NetBSD/gnu/usr.bin/gcc2/arch/m68k/aux-output.c
paulus c8c2e04113 Machine-dependent files with shared-library support for the m68k architecture.
This directory should be able to used for all m68k-based machines.
1993-11-25 01:25:55 +00:00

2249 lines
57 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Subroutines for insn-output.c for Motorola 68000 family.
Copyright (C) 1987, 1993 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#ifndef lint
static char rcsid[] = "$Id: aux-output.c,v 1.1 1993/11/25 01:25:57 paulus Exp $";
#endif /* not lint */
/* Some output-actions in m68k.md need these. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
/* Needed for use_return_insn. */
#include "flags.h"
#ifdef SUPPORT_SUN_FPA
/* Index into this array by (register number >> 3) to find the
smallest class which contains that register. */
enum reg_class regno_reg_class[]
= { DATA_REGS, ADDR_REGS, FP_REGS,
LO_FPA_REGS, LO_FPA_REGS, FPA_REGS, FPA_REGS };
#endif /* defined SUPPORT_SUN_FPA */
/* This flag is used to communicate between movhi and ASM_OUTPUT_CASE_END,
if SGS_SWITCH_TABLE. */
int switch_table_difference_label_flag;
static rtx find_addr_reg ();
rtx legitimize_pic_address ();
/* Emit a (use pic_offset_table_rtx) if we used PIC relocation in the
function at any time during the compilation process. In the future
we should try and eliminate the USE if we can easily determine that
all PIC references were deleted from the current function. That would
save an address register */
finalize_pic ()
{
if (flag_pic && current_function_uses_pic_offset_table)
emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx));
}
/* This function generates the assembly code for function entry.
STREAM is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This function is responsible for
knowing which registers should not be saved even if used. */
/* Note that the order of the bit mask for fmovem is the opposite
of the order for movem! */
void
output_function_prologue (stream, size)
FILE *stream;
int size;
{
register int regno;
register int mask = 0;
int num_saved_regs = 0;
extern char call_used_regs[];
int fsize = (size + 3) & -4;
if (frame_pointer_needed)
{
/* Adding negative number is faster on the 68040. */
if (fsize < 0x8000 && !TARGET_68040)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tlink.w %s,%0I%d\n",
reg_names[FRAME_POINTER_REGNUM], -fsize);
#else
asm_fprintf (stream, "\tlink %s,%0I%d\n",
reg_names[FRAME_POINTER_REGNUM], -fsize);
#endif
}
else if (TARGET_68020)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tlink.l %s,%0I%d\n",
reg_names[FRAME_POINTER_REGNUM], -fsize);
#else
asm_fprintf (stream, "\tlink %s,%0I%d\n",
reg_names[FRAME_POINTER_REGNUM], -fsize);
#endif
}
else
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tlink.w %s,%0I0\n\tadd.l %0I%d,%Rsp\n",
reg_names[FRAME_POINTER_REGNUM], -fsize);
#else
asm_fprintf (stream, "\tlink %s,%0I0\n\taddl %0I%d,%Rsp\n",
reg_names[FRAME_POINTER_REGNUM], -fsize);
#endif
}
}
else if (fsize)
{
/* Adding negative number is faster on the 68040. */
if (fsize + 4 < 0x8000)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tadd.w %0I%d,%Rsp\n", - (fsize + 4));
#else
asm_fprintf (stream, "\taddw %0I%d,%Rsp\n", - (fsize + 4));
#endif
}
else
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tadd.l %0I%d,%Rsp\n", - (fsize + 4));
#else
asm_fprintf (stream, "\taddl %0I%d,%Rsp\n", - (fsize + 4));
#endif
}
}
#ifdef SUPPORT_SUN_FPA
for (regno = 24; regno < 56; regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tfpmovd %s,-(%Rsp)\n",
reg_names[regno]);
#else
asm_fprintf (stream, "\tfpmoved %s,%Rsp@-\n",
reg_names[regno]);
#endif
}
#endif
for (regno = 16; regno < 24; regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
mask |= 1 << (regno - 16);
if ((mask & 0xff) != 0)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tfmovm %0I0x%x,-(%Rsp)\n", mask & 0xff);
#else
asm_fprintf (stream, "\tfmovem %0I0x%x,%Rsp@-\n", mask & 0xff);
#endif
}
mask = 0;
for (regno = 0; regno < 16; regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
mask |= 1 << (15 - regno);
num_saved_regs++;
}
if (frame_pointer_needed)
{
mask &= ~ (1 << (15 - FRAME_POINTER_REGNUM));
num_saved_regs--;
}
#if NEED_PROBE
fprintf (stream, "\ttstl sp@(%d)\n", NEED_PROBE - num_saved_regs * 4);
#endif
if (num_saved_regs <= 2)
{
/* Store each separately in the same order moveml uses.
