30ae1e68bc
that we don't get set-but-not-used warnings from the compiler.
678 lines
15 KiB
C
678 lines
15 KiB
C
/* $NetBSD: zs.c,v 1.25 2014/06/08 10:40:52 he Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1996, 2000 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Gordon W. Ross and Wayne Knowles
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Zilog Z8530 Dual UART driver (machine-dependent part)
|
|
*
|
|
* Runs two serial lines per chip using slave drivers.
|
|
* Plain tty/async lines use the zs_async slave.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.25 2014/06/08 10:40:52 he Exp $");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_kgdb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/device.h>
|
|
#include <sys/file.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/time.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <machine/mainboard.h>
|
|
#include <machine/autoconf.h>
|
|
#include <machine/prom.h>
|
|
#include <machine/z8530var.h>
|
|
|
|
#include <dev/cons.h>
|
|
#include <dev/ic/z8530reg.h>
|
|
|
|
#include "ioconf.h"
|
|
#include "zsc.h" /* NZSC */
|
|
#define NZS NZSC
|
|
|
|
/* Make life easier for the initialized arrays here. */
|
|
#if NZS < 2
|
|
#undef NZS
|
|
#define NZS 2
|
|
#endif
|
|
|
|
/*
|
|
* Some warts needed by z8530tty.c -
|
|
* The default parity REALLY needs to be the same as the PROM uses,
|
|
* or you can not see messages done with printf during boot-up...
|
|
*/
|
|
int zs_def_cflag = (CREAD | CS8 | HUPCL);
|
|
|
|
|
|
#define PCLK 10000000 /* PCLK pin input clock rate */
|
|
|
|
#ifndef ZS_DEFSPEED
|
|
#define ZS_DEFSPEED 9600
|
|
#endif
|
|
|
|
/*
|
|
* Define interrupt levels.
|
|
*/
|
|
#define ZSHARD_PRI 64
|
|
|
|
/* Register recovery time is 3.5 to 4 PCLK Cycles */
|
|
#define ZS_RECOVERY 1 /* 1us = 10 PCLK Cycles */
|
|
#define ZS_DELAY() delay(ZS_RECOVERY)
|
|
|
|
/* The layout of this is hardware-dependent (padding, order). */
|
|
struct zschan {
|
|
uint8_t pad1[3];
|
|
volatile uint8_t zc_csr; /* ctrl,status, and indirect access */
|
|
uint8_t pad2[3];
|
|
volatile uint8_t zc_data; /* data */
|
|
};
|
|
struct zsdevice {
|
|
/* Yes, they are backwards. */
|
|
struct zschan zs_chan_b;
|
|
struct zschan zs_chan_a;
|
|
};
|
|
|
|
/* Return the byte offset of element within a structure */
|
|
#define OFFSET(struct_def, el) ((size_t)&((struct_def *)0)->el)
|
|
|
|
#define ZS_CHAN_A OFFSET(struct zsdevice, zs_chan_a)
|
|
#define ZS_CHAN_B OFFSET(struct zsdevice, zs_chan_b)
|
|
#define ZS_REG_CSR OFFSET(struct zschan, zc_csr)
|
|
#define ZS_REG_DATA OFFSET(struct zschan, zc_data)
|
|
static int zs_chan_offset[] = {ZS_CHAN_A, ZS_CHAN_B};
|
|
|
|
/* Flags from cninit() */
|
|
static int zs_hwflags[NZS][2];
|
|
|
|
/* Default speed for all channels */
|
|
static int zs_defspeed = ZS_DEFSPEED;
|
|
static volatile int zssoftpending;
|
|
|
|
static uint8_t zs_init_reg[16] = {
|
|
0, /* 0: CMD (reset, etc.) */
|
|
0, /* 1: No interrupts yet. */
|
|
ZSHARD_PRI, /* 2: IVECT */
|
|
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
|
|
ZSWR4_CLK_X16 | ZSWR4_ONESB,
|
|
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
|
|
0, /* 6: TXSYNC/SYNCLO */
|
|
0, /* 7: RXSYNC/SYNCHI */
|
|
0, /* 8: alias for data port */
|
|
ZSWR9_MASTER_IE,
|
|
0, /*10: Misc. TX/RX control bits */
|
|
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD | ZSWR11_TRXC_OUT_ENA,
|
|
BPS_TO_TCONST(PCLK/16, ZS_DEFSPEED), /*12: BAUDLO (default=9600) */
|
|
0, /*13: BAUDHI (default=9600) */
|
|
ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
|
|
ZSWR15_BREAK_IE,
|
|
};
|
|
|
|
|
|
/****************************************************************
|
|
* Autoconfig
|
|
****************************************************************/
|
|
|
|
/* Definition of the driver for autoconfig. */
|
|
static int zs_match(device_t, cfdata_t, void *);
|
|
static void zs_attach(device_t, device_t, void *);
|
|
static int zs_print(void *, const char *name);
|
|
|
|
CFATTACH_DECL_NEW(zsc, sizeof(struct zsc_softc),
|
|
zs_match, zs_attach, NULL, NULL);
|
|
|
|
static int zshard(void *);
|
|
void zssoft(void *);
|
|
static int zs_get_speed(struct zs_chanstate *);
|
|
struct zschan *zs_get_chan_addr(int zs_unit, int channel);
|
|
int zs_getc(void *);
|
|
void zs_putc(void *, int);
|
|
|
|
/*
|
|
* Is the zs chip present?
