NetBSD/sys/arch/sgimips/sgimips/machdep.c
2003-01-19 22:36:00 +00:00

1007 lines
23 KiB
C

/* $NetBSD: machdep.c,v 1.51 2003/01/19 22:36:00 rafal Exp $ */
/*
* Copyright (c) 2000 Soren S. Jorvang
* Copyright (c) 2001, 2002, 2003 Rafal K. Boni
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the
* NetBSD Project. See http://www.netbsd.org/ for
* information about NetBSD.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_execfmt.h"
#include "opt_cputype.h"
#include "opt_machtypes.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/device.h>
#include <sys/user.h>
#include <sys/exec.h>
#include <sys/mount.h>
#include <sys/sa.h>
#include <sys/syscallargs.h>
#include <sys/kcore.h>
#include <sys/boot_flag.h>
#include <uvm/uvm_extern.h>
#include <machine/cpu.h>
#include <machine/reg.h>
#include <machine/psl.h>
#include <machine/pte.h>
#include <machine/autoconf.h>
#include <machine/machtype.h>
#include <machine/sysconf.h>
#include <machine/intr.h>
#include <machine/bootinfo.h>
#include <mips/locore.h>
#include <mips/cache.h>
#if 0
#include <mips/cache_r5k.h>
#endif
#include <dev/arcbios/arcbios.h>
#include <dev/arcbios/arcbiosvar.h>
#include <sgimips/dev/crimereg.h>
#if defined(DDB) || defined(KGDB)
#include <machine/db_machdep.h>
#include <ddb/db_access.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifndef DB_ELFSIZE
#error Must define DB_ELFSIZE!
#endif
#define ELFSIZE DB_ELFSIZE
#include <sys/exec_elf.h>
#endif
/* For sysctl_hw. */
extern char cpu_model[];
struct sgimips_intrhand intrtab[NINTR];
/* Our exported CPU info; we can have only one. */
struct cpu_info cpu_info_store;
/* Maps for VM objects. */
struct vm_map *exec_map = NULL;
struct vm_map *mb_map = NULL;
struct vm_map *phys_map = NULL;
int mach_type; /* IPxx type */
int mach_subtype; /* subtype: eg., Guiness/Fullhouse for IP22 */
int mach_boardrev; /* machine board revision, in case it matters */
int physmem; /* Total physical memory */
int arcsmem; /* Memory used by the ARCS firmware */
int ncpus;
/* CPU interrupt masks */
u_int32_t biomask;
u_int32_t netmask;
u_int32_t ttymask;
u_int32_t clockmask;
phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];
int mem_cluster_cnt;
#ifdef IP20
void ip20_init(void);
#endif
#ifdef IP22
void ip22_init(void);
#endif
#ifdef IP32
void ip32_init(void);
#endif
void * cpu_intr_establish(int, int, int (*)(void *), void *);
void mach_init(int, char **, int, struct btinfo_common *);
void unconfigured_system_type(int);
void sgimips_count_cpus(struct arcbios_component *,
struct arcbios_treewalk_context *);
#ifdef KGDB
void kgdb_port_init(void);
void kgdb_connect(int);
#endif
void mips_machdep_find_l2cache(struct arcbios_component *comp, struct arcbios_treewalk_context *atc);
/* Motherboard or system-specific initialization vector */
static void unimpl_bus_reset(void);
static void unimpl_cons_init(void);
static void unimpl_iointr(unsigned, unsigned, unsigned, unsigned);
static void unimpl_intr_establish(int, int, int (*)(void *), void *);
static unsigned long nullwork(void);
void ddb_trap_hook(int where);
struct platform platform = {
unimpl_bus_reset,
unimpl_cons_init,
unimpl_iointr,
unimpl_intr_establish,
nullwork,
};
/*
* safepri is a safe priority for sleep to set for a spin-wait during
* autoconfiguration or after a panic. Used as an argument to splx().
*/
int safepri = MIPS1_PSL_LOWIPL;
extern caddr_t esym;
extern u_int32_t ssir;
extern struct user *proc0paddr;
static struct btinfo_common *bootinfo;
/*
* Do all the stuff that locore normally does before calling main().
* Process arguments passed to us by the ARCS firmware.