Using two movel instructions instead of a single moveml
is about 15% faster for the 68020 and 68030 at no expense
in code size */
int i;
/* Undo the work from above. */
for (i = 0; i< 16; i++)
if (mask & (1 << i))
asm_fprintf (stream,
#ifdef MOTOROLA
"\t%Omove.l %s,-(%Rsp)\n",
#else
"\tmovel %s,%Rsp@-\n",
#endif
reg_names[15 - i]);
}
else if (mask)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tmovm.l %0I0x%x,-(%Rsp)\n", mask);
#else
asm_fprintf (stream, "\tmoveml %0I0x%x,%Rsp@-\n", mask);
#endif
}
if (flag_pic && current_function_uses_pic_offset_table)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\t%Olea (%Rpc, %U_GLOBAL_OFFSET_TABLE_@GOTPC), %s\n",
reg_names[PIC_OFFSET_TABLE_REGNUM]);
#else
asm_fprintf (stream, "\tmovel %0I__GLOBAL_OFFSET_TABLE_, %s\n",
reg_names[PIC_OFFSET_TABLE_REGNUM]);
asm_fprintf (stream, "\tlea %Rpc@(0,%s:l),%s\n",
reg_names[PIC_OFFSET_TABLE_REGNUM],
reg_names[PIC_OFFSET_TABLE_REGNUM]);
#endif
}
}
/* Return true if this function's epilogue can be output as RTL. */
int
use_return_insn ()
{
int regno;
if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
return 0;
/* Copied from output_function_epilogue (). We should probably create a
separate layout routine to perform the common work. */
for (regno = 0 ; regno < FIRST_PSEUDO_REGISTER ; regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
return 0;
return 1;
}
/* This function generates the assembly code for function exit,
on machines that need it. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only, if there is a frame pointer.
This is mandatory because of alloca; we also take advantage of it to
omit stack adjustments before returning. */
void
output_function_epilogue (stream, size)
FILE *stream;
int size;
{
register int regno;
register int mask, fmask;
register int nregs;
int offset, foffset, fpoffset;
extern char call_used_regs[];
int fsize = (size + 3) & -4;
int big = 0;
rtx insn = get_last_insn ();
/* If the last insn was a BARRIER, we don't have to write any code. */
if (GET_CODE (insn) == NOTE)
insn = prev_nonnote_insn (insn);
if (insn && GET_CODE (insn) == BARRIER)
{
/* Output just a no-op so that debuggers don't get confused
about which function the pc is in at this address. */
asm_fprintf (stream, "\tnop\n");
return;
}
#ifdef FUNCTION_EXTRA_EPILOGUE
FUNCTION_EXTRA_EPILOGUE (stream, size);
#endif
nregs = 0; fmask = 0; fpoffset = 0;
#ifdef SUPPORT_SUN_FPA
for (regno = 24 ; regno < 56 ; regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
nregs++;
fpoffset = nregs * 8;
#endif
nregs = 0;
for (regno = 16; regno < 24; regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
nregs++;
fmask |= 1 << (23 - regno);
}
foffset = fpoffset + nregs * 12;
nregs = 0; mask = 0;
if (frame_pointer_needed)
regs_ever_live[FRAME_POINTER_REGNUM] = 0;
for (regno = 0; regno < 16; regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
nregs++;
mask |= 1 << regno;
}
offset = foffset + nregs * 4;
if (offset + fsize >= 0x8000
&& frame_pointer_needed
&& (mask || fmask || fpoffset))
{
#ifdef MOTOROLA
asm_fprintf (stream, "\t%Omove.l %0I%d,%Ra0\n", -fsize);
#else
asm_fprintf (stream, "\tmovel %0I%d,%Ra0\n", -fsize);
#endif
fsize = 0, big = 1;
}
if (nregs <= 2)
{
/* Restore each separately in the same order moveml does.
Using two movel instructions instead of a single moveml
is about 15% faster for the 68020 and 68030 at no expense
in code size. */
int i;
/* Undo the work from above. */
for (i = 0; i< 16; i++)
if (mask & (1 << i))
{
if (big)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\t%Omove.l -%d(%s,%Ra0.l),%s\n",
offset + fsize,
reg_names[FRAME_POINTER_REGNUM],
reg_names[i]);
#else
asm_fprintf (stream, "\tmovel %s@(-%d,%Ra0:l),%s\n",
reg_names[FRAME_POINTER_REGNUM],
offset + fsize, reg_names[i]);
#endif
}
else if (! frame_pointer_needed)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\t%Omove.l (%Rsp)+,%s\n",
reg_names[i]);
#else
asm_fprintf (stream, "\tmovel %Rsp@+,%s\n",
reg_names[i]);
#endif
}
else
{
#ifdef MOTOROLA
asm_fprintf (stream, "\t%Omove.l -%d(%s),%s\n",
offset + fsize,
reg_names[FRAME_POINTER_REGNUM],
reg_names[i]);
#else
asm_fprintf (stream, "\tmovel %s@(-%d),%s\n",
reg_names[FRAME_POINTER_REGNUM],
offset + fsize, reg_names[i]);
#endif
}
offset = offset - 4;
}
}
else if (mask)
{
if (big)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tmovm.l -%d(%s,%Ra0.l),%0I0x%x\n",
offset + fsize,
reg_names[FRAME_POINTER_REGNUM],
mask);
#else
asm_fprintf (stream, "\tmoveml %s@(-%d,%Ra0:l),%0I0x%x\n",
reg_names[FRAME_POINTER_REGNUM],
offset + fsize, mask);
#endif
}
else if (! frame_pointer_needed)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tmovm.l (%Rsp)+,%0I0x%x\n", mask);
#else
asm_fprintf (stream, "\tmoveml %Rsp@+,%0I0x%x\n", mask);
#endif
}
else