|
|
*/
|
|
static int
|
|
zs_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
struct confargs *ca = aux;
|
|
void *va;
|
|
|
|
if (strcmp(ca->ca_name, "zsc"))
|
|
return 0;
|
|
|
|
va = (void *)cf->cf_addr;
|
|
|
|
/* This returns -1 on a fault (bus error). */
|
|
if (badaddr(va, 1))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Attach a found zs.
|
|
*
|
|
* Match slave number to zs unit number, so that misconfiguration will
|
|
* not set up the keyboard as ttya, etc.
|
|
*/
|
|
static void
|
|
zs_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct zsc_softc *zsc = device_private(self);
|
|
struct confargs *ca = aux;
|
|
struct zsc_attach_args zsc_args;
|
|
struct zs_chanstate *cs;
|
|
struct zs_channel *ch;
|
|
int zs_unit, channel, s;
|
|
|
|
zsc->zsc_dev = self;
|
|
zsc->zsc_bustag = ca->ca_bustag;
|
|
if (bus_space_map(ca->ca_bustag, ca->ca_addr,
|
|
sizeof(struct zsdevice),
|
|
BUS_SPACE_MAP_LINEAR,
|
|
&zsc->zsc_base) != 0) {
|
|
aprint_error(": cannot map registers\n");
|
|
return;
|
|
}
|
|
|
|
zs_unit = device_unit(self);
|
|
aprint_normal("\n");
|
|
|
|
/*
|
|
* Initialize software state for each channel.
|
|
*/
|
|
for (channel = 0; channel < 2; channel++) {
|
|
zsc_args.channel = channel;
|
|
zsc_args.hwflags = zs_hwflags[zs_unit][channel];
|
|
ch = &zsc->zsc_cs_store[channel];
|
|
cs = zsc->zsc_cs[channel] = (struct zs_chanstate *)ch;
|
|
|
|
zs_lock_init(cs);
|
|
cs->cs_reg_csr = NULL;
|
|
cs->cs_reg_data = NULL;
|
|
cs->cs_channel = channel;
|
|
cs->cs_private = NULL;
|
|
cs->cs_ops = &zsops_null;
|
|
cs->cs_brg_clk = PCLK / 16;
|
|
|
|
if (bus_space_subregion(ca->ca_bustag, zsc->zsc_base,
|
|
zs_chan_offset[channel],
|
|
sizeof(struct zschan),
|
|
&ch->cs_regs) != 0) {
|
|
aprint_error_dev(self, ": cannot map regs\n");
|
|
return;
|
|
}
|
|
ch->cs_bustag = ca->ca_bustag;
|
|
|
|
memcpy(cs->cs_creg, zs_init_reg, 16);
|
|
memcpy(cs->cs_preg, zs_init_reg, 16);
|
|
|
|
if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
|
|
cs->cs_defspeed = zs_get_speed(cs);
|
|
else
|
|
cs->cs_defspeed = zs_defspeed;
|
|
cs->cs_defcflag = zs_def_cflag;
|
|
|
|
/* Make these correspond to cs_defcflag (-crtscts) */
|
|
cs->cs_rr0_dcd = ZSRR0_DCD;
|
|
cs->cs_rr0_cts = 0;
|
|
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
|
|
cs->cs_wr5_rts = 0;
|
|
|
|
/*
|
|
* Clear the master interrupt enable.