*/
void
mach_init(argc, argv, magic, btinfo)
int argc;
char **argv;
int magic;
struct btinfo_common *btinfo;
{
extern char kernel_text[], _end[];
paddr_t first, last;
int firstpfn, lastpfn;
caddr_t v;
vsize_t size;
struct arcbios_mem *mem;
char *cpufreq;
struct btinfo_symtab *bi_syms;
caddr_t ssym;
vaddr_t kernend;
int kernstartpfn, kernendpfn;
int i, rv, nsym;
#if 0
/* Clear the BSS segment. XXX Is this really necessary? */
memset(_edata, 0, _end - _edata);
#endif
/*
* Initialize ARCS. This will set up the bootstrap console.
*/
arcbios_init(MIPS_PHYS_TO_KSEG0(0x00001000));
strcpy(cpu_model, arcbios_system_identifier);
uvm_setpagesize();
if (magic == BOOTINFO_MAGIC && btinfo != NULL) {
#ifdef DEBUG
printf("Found bootinfo at %p\n", btinfo);
#endif
bootinfo = btinfo;
}
bi_syms = lookup_bootinfo(BTINFO_SYMTAB);
if (bi_syms != NULL) {
nsym = bi_syms->nsym;
ssym = (caddr_t) bi_syms->ssym;
esym = (caddr_t) bi_syms->esym;
kernend = round_page((vaddr_t) esym);
} else {
nsym = 0;
ssym = esym = NULL;
kernend = round_page((vaddr_t) _end);
}
kernstartpfn = atop(MIPS_KSEG0_TO_PHYS((vaddr_t) kernel_text));
kernendpfn = atop(MIPS_KSEG0_TO_PHYS(kernend));
#if 1 /* skidt? */
ARCBIOS->FlushAllCaches();
#endif
cpufreq = ARCBIOS->GetEnvironmentVariable("cpufreq");
if (cpufreq == 0)
panic("no $cpufreq");
/*
* Note initial estimate of CPU speed... If we care enough, we'll
* use the RTC to get a better estimate later.
*/
curcpu()->ci_cpu_freq = strtoul(cpufreq, NULL, 10) * 1000000;
/*
* argv[0] can be either the bootloader loaded by the PROM, or a
* kernel loaded directly by the PROM.
*
* If argv[0] is the bootloader, then argv[1] might be the kernel
* that was loaded. How to tell which one to use?
*
* If argv[1] isn't an environment string, try to use it to set the
* boot device.
*/
if (strchr(argv[1], '=') != 0)
makebootdev(argv[1]);
boothowto = RB_SINGLE;
/*
* Single- or multi-user ('auto' in SGI terms).
*/
for (i = 0; i < argc; i++) {
if (strcmp(argv[i], "OSLoadOptions=auto") == 0)
boothowto &= ~RB_SINGLE;
/*
* The case where the kernel has been loaded by a
* boot loader will usually have been catched by
* the first makebootdev() case earlier on, but
* we still use OSLoadPartition to get the preferred
* root filesystem location, even if it's not
* actually the location of the loaded kernel.
*/
if (strncmp(argv[i], "OSLoadPartition=", 15) == 0)
makebootdev(argv[i] + 16);
}
/*
* Pass the args again to check for flags -- This is done
* AFTER checking for OSLoadOptions to ensure that "auto"
* does not override the "-s" flag.
*/
for (i = 0; i < argc; i++) {
/*
* Extract out any flags passed for the kernel in the
* argument string. Warn for unknown/invalid flags,
* but silently skip non-flag arguments, as they are
* likely PROM environment values (if I knew those
* would always precede *any* flags, then I'd say we
* should warn about *all* unexpected values, but for
* now this should be fine).
*
* Use the MI boot-flag extractor since we don't use
* any special MD flags and to make sure we're up-to
* date with new MI flags whenever they're added.
*/
if (argv[i][0] == '-') {
rv = 0;
BOOT_FLAG(argv[i][1], rv);
if (rv == 0) {
printf("Unexpected option '%s' ignored", argv[i]);
} else {
boothowto |= rv;
}
}
}
#ifdef DEBUG
boothowto |= AB_DEBUG;
#endif
/*
* When the kernel is loaded directly by the firmware, and
* no explicit OSLoadPartition is set, we fall back on
* SystemPartition for the boot device.