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tmovm.l -%d(%s),%0I0x%x\n",
offset + fsize,
reg_names[FRAME_POINTER_REGNUM],
mask);
#else
asm_fprintf (stream, "\tmoveml %s@(-%d),%0I0x%x\n",
reg_names[FRAME_POINTER_REGNUM],
offset + fsize, mask);
#endif
}
}
if (fmask)
{
if (big)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tfmovm -%d(%s,%Ra0.l),%0I0x%x\n",
foffset + fsize,
reg_names[FRAME_POINTER_REGNUM],
fmask);
#else
asm_fprintf (stream, "\tfmovem %s@(-%d,%Ra0:l),%0I0x%x\n",
reg_names[FRAME_POINTER_REGNUM],
foffset + fsize, fmask);
#endif
}
else if (! frame_pointer_needed)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tfmovm (%Rsp)+,%0I0x%x\n", fmask);
#else
asm_fprintf (stream, "\tfmovem %Rsp@+,%0I0x%x\n", fmask);
#endif
}
else
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tfmovm -%d(%s),%0I0x%x\n",
foffset + fsize,
reg_names[FRAME_POINTER_REGNUM],
fmask);
#else
asm_fprintf (stream, "\tfmovem %s@(-%d),%0I0x%x\n",
reg_names[FRAME_POINTER_REGNUM],
foffset + fsize, fmask);
#endif
}
}
if (fpoffset != 0)
for (regno = 55; regno >= 24; regno--)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
if (big)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tfpmovd -%d(%s,%Ra0.l), %s\n",
fpoffset + fsize,
reg_names[FRAME_POINTER_REGNUM],
reg_names[regno]);
#else
asm_fprintf (stream, "\tfpmoved %s@(-%d,%Ra0:l), %s\n",
reg_names[FRAME_POINTER_REGNUM],
fpoffset + fsize, reg_names[regno]);
#endif
}
else if (! frame_pointer_needed)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tfpmovd (%Rsp)+,%s\n",
reg_names[regno]);
#else
asm_fprintf (stream, "\tfpmoved %Rsp@+, %s\n",
reg_names[regno]);
#endif
}
else
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tfpmovd -%d(%s), %s\n",
fpoffset + fsize,
reg_names[FRAME_POINTER_REGNUM],
reg_names[regno]);
#else
asm_fprintf (stream, "\tfpmoved %s@(-%d), %s\n",
reg_names[FRAME_POINTER_REGNUM],
fpoffset + fsize, reg_names[regno]);
#endif
}
fpoffset -= 8;
}
if (frame_pointer_needed)
fprintf (stream, "\tunlk %s\n",
reg_names[FRAME_POINTER_REGNUM]);
else if (fsize)
{
if (fsize + 4 < 0x8000)
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tadd.w %0I%d,%Rsp\n", fsize + 4);
#else
asm_fprintf (stream, "\taddw %0I%d,%Rsp\n", fsize + 4);
#endif
}
else
{
#ifdef MOTOROLA
asm_fprintf (stream, "\tadd.l %0I%d,%Rsp\n", fsize + 4);
#else
asm_fprintf (stream, "\taddl %0I%d,%Rsp\n", fsize + 4);
#endif
}
}
if (current_function_pops_args)
asm_fprintf (stream, "\trtd %0I%d\n", current_function_pops_args);
else
fprintf (stream, "\trts\n");
}
/* Similar to general_operand, but exclude stack_pointer_rtx. */
int
not_sp_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return op != stack_pointer_rtx && general_operand (op, mode);
}
/* Return TRUE if X is a valid comparison operator for the dbcc
instruction.
Note it rejects floating point comparison operators.
(In the future we could use Fdbcc).
It also rejects some comparisons when CC_NO_OVERFLOW is set. */
int
valid_dbcc_comparison_p (x, mode)
rtx x;
enum machine_mode mode;
{
/* We could add support for these in the future */
if (cc_prev_status.flags & CC_IN_68881)
return 0;
switch (GET_CODE (x))
{
case EQ: case NE: case GTU: case LTU:
case GEU: case LEU:
return 1;
/* Reject some when CC_NO_OVERFLOW is set. This may be over
conservative */
case GT: case LT: case GE: case LE:
return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
default:
return 0;
}
}
/* Output a dbCC; jCC sequence. Note we do not handle the
floating point version of this sequence (Fdbcc). We also
do not handle alternative conditions when CC_NO_OVERFLOW is
set. It is assumed that valid_dbcc_comparison_p will kick
those out before we get here. */
output_dbcc_and_branch (operands)
rtx *operands;
{
switch (GET_CODE (operands[3]))
{
case EQ:
#ifdef MOTOROLA
output_asm_insn ("dbeq %0,%l1\n\tjbeq %l2", operands);
#else
output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
#endif
break;
case NE:
#ifdef MOTOROLA
output_asm_insn ("dbne %0,%l1\n\tjbne %l2", operands);
#else
output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
#endif
break;
case GT:
#ifdef MOTOROLA
output_asm_insn ("dbgt %0,%l1\n\tjbgt %l2", operands);
#else
output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
#endif
break;
case GTU:
#ifdef MOTOROLA
output_asm_insn ("dbhi %0,%l1\n\tjbhi %l2", operands);
#else
output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
#endif
break;
case LT:
#ifdef MOTOROLA
output_asm_insn ("dblt %0,%l1\n\tjblt %l2", operands);
#else
output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
#endif
break;
case LTU:
#ifdef MOTOROLA
output_asm_insn ("dbcs %0,%l1\n\tjbcs %l2", operands);
#else
output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
#endif
break;
case GE:
#ifdef MOTOROLA