|
|
* The INTENA is common to both channels,
|
|
* so just do it on the A channel.
|
|
*/
|
|
if (channel == 0) {
|
|
zs_write_reg(cs, 9, 0);
|
|
}
|
|
/*
|
|
* Look for a child driver for this channel.
|
|
* The child attach will setup the hardware.
|
|
*/
|
|
if (!config_found(self, (void *)&zsc_args, zs_print)) {
|
|
/* No sub-driver. Just reset it. */
|
|
uint8_t reset = (channel == 0) ?
|
|
ZSWR9_A_RESET : ZSWR9_B_RESET;
|
|
|
|
s = splhigh();
|
|
zs_write_reg(cs, 9, reset);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
|
|
zsc->sc_si = softint_establish(SOFTINT_SERIAL, zssoft, zsc);
|
|
bus_intr_establish(zsc->zsc_bustag, SYS_INTR_SCC0, 0, 0, zshard, NULL);
|
|
|
|
evcnt_attach_dynamic(&zsc->zs_intrcnt, EVCNT_TYPE_INTR, NULL,
|
|
device_xname(self), "intr");
|
|
|
|
/*
|
|
* Set the master interrupt enable and interrupt vector.
|
|
* (common to both channels, do it on A)
|
|
*/
|
|
cs = zsc->zsc_cs[0];
|
|
s = splhigh();
|
|
/* interrupt vector */
|
|
zs_write_reg(cs, 2, zs_init_reg[2]);
|
|
/* master interrupt control (enable) */
|
|
zs_write_reg(cs, 9, zs_init_reg[9]);
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
zs_print(void *aux, const char *name)
|
|
{
|
|
struct zsc_attach_args *args = aux;
|
|
|
|
if (name != NULL)
|
|
aprint_normal("%s: ", name);
|
|
|
|
if (args->channel != -1)
|
|
aprint_normal(" channel %d", args->channel);
|
|
|
|
return UNCONF;
|
|
}
|
|
|
|
/*
|
|
* Our ZS chips all share a common, autovectored interrupt,
|
|
* so we have to look at all of them on each interrupt.
|
|
*/
|
|
static int
|
|
zshard(void *arg)
|
|
{
|
|
struct zsc_softc *zsc;
|
|
int unit, rval, softreq;
|
|
|
|
rval = 0;
|
|
for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
|
|
zsc = device_lookup_private(&zsc_cd, unit);
|
|
if (zsc == NULL)
|
|
continue;
|
|
rval |= zsc_intr_hard(zsc);
|
|
softreq = zsc->zsc_cs[0]->cs_softreq;
|
|
softreq |= zsc->zsc_cs[1]->cs_softreq;
|
|
if (softreq && (zssoftpending == 0)) {
|
|
zssoftpending = 1;
|
|
softint_schedule(zsc->sc_si);
|
|
}
|
|
zsc->zs_intrcnt.ev_count++;
|
|
}
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* Similar scheme as for zshard (look at all of them)
|
|
*/
|
|
void
|
|
zssoft(void *arg)
|
|
{
|
|
struct zsc_softc *zsc;
|
|
int s, unit;
|
|
|
|
/* This is not the only ISR on this IPL. */
|
|
if (zssoftpending == 0)
|
|
return;
|
|
|
|
/*
|
|
* The soft intr. bit will be set by zshard only if
|
|
* the variable zssoftpending is zero. The order of
|
|
* these next two statements prevents our clearing
|
|
* the soft intr bit just after zshard has set it.
|
|
*/
|
|
/*isr_soft_clear(ZSSOFT_PRI);*/
|
|
zssoftpending = 0;
|
|
|
|
/* Make sure we call the tty layer at spltty. */
|
|
s = spltty();
|
|
for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
|
|
zsc = device_lookup_private(&zsc_cd, unit);
|
|
if (zsc == NULL)
|
|
continue;
|
|
(void)zsc_intr_soft(zsc);
|
|
}
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the current baud rate given a ZS channel.
|
|
*/
|
|
static int
|
|
zs_get_speed(struct zs_chanstate *cs)
|
|
{
|
|
int tconst;
|
|
|
|
tconst = zs_read_reg(cs, 12);
|
|
tconst |= zs_read_reg(cs, 13) << 8;
|
|
return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
|
|
}
|
|
|
|
/*
|
|
* MD functions for setting the baud rate and control modes.
