules created so far
|
|
* current_max_rules - current maximum number of rules
|
|
* lastnfa - last nfa state number created
|
|
* firstst - physically the first state of a fragment
|
|
* lastst - last physical state of fragment
|
|
* finalst - last logical state of fragment
|
|
* transchar - transition character
|
|
* trans1 - transition state
|
|
* trans2 - 2nd transition state for epsilons
|
|
* accptnum - accepting number
|
|
* assoc_rule - rule associated with this NFA state (or 0 if none)
|
|
* state_type - a STATE_xxx type identifying whether the state is part
|
|
* of a normal rule, the leading state in a trailing context
|
|
* rule (i.e., the state which marks the transition from
|
|
* recognizing the text-to-be-matched to the beginning of
|
|
* the trailing context), or a subsequent state in a trailing
|
|
* context rule
|
|
* rule_type - a RULE_xxx type identifying whether this a a ho-hum
|
|
* normal rule or one which has variable head & trailing
|
|
* context
|
|
* rule_linenum - line number associated with rule
|
|
*/
|
|
|
|
extern int current_mns, num_rules, current_max_rules, lastnfa;
|
|
extern int *firstst, *lastst, *finalst, *transchar, *trans1, *trans2;
|
|
extern int *accptnum, *assoc_rule, *state_type, *rule_type, *rule_linenum;
|
|
|
|
/* different types of states; values are useful as masks, as well, for
|
|
* routines like check_trailing_context()
|
|
*/
|
|
#define STATE_NORMAL 0x1
|
|
#define STATE_TRAILING_CONTEXT 0x2
|
|
|
|
/* global holding current type of state we're making */
|
|
|
|
extern int current_state_type;
|
|
|
|
/* different types of rules */
|
|
#define RULE_NORMAL 0
|
|
#define RULE_VARIABLE 1
|
|
|
|
/* true if the input rules include a rule with both variable-length head
|
|
* and trailing context, false otherwise
|
|
*/
|
|
extern int variable_trailing_context_rules;
|
|
|
|
|
|
/* variables for protos:
|
|
* numtemps - number of templates created
|
|
* numprots - number of protos created
|
|
* protprev - backlink to a more-recently used proto
|
|
* protnext - forward link to a less-recently used proto
|
|
* prottbl - base/def table entry for proto
|
|
* protcomst - common state of proto
|
|
* firstprot - number of the most recently used proto
|
|
* lastprot - number of the least recently used proto
|
|
* protsave contains the entire state array for protos
|
|
*/
|
|
|
|
extern int numtemps, numprots, protprev[MSP], protnext[MSP], prottbl[MSP];
|
|
extern int protcomst[MSP], firstprot, lastprot, protsave[PROT_SAVE_SIZE];
|
|
|
|
|
|
/* variables for managing equivalence classes:
|
|
* numecs - number of equivalence classes
|
|
* nextecm - forward link of Equivalence Class members
|
|
* ecgroup - class number or backward link of EC members
|
|
* nummecs - number of meta-equivalence classes (used to compress
|
|
* templates)
|
|
* tecfwd - forward link of meta-equivalence classes members
|
|
* tecbck - backward link of MEC's
|
|
* xlation - maps character codes to their translations, or nil if no %t table
|
|
* num_xlations - number of different xlation values
|
|
*/
|
|
|
|
/* reserve enough room in the equivalence class arrays so that we
|
|
* can use the CSIZE'th element to hold equivalence class information
|
|
* for the NUL character. Later we'll move this information into
|
|
* the 0th element.
|
|
*/
|
|
extern int numecs, nextecm[CSIZE + 1], ecgroup[CSIZE + 1], nummecs;
|
|
|
|
/* meta-equivalence classes are indexed starting at 1, so it's possible
|
|
* that they will require positions from 1 .. CSIZE, i.e., CSIZE + 1
|
|
* slots total (since the arrays are 0-based). nextecm[] and ecgroup[]
|
|
* don't require the extra position since they're indexed from 1 .. CSIZE - 1.
|
|
*/
|
|
extern int tecfwd[CSIZE + 1], tecbck[CSIZE + 1];
|
|
|
|
extern int *xlation;
|
|
extern int num_xlations;
|
|
|
|
|
|
/* variables for start conditions:
|
|
* lastsc - last start condition created
|
|
* current_max_scs - current limit on number of start conditions
|
|
* scset - set of rules active in start condition
|
|
* scbol - set of rules active only at the beginning of line in a s.c.