output_asm_insn ("dbge %0,%l1\n\tjbge %l2", operands);
#else
output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
#endif
break;
case GEU:
#ifdef MOTOROLA
output_asm_insn ("dbcc %0,%l1\n\tjbcc %l2", operands);
#else
output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
#endif
break;
case LE:
#ifdef MOTOROLA
output_asm_insn ("dble %0,%l1\n\tjble %l2", operands);
#else
output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
#endif
break;
case LEU:
#ifdef MOTOROLA
output_asm_insn ("dbls %0,%l1\n\tjbls %l2", operands);
#else
output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
#endif
break;
default:
abort ();
}
/* If the decrement is to be done in SImode, then we have
to compensate for the fact that dbcc decrements in HImode. */
switch (GET_MODE (operands[0]))
{
case SImode:
#ifdef MOTOROLA
output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjbpl %l1", operands);
#else
output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjpl %l1", operands);
#endif
break;
case HImode:
break;
default:
abort ();
}
}
char *
output_btst (operands, countop, dataop, insn, signpos)
rtx *operands;
rtx countop, dataop;
rtx insn;
int signpos;
{
operands[0] = countop;
operands[1] = dataop;
if (GET_CODE (countop) == CONST_INT)
{
register int count = INTVAL (countop);
/* If COUNT is bigger than size of storage unit in use,
advance to the containing unit of same size. */
if (count > signpos)
{
int offset = (count & ~signpos) / 8;
count = count & signpos;
operands[1] = dataop = adj_offsettable_operand (dataop, offset);
}
if (count == signpos)
cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
else
cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
/* These three statements used to use next_insns_test_no...
but it appears that this should do the same job. */
if (count == 31
&& next_insn_tests_no_inequality (insn))
return "tst%.l %1";
if (count == 15
&& next_insn_tests_no_inequality (insn))
return "tst%.w %1";
if (count == 7
&& next_insn_tests_no_inequality (insn))
return "tst%.b %1";
cc_status.flags = CC_NOT_NEGATIVE;
}
return "btst %0,%1";
}
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
reference and a constant. */
int
symbolic_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case CONST:
op = XEXP (op, 0);
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
#if 0 /* Deleted, with corresponding change in m68k.h,
so as to fit the specs. No CONST_DOUBLE is ever symbolic. */
case CONST_DOUBLE:
return GET_MODE (op) == mode;
#endif
default:
return 0;
}
}
/* Legitimize PIC addresses. If the address is already
position-independent, we return ORIG. Newly generated
position-independent addresses go to REG. If we need more
than one register, we lose.
An address is legitimized by making an indirect reference
through the Global Offset Table with the name of the symbol
used as an offset.
The assembler and linker are responsible for placing the
address of the symbol in the GOT. The function prologue
is responsible for initializing a5 to the starting address
of the GOT.
The assembler is also responsible for translating a symbol name
into a constant displacement from the start of the GOT.
A quick example may make things a little clearer:
When not generating PIC code to store the value 12345 into _foo
we would generate the following code:
movel #12345, _foo
When generating PIC two transformations are made. First, the compiler
loads the address of foo into a register. So the first transformation makes:
lea _foo, a0
movel #12345, a0@
The code in movsi will intercept the lea instruction and call this
routine which will transform the instructions into:
movel a5@(_foo:w), a0
movel #12345, a0@
That (in a nutshell) is how *all* symbol and label references are
handled. */
rtx
legitimize_pic_address (orig, mode, reg)
rtx orig, reg;
enum machine_mode mode;
{
rtx pic_ref = orig;
/* First handle a simple SYMBOL_REF or LABEL_REF */
if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
{
if (reg == 0)
abort ();
pic_ref = gen_rtx (MEM, Pmode,
gen_rtx (PLUS, Pmode,
pic_offset_table_rtx, orig));
current_function_uses_pic_offset_table = 1;
RTX_UNCHANGING_P (pic_ref) = 1;
emit_move_insn (reg, pic_ref);
return reg;
}
else if (GET_CODE (orig) == CONST)
{
rtx base, offset;
/* Make sure this is CONST has not already been legitimized */
if (GET_CODE (XEXP (orig, 0)) == PLUS
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
return orig;
if (reg == 0)
abort ();
/* legitimize both operands of the PLUS */
if (GET_CODE (XEXP (orig, 0)) == PLUS)
{
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
base == reg ? 0 : reg);
}
else abort ();
if (GET_CODE (orig) == CONST_INT)
return plus_constant_for_output (base, INTVAL (orig));
pic_ref = gen_rtx (PLUS, Pmode, base, orig);