|
|
*/
|
|
int
|
|
zs_set_speed(struct zs_chanstate *cs, int bps)
|
|
{
|
|
int tconst;
|
|
#if 0
|
|
int real_bps;
|
|
#endif
|
|
|
|
#if 0
|
|
while (!(zs_read_csr(cs) & ZSRR0_TX_READY))
|
|
{/*nop*/}
|
|
#endif
|
|
/* Wait for transmit buffer to empty */
|
|
if (bps == 0) {
|
|
return (0);
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (cs->cs_brg_clk == 0)
|
|
panic("zs_set_speed");
|
|
#endif
|
|
|
|
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
|
|
if (tconst < 0)
|
|
return (EINVAL);
|
|
|
|
#if 0
|
|
/* Convert back to make sure we can do it. */
|
|
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
|
|
|
|
/* XXX - Allow some tolerance here? */
|
|
if (real_bps != bps)
|
|
return (EINVAL);
|
|
#endif
|
|
|
|
cs->cs_preg[12] = tconst;
|
|
cs->cs_preg[13] = tconst >> 8;
|
|
|
|
/* Caller will stuff the pending registers. */
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zs_set_modes(struct zs_chanstate *cs, int cflag)
|
|
{
|
|
int s;
|
|
|
|
/*
|
|
* Output hardware flow control on the chip is horrendous:
|
|
* if carrier detect drops, the receiver is disabled, and if
|
|
* CTS drops, the transmitter is stoped IN MID CHARACTER!
|
|
* Therefore, NEVER set the HFC bit, and instead use the
|
|
* status interrupt to detect CTS changes.
|
|
*/
|
|
s = splzs();
|
|
cs->cs_rr0_pps = 0;
|
|
if ((cflag & (CLOCAL | MDMBUF)) != 0) {
|
|
cs->cs_rr0_dcd = 0;
|
|
if ((cflag & MDMBUF) == 0)
|
|
cs->cs_rr0_pps = ZSRR0_DCD;
|
|
} else
|
|
cs->cs_rr0_dcd = ZSRR0_DCD;
|
|
if ((cflag & CRTSCTS) != 0) {
|
|
cs->cs_wr5_dtr = ZSWR5_DTR;
|
|
cs->cs_wr5_rts = ZSWR5_RTS;
|
|
cs->cs_rr0_cts = ZSRR0_CTS;
|
|
} else if ((cflag & MDMBUF) != 0) {
|
|
cs->cs_wr5_dtr = 0;
|
|
cs->cs_wr5_rts = ZSWR5_DTR;
|
|
cs->cs_rr0_cts = ZSRR0_DCD;
|
|
} else {
|
|
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
|
|
cs->cs_wr5_rts = 0;
|
|
cs->cs_rr0_cts = 0;
|
|
}
|
|
splx(s);
|
|
|
|
/* Caller will stuff the pending registers. */
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read or write the chip with suitable delays.
|
|
*/
|
|
|
|
uint8_t
|
|
zs_read_reg(struct zs_chanstate *cs, uint8_t reg)
|
|
{
|
|
uint8_t val;
|
|
struct zs_channel *zsc = (struct zs_channel *)cs;
|
|
|
|
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
|
|
ZS_DELAY();
|
|
val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
|
|
void
|
|
zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val)
|
|
{
|
|
struct zs_channel *zsc = (struct zs_channel *)cs;
|
|
|
|
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
|
|
ZS_DELAY();
|
|
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
|
|
ZS_DELAY();
|
|
}
|
|
|
|
uint8_t
|
|
zs_read_csr(struct zs_chanstate *cs)
|
|
{
|
|
struct zs_channel *zsc = (struct zs_channel *)cs;
|
|
uint8_t val;
|
|
|
|
val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
|
|
void
|
|
zs_write_csr(struct zs_chanstate *cs, uint8_t val)
|
|
{
|
|
struct zs_channel *zsc = (struct zs_channel *)cs;
|
|
|
|
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
|
|