|
|
* scxclu - true if start condition is exclusive
|
|
* sceof - true if start condition has EOF rule
|
|
* scname - start condition name
|
|
* actvsc - stack of active start conditions for the current rule
|
|
*/
|
|
|
|
extern int lastsc, current_max_scs, *scset, *scbol, *scxclu, *sceof, *actvsc;
|
|
extern char **scname;
|
|
|
|
|
|
/* variables for dfa machine data:
|
|
* current_max_dfa_size - current maximum number of NFA states in DFA
|
|
* current_max_xpairs - current maximum number of non-template xtion pairs
|
|
* current_max_template_xpairs - current maximum number of template pairs
|
|
* current_max_dfas - current maximum number DFA states
|
|
* lastdfa - last dfa state number created
|
|
* nxt - state to enter upon reading character
|
|
* chk - check value to see if "nxt" applies
|
|
* tnxt - internal nxt table for templates
|
|
* base - offset into "nxt" for given state
|
|
* def - where to go if "chk" disallows "nxt" entry
|
|
* nultrans - NUL transition for each state
|
|
* NUL_ec - equivalence class of the NUL character
|
|
* tblend - last "nxt/chk" table entry being used
|
|
* firstfree - first empty entry in "nxt/chk" table
|
|
* dss - nfa state set for each dfa
|
|
* dfasiz - size of nfa state set for each dfa
|
|
* dfaacc - accepting set for each dfa state (or accepting number, if
|
|
* -r is not given)
|
|
* accsiz - size of accepting set for each dfa state
|
|
* dhash - dfa state hash value
|
|
* numas - number of DFA accepting states created; note that this
|
|
* is not necessarily the same value as num_rules, which is the analogous
|
|
* value for the NFA
|
|
* numsnpairs - number of state/nextstate transition pairs
|
|
* jambase - position in base/def where the default jam table starts
|
|
* jamstate - state number corresponding to "jam" state
|
|
* end_of_buffer_state - end-of-buffer dfa state number
|
|
*/
|
|
|
|
extern int current_max_dfa_size, current_max_xpairs;
|
|
extern int current_max_template_xpairs, current_max_dfas;
|
|
extern int lastdfa, lasttemp, *nxt, *chk, *tnxt;
|
|
extern int *base, *def, *nultrans, NUL_ec, tblend, firstfree, **dss, *dfasiz;
|
|
extern union dfaacc_union
|
|
{
|
|
int *dfaacc_set;
|
|
int dfaacc_state;
|
|
} *dfaacc;
|
|
extern int *accsiz, *dhash, numas;
|
|
extern int numsnpairs, jambase, jamstate;
|
|
extern int end_of_buffer_state;
|
|
|
|
/* variables for ccl information:
|
|
* lastccl - ccl index of the last created ccl
|
|
* current_maxccls - current limit on the maximum number of unique ccl's
|
|
* cclmap - maps a ccl index to its set pointer
|
|
* ccllen - gives the length of a ccl
|
|
* cclng - true for a given ccl if the ccl is negated
|
|
* cclreuse - counts how many times a ccl is re-used
|
|
* current_max_ccl_tbl_size - current limit on number of characters needed
|
|
* to represent the unique ccl's
|
|
* ccltbl - holds the characters in each ccl - indexed by cclmap
|
|
*/
|
|
|
|
extern int lastccl, current_maxccls, *cclmap, *ccllen, *cclng, cclreuse;
|
|
extern int current_max_ccl_tbl_size;
|
|
extern Char *ccltbl;
|
|
|
|
|
|
/* variables for miscellaneous information:
|
|
* starttime - real-time when we started
|
|
* endtime - real-time when we ended
|
|
* nmstr - last NAME scanned by the scanner
|
|
* sectnum - section number currently being parsed
|
|
* nummt - number of empty nxt/chk table entries
|
|
* hshcol - number of hash collisions detected by snstods
|
|
* dfaeql - number of times a newly created dfa was equal to an old one
|
|
* numeps - number of epsilon NFA states created
|
|
* eps2 - number of epsilon states which have 2 out-transitions
|
|
* num_reallocs - number of times it was necessary to realloc() a group
|
|
* of arrays
|
|
* tmpuses - number of DFA states that chain to templates
|
|
* totnst - total number of NFA states used to make DFA states
|
|
* peakpairs - peak number of transition pairs we had to store internally
|
|
* numuniq - number of unique transitions
|
|
* numdup - number of duplicate transitions
|
|
* hshsave - number of hash collisions saved by checking number of states
|
|
* num_backtracking - number of DFA states requiring back-tracking
|
|
* bol_needed - whether scanner needs beginning-of-line recognition
|
|
*/
|
|
|
|