*/
for (i = 0; i < argc; i++) {
if (strncmp(argv[i], "SystemPartition", 15) == 0)
makebootdev(argv[i] + 16);
#ifdef DEBUG
printf("argv[%d]: %s\n", i, argv[i]);
#endif
}
for (i = 0; arcbios_system_identifier[i] != '\0'; i++) {
if (arcbios_system_identifier[i] >= '0' &&
arcbios_system_identifier[i] <= '9') {
mach_type = strtoul(&arcbios_system_identifier[i],
NULL, 10);
break;
}
}
if (mach_type <= 0)
panic("invalid architecture");
#if defined(KGDB) || defined(DDB)
/* Set up DDB hook to turn off watchdog on entry */
db_trap_callback = ddb_trap_hook;
# ifdef DDB
ddb_init(nsym, ssym, esym);
if (boothowto & RB_KDB)
Debugger();
# endif
# ifdef KGDB
kgdb_port_init();
if (boothowto & RB_KDB)
kgdb_connect(0);
# endif
#endif
switch (mach_type) {
case MACH_SGI_IP20:
#ifdef IP20
ip20_init();
#else
unconfigured_system_type(mach_type);
#endif
break;
case MACH_SGI_IP22:
#ifdef IP22
ip22_init();
#else
unconfigured_system_type(mach_type);
#endif
break;
case MACH_SGI_IP32:
#ifdef IP32
ip32_init();
#else
unconfigured_system_type(mach_type);
#endif
break;
default:
panic("IP%d architecture not yet supported", mach_type);
break;
}
/*
* Now that we know the system type, set up the real console
*/
consinit();
physmem = arcsmem = 0;
mem_cluster_cnt = 0;
mem = NULL;
#ifdef DEBUG
i = 0;
mem = NULL;
do {
if ((mem = ARCBIOS->GetMemoryDescriptor(mem)) != NULL) {
i++;
printf("Mem block %d: type %d, base 0x%x, size 0x%x\n",
i, mem->Type, mem->BasePage, mem->PageCount);
}
} while (mem != NULL);
#endif
/*
* XXX This code assumes that ARCS provides the memory
* XXX sorted in ascending order.
*/
mem = NULL;
for (i = 0; mem_cluster_cnt < VM_PHYSSEG_MAX; i++) {
mem = ARCBIOS->GetMemoryDescriptor(mem);
if (mem == NULL)
break;
first = round_page(mem->BasePage * ARCBIOS_PAGESIZE);
last = trunc_page(first + mem->PageCount * ARCBIOS_PAGESIZE);
size = last - first;
firstpfn = atop(first);
lastpfn = atop(last);
switch (mem->Type) {
case ARCBIOS_MEM_FreeContiguous:
case ARCBIOS_MEM_FreeMemory:
case ARCBIOS_MEM_LoadedProgram:
if (firstpfn <= kernstartpfn &&
kernendpfn <= lastpfn) {
/*
* Must compute the location of the kernel
* within the segment.
*/
#ifdef DEBUG
printf("Cluster %d contains kernel\n", i);
#endif
if (firstpfn < kernstartpfn) {
/*
* There is a chunk before the kernel.
*/
#ifdef DEBUG
printf("Loading chunk before kernel: "
"0x%x / 0x%x\n", firstpfn,
kernstartpfn);
#endif
uvm_page_physload(firstpfn,
kernstartpfn,
firstpfn, kernstartpfn,
VM_FREELIST_DEFAULT);
}
if (kernendpfn < lastpfn) {
/*
* There is a chunk after the kernel.
*/
#ifdef DEBUG
printf("Loading chunk after kernel: "
"0x%x / 0x%x\n", kernendpfn,
lastpfn);
#endif
uvm_page_physload(kernendpfn,
lastpfn, kernendpfn,
lastpfn, VM_FREELIST_DEFAULT);
}
} else {
/*
* Just load this cluster as one chunk.
*/
#ifdef DEBUG
printf("Loading cluster %d: 0x%x / 0x%x\n", i,
firstpfn, lastpfn);
#endif
uvm_page_physload(firstpfn, lastpfn,
firstpfn, lastpfn, VM_FREELIST_DEFAULT);
}
mem_clusters[mem_cluster_cnt].start = first;
mem_clusters[mem_cluster_cnt].size = size;
mem_cluster_cnt++;
break;
case ARCBIOS_MEM_FirmwareTemporary:
case ARCBIOS_MEM_FirmwarePermanent:
arcsmem += btoc(size);
break;
case ARCBIOS_MEM_ExecptionBlock:
case ARCBIOS_MEM_SystemParameterBlock:
case ARCBIOS_MEM_BadMemory:
break;
default:
panic("unknown memory descriptor %d type %d",
i, mem->Type);
}
physmem += btoc(size);
}
if (mem_cluster_cnt == 0)
panic("no free memory descriptors found");
/* We can now no longer use bootinfo. */
bootinfo = NULL;
/*
* Walk the component tree and count the number of CPUs
* present in the system.