ZS_DELAY();
|
|
}
|
|
|
|
uint8_t
|
|
zs_read_data(struct zs_chanstate *cs)
|
|
{
|
|
struct zs_channel *zsc = (struct zs_channel *)cs;
|
|
uint8_t val;
|
|
|
|
val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA);
|
|
ZS_DELAY();
|
|
return val;
|
|
}
|
|
|
|
void
|
|
zs_write_data(struct zs_chanstate *cs, uint8_t val)
|
|
{
|
|
struct zs_channel *zsc = (struct zs_channel *)cs;
|
|
|
|
bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, val);
|
|
ZS_DELAY();
|
|
}
|
|
|
|
void
|
|
zs_abort(struct zs_chanstate *cs)
|
|
{
|
|
|
|
#if defined(KGDB)
|
|
zskgdb(cs);
|
|
#elif defined(DDB)
|
|
Debugger();
|
|
#endif
|
|
}
|
|
|
|
|
|
/*********************************************************/
|
|
/* Polled character I/O functions for console and KGDB */
|
|
/*********************************************************/
|
|
|
|
struct zschan *
|
|
zs_get_chan_addr(int zs_unit, int channel)
|
|
{
|
|
struct zsdevice *addr;
|
|
struct zschan *zc;
|
|
|
|
if (zs_unit >= NZS)
|
|
return NULL;
|
|
|
|
addr = (struct zsdevice *) ZS0_ADDR;
|
|
|
|
if (channel == 0) {
|
|
zc = &addr->zs_chan_a;
|
|
} else {
|
|
zc = &addr->zs_chan_b;
|
|
}
|
|
return (zc);
|
|
}
|
|
|
|
int
|
|
zs_getc(void *arg)
|
|
{
|
|
volatile struct zschan *zc = arg;
|
|
int s, c;
|
|
uint8_t rr0;
|
|
|
|
s = splhigh();
|
|
/* Wait for a character to arrive. */
|
|
do {
|
|
rr0 = zc->zc_csr;
|
|
ZS_DELAY();
|
|
} while ((rr0 & ZSRR0_RX_READY) == 0);
|
|
|
|
c = zc->zc_data;
|
|
ZS_DELAY();
|
|
splx(s);
|
|
|
|
return (c);
|
|
}
|
|
|
|
/*
|
|
* Polled output char.
|
|
*/
|
|
void
|
|
zs_putc(void *arg, int c)
|
|
{
|
|
volatile struct zschan *zc = arg;
|
|
int s;
|
|
uint8_t rr0;
|
|
|
|
s = splhigh();
|
|
/* Wait for transmitter to become ready. */
|
|
do {
|
|
rr0 = zc->zc_csr;
|
|
ZS_DELAY();
|
|
} while ((rr0 & ZSRR0_TX_READY) == 0);
|
|
|
|
zc->zc_data = c;
|
|
wbflush();
|
|
ZS_DELAY();
|
|
splx(s);
|
|
}
|
|
|
|
/***************************************************************/
|
|
|
|
static void zscnprobe(struct consdev *);
|
|
static void zscninit(struct consdev *);
|
|
static int zscngetc(dev_t);
|
|
static void zscnputc(dev_t, int);
|
|
static void zscnpollc(dev_t, int);
|
|
|
|
static int cons_port;
|
|
|
|
struct consdev consdev_zs = {
|
|
zscnprobe,
|
|
zscninit,
|
|
zscngetc,
|
|
zscnputc,
|
|
zscnpollc
|
|
};
|
|
|
|
void
|
|
zscnprobe(struct consdev *cn)
|
|
{
|
|
}
|
|
|
|
void
|
|
zscninit(struct consdev *cn)
|
|
{
|
|
extern const struct cdevsw zstty_cdevsw;
|
|
|
|
cons_port = prom_getconsole();
|
|
cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), cons_port);
|
|
cn->cn_pri = CN_REMOTE;
|
|
zs_hwflags[0][cons_port] = ZS_HWFLAG_CONSOLE;
|
|
}
|
|
|
|
int
|
|
zscngetc(dev_t dev)
|
|
{
|
|
struct zschan *zs;
|
|
|
|
zs = zs_get_chan_addr(0, cons_port);
|
|
return zs_getc(zs);
|
|
}
|
|
|
|
void
|
|
zscnputc(dev_t dev, int c)
|
|
{
|
|
struct zschan *zs;
|
|
|
|
zs = zs_get_chan_addr(0, cons_port);
|
|
zs_putc(zs, c);
|
|
}
|
|
|
|
void
|
|
zscnpollc(dev_t dev, int on)
|
|
{
|
|
}
|