/* Likewise, should we set special REG_NOTEs here? */
}
return pic_ref;
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
static char *
singlemove_string (operands)
rtx *operands;
{
#ifdef SUPPORT_SUN_FPA
if (FPA_REG_P (operands[0]) || FPA_REG_P (operands[1]))
return "fpmoves %1,%0";
#endif
if (DATA_REG_P (operands[0])
&& GET_CODE (operands[1]) == CONST_INT
&& INTVAL (operands[1]) < 128
&& INTVAL (operands[1]) >= -128)
{
#if defined (MOTOROLA) && !defined (CRDS)
return "moveq%.l %1,%0";
#else
return "moveq %1,%0";
#endif
}
if (operands[1] != const0_rtx)
return "move%.l %1,%0";
if (! ADDRESS_REG_P (operands[0]))
return "clr%.l %0";
return "sub%.l %0,%0";
}
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
char *
output_move_double (operands)
rtx *operands;
{
enum
{
REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
} optype0, optype1;
rtx latehalf[2];
rtx middlehalf[2];
rtx addreg0 = 0, addreg1 = 0;
int size = GET_MODE_SIZE (GET_MODE (operands[0]));
middlehalf[0] = 0;
middlehalf[1] = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
optype0 = POPOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
optype1 = POPOP;
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
optype1 = PUSHOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP)
abort ();
/* If one operand is decrementing and one is incrementing
decrement the former register explicitly
and change that operand into ordinary indexing. */
if (optype0 == PUSHOP && optype1 == POPOP)
{
operands[0] = XEXP (XEXP (operands[0], 0), 0);
if (size == 12)
output_asm_insn ("sub%.l %#12,%0", operands);
else
output_asm_insn ("subq%.l %#8,%0", operands);
if (GET_MODE (operands[1]) == XFmode)
operands[0] = gen_rtx (MEM, XFmode, operands[0]);
else if (GET_MODE (operands[0]) == DFmode)
operands[0] = gen_rtx (MEM, DFmode, operands[0]);
else
operands[0] = gen_rtx (MEM, DImode, operands[0]);
optype0 = OFFSOP;
}
if (optype0 == POPOP && optype1 == PUSHOP)
{
operands[1] = XEXP (XEXP (operands[1], 0), 0);
if (size == 12)
output_asm_insn ("sub%.l %#12,%1", operands);
else
output_asm_insn ("subq%.l %#8,%1", operands);
if (GET_MODE (operands[1]) == XFmode)
operands[1] = gen_rtx (MEM, XFmode, operands[1]);
else if (GET_MODE (operands[1]) == DFmode)
operands[1] = gen_rtx (MEM, DFmode, operands[1]);
else
operands[1] = gen_rtx (MEM, DImode, operands[1]);
optype1 = OFFSOP;
}
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (operands[0], 0));
if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (operands[1], 0));
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.
In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (size == 12)
{
if (optype0 == REGOP)
{
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
middlehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
}
else if (optype0 == OFFSOP)
{
middlehalf[0] = adj_offsettable_operand (operands[0], 4);
latehalf[0] = adj_offsettable_operand (operands[0], size - 4);
}
else
{
middlehalf[0] = operands[0];
latehalf[0] = operands[0];
}
if (optype1 == REGOP)
{
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
middlehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
}
else if (optype1 == OFFSOP)
{
middlehalf[1] = adj_offsettable_operand (operands[1], 4);
latehalf[1] = adj_offsettable_operand (operands[1], size - 4);
}
else if (optype1 == CNSTOP)
{
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
long l[3];
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
operands[1] = GEN_INT (l[0]);
middlehalf[1] = GEN_INT (l[1]);
latehalf[1] = GEN_INT (l[2]);
}
else if (CONSTANT_P (operands[1]))
{
/* actually, no non-CONST_DOUBLE constant should ever
appear here. */
abort ();
if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0)
latehalf[1] = constm1_rtx;
else
latehalf[1] = const0_rtx;
}
}
else
{
middlehalf[1] = operands[1];
latehalf[1] = operands[1];
}
}
else
/* size is not 12: */
{
if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], size - 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], size - 4);
else if (optype1 == CNSTOP)
split_double (operands[1], &operands[1], &latehalf[1]);
else
latehalf[1] = operands[1];
}
/* If insn is effectively movd N(sp),-(sp) then we will do the
high word first. We should use the adjusted operand 1 (which is N+4(sp))
for the low word as well, to compensate for the first decrement of sp. */
if (optype0 == PUSHOP
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
operands[1] = latehalf[1];
/* If one or both operands autodecrementing,
do the two words, high-numbered first. */
/* Likewise, the first move would clobber the source of the second one,
do them in the other order. This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
|| REGNO (operands[0]) == REGNO (latehalf[1]))))
{
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