extern char *starttime, *endtime, nmstr[MAXLINE];
|
|
extern int sectnum, nummt, hshcol, dfaeql, numeps, eps2, num_reallocs;
|
|
extern int tmpuses, totnst, peakpairs, numuniq, numdup, hshsave;
|
|
extern int num_backtracking, bol_needed;
|
|
|
|
void *allocate_array(), *reallocate_array();
|
|
|
|
#define allocate_integer_array(size) \
|
|
(int *) allocate_array( size, sizeof( int ) )
|
|
|
|
#define reallocate_integer_array(array,size) \
|
|
(int *) reallocate_array( (void *) array, size, sizeof( int ) )
|
|
|
|
#define allocate_int_ptr_array(size) \
|
|
(int **) allocate_array( size, sizeof( int * ) )
|
|
|
|
#define allocate_char_ptr_array(size) \
|
|
(char **) allocate_array( size, sizeof( char * ) )
|
|
|
|
#define allocate_dfaacc_union(size) \
|
|
(union dfaacc_union *) \
|
|
allocate_array( size, sizeof( union dfaacc_union ) )
|
|
|
|
#define reallocate_int_ptr_array(array,size) \
|
|
(int **) reallocate_array( (void *) array, size, sizeof( int * ) )
|
|
|
|
#define reallocate_char_ptr_array(array,size) \
|
|
(char **) reallocate_array( (void *) array, size, sizeof( char * ) )
|
|
|
|
#define reallocate_dfaacc_union(array, size) \
|
|
(union dfaacc_union *) \
|
|
reallocate_array( (void *) array, size, sizeof( union dfaacc_union ) )
|
|
|
|
#define allocate_character_array(size) \
|
|
(Char *) allocate_array( size, sizeof( Char ) )
|
|
|
|
#define reallocate_character_array(array,size) \
|
|
(Char *) reallocate_array( (void *) array, size, sizeof( Char ) )
|
|
|
|
|
|
/* used to communicate between scanner and parser. The type should really
|
|
* be YYSTYPE, but we can't easily get our hands on it.
|
|
*/
|
|
extern int yylval;
|
|
|
|
|
|
/* external functions that are cross-referenced among the flex source files */
|
|
|
|
|
|
/* from file ccl.c */
|
|
|
|
extern void ccladd PROTO((int, int)); /* Add a single character to a ccl */
|
|
extern int cclinit PROTO(()); /* make an empty ccl */
|
|
extern void cclnegate PROTO((int)); /* negate a ccl */
|
|
|
|
/* list the members of a set of characters in CCL form */
|
|
extern void list_character_set PROTO((FILE*, int[]));
|
|
|
|
|
|
/* from file dfa.c */
|
|
|
|
/* increase the maximum number of dfas */
|
|
extern void increase_max_dfas PROTO(());
|
|
|
|
extern void ntod PROTO(()); /* convert a ndfa to a dfa */
|
|
|
|
|
|
/* from file ecs.c */
|
|
|
|
/* convert character classes to set of equivalence classes */
|
|
extern void ccl2ecl PROTO(());
|
|
|
|
/* associate equivalence class numbers with class members */
|
|
extern int cre8ecs PROTO((int[], int[], int));
|
|
|
|
/* associate equivalence class numbers using %t table */
|
|
extern int ecs_from_xlation PROTO((int[]));
|
|
|
|
/* update equivalence classes based on character class transitions */
|
|
extern void mkeccl PROTO((Char[], int, int[], int[], int, int));
|
|
|
|
/* create equivalence class for single character */
|
|
extern void mkechar PROTO((int, int[], int[]));
|
|
|
|
|
|
/* from file gen.c */
|
|
|
|
extern void make_tables PROTO(()); /* generate transition tables */
|
|
|
|
|
|
/* from file main.c */
|
|
|
|
extern void flexend PROTO((int));
|
|
|
|
|
|
/* from file misc.c */
|
|
|
|
/* write out the actions from the temporary file to lex.yy.c */
|
|
extern void action_out PROTO(());
|
|
|
|
/* true if a string is all lower case */
|
|
extern int all_lower PROTO((register Char *));
|
|
|
|
/* true if a string is all upper case */
|
|
extern int all_upper PROTO((register Char *));
|
|
|
|
/* bubble sort an integer array */
|
|
extern void bubble PROTO((int [], int));
|
|
|
|
/* shell sort a character array */
|
|
extern void cshell PROTO((Char [], int, int));
|
|
|
|
extern void dataend PROTO(()); /* finish up a block of data declarations */
|
|
|
|
/* report an error message and terminate */
|
|
extern void flexerror PROTO((char[]));
|
|
|
|
/* report a fatal error message and terminate */
|
|
extern void flexfatal PROTO((char[]));
|
|
|
|
/* report an error message formatted with one integer argument */
|
|
extern void lerrif PROTO((char[], int));
|
|
|
|
/* report an error message formatted with one string argument */
|
|
extern void lerrsf PROTO((char[], char[]));
|
|
|
|
/* spit out a "# line" statement */
|
|