*/
arcbios_tree_walk(sgimips_count_cpus, NULL);
/*
* Copy exception-dispatch code down to exception vector.
* Initialize locore-function vector.
* Clear out the I and D caches.
*/
mips_vector_init();
/*
* Initialize error message buffer (at end of core).
*/
mips_init_msgbuf();
/*
* Compute the size of system data structures. pmap_bootstrap()
* needs some of this information.
*/
size = (vsize_t)allocsys(NULL, NULL);
pmap_bootstrap();
/*
* Allocate space for proc0's USPACE.
*/
v = (caddr_t)uvm_pageboot_alloc(USPACE);
lwp0.l_addr = proc0paddr = (struct user *)v;
lwp0.l_md.md_regs = (struct frame *)(v + USPACE) - 1;
curpcb = &lwp0.l_addr->u_pcb;
curpcb->pcb_context[11] = MIPS_INT_MASK | MIPS_SR_INT_IE; /* SR */
/*
* Allocate space for system data structures. These data structures
* are allocated here instead of cpu_startup() because physical
* memory is directly addressable. We don't have to map these into
* virtual address space.
*/
v = (caddr_t)uvm_pageboot_alloc(size);
if ((vsize_t) (allocsys(v, NULL) - v) != size)
panic("mach_init: table size inconsistency");
}
void
sgimips_count_cpus(struct arcbios_component *node,
struct arcbios_treewalk_context *atc)
{
switch (node->Class) {
case COMPONENT_CLASS_ProcessorClass:
if (node->Type == COMPONENT_TYPE_CPU)
ncpus++;
break;
default:
break;
}
}
/*
* Allocate memory for variable-sized tables.
*/
void
cpu_startup()
{
u_int i, base, residual;
vaddr_t minaddr, maxaddr;
vsize_t size;
char pbuf[9];
printf(version);
format_bytes(pbuf, sizeof(pbuf), ctob(physmem));
printf("%s memory", pbuf);
/*
* Allocate virtual address space for file I/O buffers.
* Note they are different than the array of headers, 'buf',
* and usually occupy more virtual memory than physical.
*/
size = MAXBSIZE * nbuf;
if (uvm_map(kernel_map, (vaddr_t *)&buffers, round_page(size),
NULL, UVM_UNKNOWN_OFFSET, 0,
UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
UVM_ADV_NORMAL, 0)) != 0)
panic("startup: cannot allocate VM for buffers");
minaddr = (vaddr_t)buffers;
base = bufpages / nbuf;
residual = bufpages % nbuf;
for (i = 0; i < nbuf; i++) {
vsize_t curbufsize;
vaddr_t curbuf;
struct vm_page *pg;
/*
* Each buffer has MAXBSIZE bytes of VM space allocated. Of
* that MAXBSIZE space, we allocate and map (base+1) pages
* for the first "residual" buffers, and then we allocate
* "base" pages for the rest.
*/
curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
curbufsize = NBPG * ((i < residual) ? (base + 1) : base);
while (curbufsize) {
pg = uvm_pagealloc(NULL, 0, NULL, 0);
if (pg == NULL)
panic("cpu_startup: not enough memory for "
"buffer cache");
pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
VM_PROT_READ|VM_PROT_WRITE);
curbuf += PAGE_SIZE;
curbufsize -= PAGE_SIZE;
}
}
pmap_update(pmap_kernel());
/*
* Allocate a submap for exec arguments. This map effectively
* limits the number of processes exec'ing at any time.
*/
exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
/*
* Allocate a submap for physio.
*/
phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
VM_PHYS_SIZE, 0, FALSE, NULL);
/*
* (No need to allocate an mbuf cluster submap. Mbuf clusters
* are allocated via the pool allocator, and we use KSEG to
* map those pages.)