{
if (size == 12)
output_asm_insn ("addql %#8,%0", &addreg0);
else
output_asm_insn ("addql %#4,%0", &addreg0);
}
if (addreg1)
{
if (size == 12)
output_asm_insn ("addql %#8,%0", &addreg1);
else
output_asm_insn ("addql %#4,%0", &addreg1);
}
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("subql %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("subql %#4,%0", &addreg1);
if (size == 12)
{
output_asm_insn (singlemove_string (middlehalf), middlehalf);
if (addreg0)
output_asm_insn ("subql %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("subql %#4,%0", &addreg1);
}
/* Do low-numbered word. */
return singlemove_string (operands);
}
/* Normal case: do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
/* Do the middle one of the three words for long double */
if (size == 12)
{
if (addreg0)
output_asm_insn ("addql %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("addql %#4,%0", &addreg1);
output_asm_insn (singlemove_string (middlehalf), middlehalf);
}
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("addql %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("addql %#4,%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
{
if (size == 12)
output_asm_insn ("subql %#8,%0", &addreg0);
else
output_asm_insn ("subql %#4,%0", &addreg0);
}
if (addreg1)
{
if (size == 12)
output_asm_insn ("subql %#8,%0", &addreg1);
else
output_asm_insn ("subql %#4,%0", &addreg1);
}
return "";
}
/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */
static rtx
find_addr_reg (addr)
rtx addr;
{
while (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == REG)
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 0)))
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 1)))
addr = XEXP (addr, 0);
else
abort ();
}
if (GET_CODE (addr) == REG)
return addr;
abort ();
}
/* Store in cc_status the expressions that the condition codes will
describe after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
/* On the 68000, all the insns to store in an address register fail to
set the cc's. However, in some cases these instructions can make it
possibly invalid to use the saved cc's. In those cases we clear out
some or all of the saved cc's so they won't be used. */
notice_update_cc (exp, insn)
rtx exp;
rtx insn;
{
/* If the cc is being set from the fpa and the expression is not an
explicit floating point test instruction (which has code to deal with
this), reinit the CC. */
if (((cc_status.value1 && FPA_REG_P (cc_status.value1))
|| (cc_status.value2 && FPA_REG_P (cc_status.value2)))
&& !(GET_CODE (exp) == PARALLEL
&& GET_CODE (XVECEXP (exp, 0, 0)) == SET
&& XEXP (XVECEXP (exp, 0, 0), 0) == cc0_rtx))
{
CC_STATUS_INIT;
}
else if (GET_CODE (exp) == SET)
{
if (GET_CODE (SET_SRC (exp)) == CALL)
{
CC_STATUS_INIT;
}
else if (ADDRESS_REG_P (SET_DEST (exp)))
{
if (cc_status.value1
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
cc_status.value1 = 0;
if (cc_status.value2
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
cc_status.value2 = 0;
}
else if (!FP_REG_P (SET_DEST (exp))
&& SET_DEST (exp) != cc0_rtx
&& (FP_REG_P (SET_SRC (exp))
|| GET_CODE (SET_SRC (exp)) == FIX
|| GET_CODE (SET_SRC (exp)) == FLOAT_TRUNCATE
|| GET_CODE (SET_SRC (exp)) == FLOAT_EXTEND))
{
CC_STATUS_INIT;
}
/* A pair of move insns doesn't produce a useful overall cc. */
else if (!FP_REG_P (SET_DEST (exp))
&& !FP_REG_P (SET_SRC (exp))
&& GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
&& (GET_CODE (SET_SRC (exp)) == REG
|| GET_CODE (SET_SRC (exp)) == MEM
|| GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
{
CC_STATUS_INIT;
}
else if (GET_CODE (SET_SRC (exp)) == CALL)
{
CC_STATUS_INIT;
}
else if (XEXP (exp, 0) != pc_rtx)
{
cc_status.flags = 0;
cc_status.value1 = XEXP (exp, 0);
cc_status.value2 = XEXP (exp, 1);
}
}
else if (GET_CODE (exp) == PARALLEL
&& GET_CODE (XVECEXP (exp, 0, 0)) == SET)
{
if (ADDRESS_REG_P (XEXP (XVECEXP (exp, 0, 0), 0)))
CC_STATUS_INIT;
else if (XEXP (XVECEXP (exp, 0, 0), 0) != pc_rtx)
{
cc_status.flags = 0;
cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0);
cc_status.value2 = XEXP (XVECEXP (exp, 0, 0), 1);
}
}
else
CC_STATUS_INIT;
if (cc_status.value2 != 0
&& ADDRESS_REG_P (cc_status.value2)
&& GET_MODE (cc_status.value2) == QImode)
CC_STATUS_INIT;
if (cc_status.value2 != 0
&& !(cc_status.value1 && FPA_REG_P (cc_status.value1)))
switch (GET_CODE (cc_status.value2))
{
case PLUS: case MINUS: case MULT:
case DIV: case UDIV: case MOD: case UMOD: case NEG:
case ASHIFT: case LSHIFT: case ASHIFTRT: case LSHIFTRT:
case ROTATE: case ROTATERT:
if (GET_MODE (cc_status.value2) != VOIDmode)
cc_status.flags |= CC_NO_OVERFLOW;
break;
case ZERO_EXTEND:
/* (SET r1 (ZERO_EXTEND r2)) on this machine
ends with a move insn moving r2 in r2's mode.
Thus, the cc's are set for r2.