extern void line_directive_out PROTO((FILE*));
|
|
|
|
/* generate a data statment for a two-dimensional array */
|
|
extern void mk2data PROTO((int));
|
|
|
|
extern void mkdata PROTO((int)); /* generate a data statement */
|
|
|
|
/* return the integer represented by a string of digits */
|
|
extern int myctoi PROTO((Char []));
|
|
|
|
/* write out one section of the skeleton file */
|
|
extern void skelout PROTO(());
|
|
|
|
/* output a yy_trans_info structure */
|
|
extern void transition_struct_out PROTO((int, int));
|
|
|
|
|
|
/* from file nfa.c */
|
|
|
|
/* add an accepting state to a machine */
|
|
extern void add_accept PROTO((int, int));
|
|
|
|
/* make a given number of copies of a singleton machine */
|
|
extern int copysingl PROTO((int, int));
|
|
|
|
/* debugging routine to write out an nfa */
|
|
extern void dumpnfa PROTO((int));
|
|
|
|
/* finish up the processing for a rule */
|
|
extern void finish_rule PROTO((int, int, int, int));
|
|
|
|
/* connect two machines together */
|
|
extern int link_machines PROTO((int, int));
|
|
|
|
/* mark each "beginning" state in a machine as being a "normal" (i.e.,
|
|
* not trailing context associated) state
|
|
*/
|
|
extern void mark_beginning_as_normal PROTO((register int));
|
|
|
|
/* make a machine that branches to two machines */
|
|
extern int mkbranch PROTO((int, int));
|
|
|
|
extern int mkclos PROTO((int)); /* convert a machine into a closure */
|
|
extern int mkopt PROTO((int)); /* make a machine optional */
|
|
|
|
/* make a machine that matches either one of two machines */
|
|
extern int mkor PROTO((int, int));
|
|
|
|
/* convert a machine into a positive closure */
|
|
extern int mkposcl PROTO((int));
|
|
|
|
extern int mkrep PROTO((int, int, int)); /* make a replicated machine */
|
|
|
|
/* create a state with a transition on a given symbol */
|
|
extern int mkstate PROTO((int));
|
|
|
|
extern void new_rule PROTO(()); /* initialize for a new rule */
|
|
|
|
|
|
/* from file parse.y */
|
|
|
|
/* write out a message formatted with one string, pinpointing its location */
|
|
extern void format_pinpoint_message PROTO((char[], char[]));
|
|
|
|
/* write out a message, pinpointing its location */
|
|
extern void pinpoint_message PROTO((char[]));
|
|
|
|
extern void synerr PROTO((char [])); /* report a syntax error */
|
|
extern int yyparse PROTO(()); /* the YACC parser */
|
|
|
|
|
|
/* from file scan.l */
|
|
|
|
extern int flexscan PROTO(()); /* the Flex-generated scanner for flex */
|
|
|
|
/* open the given file (if NULL, stdin) for scanning */
|
|
extern void set_input_file PROTO((char*));
|
|
|
|
extern int yywrap PROTO(()); /* wrapup a file in the lexical analyzer */
|
|
|
|
|
|
/* from file sym.c */
|
|
|
|
/* save the text of a character class */
|
|
extern void cclinstal PROTO ((Char [], int));
|
|
|
|
/* lookup the number associated with character class */
|
|
extern int ccllookup PROTO((Char []));
|
|
|
|
extern void ndinstal PROTO((char[], Char[])); /* install a name definition */
|
|
extern void scinstal PROTO((char[], int)); /* make a start condition */
|
|
|
|
/* lookup the number associated with a start condition */
|
|
extern int sclookup PROTO((char[]));
|
|
|
|
|
|
/* from file tblcmp.c */
|
|
|
|
/* build table entries for dfa state */
|
|
extern void bldtbl PROTO((int[], int, int, int, int));
|
|
|
|
extern void cmptmps PROTO(()); /* compress template table entries */
|
|
extern void inittbl PROTO(()); /* initialize transition tables */
|
|
extern void mkdeftbl PROTO(()); /* make the default, "jam" table entries */
|
|
|
|
/* create table entries for a state (or state fragment) which has
|
|
* only one out-transition */
|
|
extern void mk1tbl PROTO((int, int, int, int));
|
|
|
|
/* place a state into full speed transition table */
|
|
extern void place_state PROTO((int*, int, int));
|
|
|
|
/* save states with only one out-transition to be processed later */
|
|
extern void stack1 PROTO((int, int, int, int));
|
|
|
|
|
|
/* from file yylex.c */
|
|
|
|
extern int yylex PROTO(());
|
|
|
|
|
|
/* The Unix kernel calls used here */
|
|
|
|
extern int read PROTO((int, char*, int));
|
|
extern int unlink PROTO((char*));
|
|
extern int write PROTO((int, char*, int));
|