*/
format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
printf(", %s free", pbuf);
format_bytes(pbuf, sizeof(pbuf), ctob(arcsmem));
printf(", %s for ARCS", pbuf);
format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
printf(", %s in %u buffers\n", pbuf, nbuf);
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
}
int waittime = -1;
void
cpu_reboot(howto, bootstr)
int howto;
char *bootstr;
{
/* Take a snapshot before clobbering any registers. */
if (curlwp)
savectx((struct user *)curpcb);
if (cold) {
howto |= RB_HALT;
goto haltsys;
}
/* If "always halt" was specified as a boot flag, obey. */
if (boothowto & RB_HALT)
howto |= RB_HALT;
boothowto = howto;
if ((howto & RB_NOSYNC) == 0 && (waittime < 0)) {
waittime = 0;
vfs_shutdown();
/*
* If we've been adjusting the clock, the todr
* will be out of synch; adjust it now.
*/
resettodr();
}
#if 1
/* Clear and disable watchdog timer. */
switch (mach_type) {
case MACH_SGI_IP22:
*(volatile u_int32_t *)0xbfa00014 = 0;
*(volatile u_int32_t *)0xbfa00004 &= ~0x100;
break;
case MACH_SGI_IP32:
*(volatile u_int32_t *)MIPS_PHYS_TO_KSEG1(CRIME_WATCHDOG) = 0;
*(volatile u_int32_t *)MIPS_PHYS_TO_KSEG1(CRIME_CONTROL)
&= ~CRIME_CONTROL_DOG_ENABLE;
break;
}
#endif
splhigh();
if (howto & RB_DUMP)
dumpsys();
haltsys:
doshutdownhooks();
/*
* Calling ARCBIOS->PowerDown() results in a "CP1 unusable trap"
* which lands me back in DDB, at least on my Indy. So, enable
* the FPU before asking the PROM to power down to avoid this..
* It seems to want the FPU to play the `poweroff tune' 8-/
*/
if ((howto & RB_POWERDOWN) == RB_POWERDOWN) {
/* Set CP1 usable bit in SR */
mips_cp0_status_write(mips_cp0_status_read() |
MIPS_SR_COP_1_BIT);
printf("powering off...\n\n");
delay(500000);
ARCBIOS->PowerDown();
printf("WARNING: powerdown failed\n");
/*
* RB_POWERDOWN implies RB_HALT... fall into it...
*/
}
if (howto & RB_HALT) {
printf("halting...\n\n");
ARCBIOS->EnterInteractiveMode();
}
printf("rebooting...\n\n");
ARCBIOS->Reboot();
for (;;);
}
void
microtime(tvp)
struct timeval *tvp;
{
int s = splclock();
static struct timeval lasttime;
*tvp = time;
tvp->tv_usec += (*platform.clkread)();
/*
* Make sure that the time returned is always greater
* than that returned by the previous call.
*/
if (tvp->tv_sec == lasttime.tv_sec &&
tvp->tv_usec <= lasttime.tv_usec &&
(tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
tvp->tv_sec++;
tvp->tv_usec -= 1000000;
}
lasttime = *tvp;
splx(s);
}
__inline void
delay(n)
unsigned long n;
{
u_long i;
long divisor = curcpu()->ci_divisor_delay;
while (n-- > 0)
for (i = divisor; i > 0; i--)
;
}
/*
* Ensure all platform vectors are always initialized.
*/
static void
unimpl_bus_reset()
{
panic("target init didn't set bus_reset");
}
static void
unimpl_cons_init()
{
panic("target init didn't set cons_init");
}
static void
unimpl_iointr(mask, pc, statusreg, causereg)
u_int mask;
u_int pc;
u_int statusreg;
u_int causereg;
{
panic("target init didn't set intr");
}
static void
unimpl_intr_establish(level, ipl, handler, arg)
int level;
int ipl;
int (*handler) __P((void *));
void *arg;
{
panic("target init didn't set intr_establish");
}
static unsigned long
nullwork()
{
return (0);
}
void *
cpu_intr_establish(level, ipl, func, arg)
int level;
int ipl;
int (*func)(void *);
void *arg;
{
(*platform.intr_establish)(level, ipl, func, arg);
return (void *) -1;
}
void
cpu_intr(status, cause, pc, ipending)
u_int32_t status;
u_int32_t cause;
u_int32_t pc;
u_int32_t ipending;
{
uvmexp.intrs++;
if (ipending & MIPS_HARD_INT_MASK)
(*platform.iointr)(status, cause, pc, ipending);
/*
* Service pending soft interrupts -- make sure to re-enable
* only those hardware interrupts that are not masked and
* that weren't pending on the current invocation of the
* interrupt handler, else we risk infinite stack growth
* due to nested interrupts.