This can set N bit spuriously. */
cc_status.flags |= CC_NOT_NEGATIVE;
}
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
&& cc_status.value2
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
cc_status.value2 = 0;
if (((cc_status.value1 && FP_REG_P (cc_status.value1))
|| (cc_status.value2 && FP_REG_P (cc_status.value2)))
&& !((cc_status.value1 && FPA_REG_P (cc_status.value1))
|| (cc_status.value2 && FPA_REG_P (cc_status.value2))))
cc_status.flags = CC_IN_68881;
}
char *
output_move_const_double (operands)
rtx *operands;
{
#ifdef SUPPORT_SUN_FPA
if (TARGET_FPA && FPA_REG_P (operands[0]))
{
int code = standard_sun_fpa_constant_p (operands[1]);
if (code != 0)
{
static char buf[40];
sprintf (buf, "fpmove%%.d %%%%%d,%%0", code & 0x1ff);
return buf;
}
return "fpmove%.d %1,%0";
}
else
#endif
{
int code = standard_68881_constant_p (operands[1]);
if (code != 0)
{
static char buf[40];
sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
return buf;
}
return "fmove%.d %1,%0";
}
}
char *
output_move_const_single (operands)
rtx *operands;
{
#ifdef SUPPORT_SUN_FPA
if (TARGET_FPA)
{
int code = standard_sun_fpa_constant_p (operands[1]);
if (code != 0)
{
static char buf[40];
sprintf (buf, "fpmove%%.s %%%%%d,%%0", code & 0x1ff);
return buf;
}
return "fpmove%.s %1,%0";
}
else
#endif /* defined SUPPORT_SUN_FPA */
{
int code = standard_68881_constant_p (operands[1]);
if (code != 0)
{
static char buf[40];
sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
return buf;
}
return "fmove%.s %f1,%0";
}
}
/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
from the "fmovecr" instruction.
The value, anded with 0xff, gives the code to use in fmovecr
to get the desired constant. */
/* This code has been fixed for cross-compilation. */
static int inited_68881_table = 0;
char *strings_68881[7] = {
"0.0",
"1.0",
"10.0",
"100.0",
"10000.0",
"1e8",
"1e16"
};
int codes_68881[7] = {
0x0f,
0x32,
0x33,
0x34,
0x35,
0x36,
0x37
};
REAL_VALUE_TYPE values_68881[7];
/* Set up values_68881 array by converting the decimal values
strings_68881 to binary. */
void
init_68881_table ()
{
int i;
REAL_VALUE_TYPE r;
enum machine_mode mode;
mode = DFmode;
for (i = 0; i < 7; i++)
{
if (i == 6)
mode = SFmode;
r = REAL_VALUE_ATOF (strings_68881[i], mode);
values_68881[i] = r;
}
inited_68881_table = 1;
}
int
standard_68881_constant_p (x)
rtx x;
{
REAL_VALUE_TYPE r;
int i;
enum machine_mode mode;
/* fmovecr must be emulated on the 68040, so it shouldn't be used at all. */
if (TARGET_68040)
return 0;
#ifndef REAL_ARITHMETIC
#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
if (! flag_pretend_float)
return 0;
#endif
#endif
if (! inited_68881_table)
init_68881_table ();
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
for (i = 0; i < 6; i++)
{
if (REAL_VALUES_EQUAL (r, values_68881[i]))
return (codes_68881[i]);
}
if (GET_MODE (x) == SFmode)
return 0;
if (REAL_VALUES_EQUAL (r, values_68881[6]))
return (codes_68881[6]);
/* larger powers of ten in the constants ram are not used
because they are not equal to a `double' C constant. */
return 0;
}
/* If X is a floating-point constant, return the logarithm of X base 2,
or 0 if X is not a power of 2. */
int
floating_exact_log2 (x)
rtx x;
{
REAL_VALUE_TYPE r, r1;
int i;
#ifndef REAL_ARITHMETIC
#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
if (! flag_pretend_float)
return 0;
#endif
#endif
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
if (REAL_VALUES_LESS (r, dconst0))
return 0;
r1 = dconst1;
i = 0;
while (REAL_VALUES_LESS (r1, r))
{
r1 = REAL_VALUE_LDEXP (dconst1, i);
if (REAL_VALUES_EQUAL (r1, r))
return i;
i = i + 1;
}
return 0;
}
#ifdef SUPPORT_SUN_FPA
/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
from the Sun FPA's constant RAM.
The value returned, anded with 0x1ff, gives the code to use in fpmove
to get the desired constant. */
static int inited_FPA_table = 0;
char *strings_FPA[38] = {
/* small rationals */
"0.0",
"1.0",
"0.5",
"-1.0",
"2.0",
"3.0",
"4.0",
"8.0",
"0.25",
"0.125",
"10.0",
"-0.5",
/* Decimal equivalents of double precision values */
"2.718281828459045091", /* D_E */
"6.283185307179586477", /* 2 pi */
"3.141592653589793116", /* D_PI */
"1.570796326794896619", /* pi/2 */
"1.414213562373095145", /* D_SQRT2 */
"0.7071067811865475244", /* 1/sqrt(2) */
"-1.570796326794896619", /* -pi/2 */
"1.442695040888963387", /* D_LOG2ofE */
"3.321928024887362182", /* D_LOG2of10 */
"0.6931471805599452862", /* D_LOGEof2 */
"2.302585092994045901", /* D_LOGEof10 */
"0.3010299956639811980", /* D_LOG10of2 */
"0.4342944819032518167", /* D_LOG10ofE */
/* Decimal equivalents of single precision values */
"2.718281745910644531", /* S_E */
"6.283185307179586477", /* 2 pi */
"3.141592741012573242", /* S_PI */
"1.570796326794896619", /* pi/2 */
"1.414213538169860840", /* S_SQRT2 */