*/
/* software simulated interrupt */
if ((ipending & MIPS_SOFT_INT_MASK_1) ||
(ssir && (status & MIPS_SOFT_INT_MASK_1))) {
_splset(MIPS_SR_INT_IE |
(status & ~ipending & MIPS_HARD_INT_MASK));
_clrsoftintr(MIPS_SOFT_INT_MASK_1);
softintr_dispatch();
}
}
void unconfigured_system_type(int ipnum)
{
printf("Kernel not configured for IP%d support. Add options `IP%d'\n",
ipnum, ipnum);
printf("to kernel configuration file to enable IP%d support!\n",
ipnum);
printf("\n");
panic("Kernel not configured for current hardware!");
}
void *
lookup_bootinfo(int type)
{
struct btinfo_common *b = bootinfo;
while (bootinfo != NULL) {
if (b->type == type)
return (b);
b = b->next;
}
return (NULL);
}
#if defined(DDB) || defined(KGDB)
void ddb_trap_hook(int where)
{
switch (where) {
case 1: /* Entry to DDB, turn watchdog off */
switch (mach_type) {
case MACH_SGI_IP22:
*(volatile u_int32_t *)0xbfa00014 = 0;
*(volatile u_int32_t *)0xbfa00004 &= ~0x100;
break;
case MACH_SGI_IP32:
*(volatile u_int32_t *)
MIPS_PHYS_TO_KSEG1(CRIME_WATCHDOG)= 0;
*(volatile u_int32_t *)
MIPS_PHYS_TO_KSEG1(CRIME_CONTROL) \
&= ~CRIME_CONTROL_DOG_ENABLE;
break;
}
break;
case 0: /* Exit from DDB, turn watchdog back on */
switch (mach_type) {
case MACH_SGI_IP22:
*(volatile u_int32_t *)0xbfa00004 |= 0x100;
*(volatile u_int32_t *)0xbfa00014 = 0;
break;
case MACH_SGI_IP32:
*(volatile u_int32_t *)
MIPS_PHYS_TO_KSEG1(CRIME_CONTROL) \
|= CRIME_CONTROL_DOG_ENABLE;
*(volatile u_int32_t *)0xb4000034 = 0;
break;
}
break;
}
}
#endif
void mips_machdep_cache_config(void)
{
volatile u_int32_t cpu_config;
if (mach_type == MACH_SGI_IP32)
{
#if 1
/* L2 cache does not work on IP32 (yet) */
mips_sdcache_size = 0;
mips_sdcache_line_size = 0;
cpu_config = mips3_cp0_config_read();
cpu_config &= ~MIPS3_CONFIG_SE;
mips3_cp0_config_write(cpu_config);
#else
arcbios_tree_walk(mips_machdep_find_l2cache, NULL);
cpu_config = mips3_cp0_config_read();
printf("\nbefore mips_machdep_cache_config: SE = %x\n",
cpu_config & MIPS3_CONFIG_SE);
r5k_enable_sdcache();
cpu_config = mips3_cp0_config_read();
printf("after mips_machdep_cache_config: SE = %x\n",
cpu_config & MIPS3_CONFIG_SE);
#endif
}
else /* IP22 works, maybe */
{
arcbios_tree_walk(mips_machdep_find_l2cache, NULL);
}
}
void
mips_machdep_find_l2cache(struct arcbios_component *comp, struct arcbios_treewalk_context *atc)
{
struct device *self = atc->atc_cookie;
if (comp->Class != COMPONENT_CLASS_CacheClass)
return;
switch (comp->Type) {
case COMPONENT_TYPE_SecondaryICache:
panic("%s: split L2 cache", self->dv_xname);
case COMPONENT_TYPE_SecondaryDCache:
case COMPONENT_TYPE_SecondaryCache:
mips_sdcache_size = COMPONENT_KEY_Cache_CacheSize(comp->Key);
mips_sdcache_line_size =
COMPONENT_KEY_Cache_LineSize(comp->Key);
/* XXX */
mips_sdcache_ways = 1;
break;
}
}