"0.7071067811865475244", /* 1/sqrt(2) */
"-1.570796326794896619", /* -pi/2 */
"1.442695021629333496", /* S_LOG2ofE */
"3.321928024291992188", /* S_LOG2of10 */
"0.6931471824645996094", /* S_LOGEof2 */
"2.302585124969482442", /* S_LOGEof10 */
"0.3010300099849700928", /* S_LOG10of2 */
"0.4342944920063018799", /* S_LOG10ofE */
};
int codes_FPA[38] = {
/* small rationals */
0x200,
0xe,
0xf,
0x10,
0x11,
0xb1,
0x12,
0x13,
0x15,
0x16,
0x17,
0x2e,
/* double precision */
0x8,
0x9,
0xa,
0xb,
0xc,
0xd,
0x27,
0x28,
0x29,
0x2a,
0x2b,
0x2c,
0x2d,
/* single precision */
0x8,
0x9,
0xa,
0xb,
0xc,
0xd,
0x27,
0x28,
0x29,
0x2a,
0x2b,
0x2c,
0x2d
};
REAL_VALUE_TYPE values_FPA[38];
/* This code has been fixed for cross-compilation. */
void
init_FPA_table ()
{
enum machine_mode mode;
int i;
REAL_VALUE_TYPE r;
mode = DFmode;
for (i = 0; i < 38; i++)
{
if (i == 25)
mode = SFmode;
r = REAL_VALUE_ATOF (strings_FPA[i], mode);
values_FPA[i] = r;
}
inited_FPA_table = 1;
}
int
standard_sun_fpa_constant_p (x)
rtx x;
{
REAL_VALUE_TYPE r;
int i;
#ifndef REAL_ARITHMETIC
#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
if (! flag_pretend_float)
return 0;
#endif
#endif
if (! inited_FPA_table)
init_FPA_table ();
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
for (i=0; i<12; i++)
{
if (REAL_VALUES_EQUAL (r, values_FPA[i]))
return (codes_FPA[i]);
}
if (GET_MODE (x) == SFmode)
{
for (i=25; i<38; i++)
{
if (REAL_VALUES_EQUAL (r, values_FPA[i]))
return (codes_FPA[i]);
}
}
else
{
for (i=12; i<25; i++)
{
if (REAL_VALUES_EQUAL (r, values_FPA[i]))
return (codes_FPA[i]);
}
}
return 0x0;
}
#endif /* define SUPPORT_SUN_FPA */
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand X. X is an RTL
expression.
CODE is a value that can be used to specify one of several ways
of printing the operand. It is used when identical operands
must be printed differently depending on the context. CODE
comes from the `%' specification that was used to request
printing of the operand. If the specification was just `%DIGIT'
then CODE is 0; if the specification was `%LTR DIGIT' then CODE
is the ASCII code for LTR.
If X is a register, this macro should print the register's name.
The names can be found in an array `reg_names' whose type is
`char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
When the machine description has a specification `%PUNCT' (a `%'
followed by a punctuation character), this macro is called with
a null pointer for X and the punctuation character for CODE.
The m68k specific codes are:
'.' for dot needed in Motorola-style opcode names.
'-' for an operand pushing on the stack:
sp@-, -(sp) or -(%sp) depending on the style of syntax.
'+' for an operand pushing on the stack:
sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
'@' for a reference to the top word on the stack:
sp@, (sp) or (%sp) depending on the style of syntax.
'#' for an immediate operand prefix (# in MIT and Motorola syntax
but & in SGS syntax).
'!' for the cc register (used in an `and to cc' insn).
'$' for the letter `s' in an op code, but only on the 68040.
'&' for the letter `d' in an op code, but only on the 68040.
'/' for register prefix needed by longlong.h.
'b' for byte insn (no effect, on the Sun; this is for the ISI).
'd' to force memory addressing to be absolute, not relative.
'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
than directly). Second part of 'y' below.
'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
or print pair of registers as rx:ry.
'y' for a FPA insn (print pair of registers as rx:ry). This also outputs
CONST_DOUBLE's as SunFPA constant RAM registers if
possible, so it should not be used except for the SunFPA.
*/
void
print_operand (file, op, letter)
FILE *file; /* file to write to */
rtx op; /* operand to print */
int letter; /* %<letter> or 0 */
{
int i;
if (letter == '.')
{
#ifdef MOTOROLA
asm_fprintf (file, ".");
#endif
}
else if (letter == '#')
{
asm_fprintf (file, "%0I");
}
else if (letter == '-')
{
#ifdef MOTOROLA
asm_fprintf (file, "-(%Rsp)");
#else
asm_fprintf (file, "%Rsp@-");
#endif
}
else if (letter == '+')
{
#ifdef MOTOROLA
asm_fprintf (file, "(%Rsp)+");
#else
asm_fprintf (file, "%Rsp@+");
#endif
}
else if (letter == '@')
{
#ifdef MOTOROLA
asm_fprintf (file, "(%Rsp)");
#else
asm_fprintf (file, "%Rsp@");
#endif
}
else if (letter == '!')
{
asm_fprintf (file, "%Rfpcr");
}
else if (letter == '$')
{
if (TARGET_68040_ONLY)
{
fprintf (file, "s");
}
}
else if (letter == '&')
{
if (TARGET_68040_ONLY)
{
fprintf (file, "d");
}
}
else if (letter == '/')
{
asm_fprintf (file, "%R");
}
else if (GET_CODE (op) == REG)
{
if (REGNO (op) < 16
&& (letter == 'y' || letter == 'x')
&& GET_MODE (op) == DFmode)
{
fprintf (file, "%s:%s", reg_names[REGNO (op)],
reg_names[REGNO (op)+1]);
}
else
{
fprintf (file, "%s", reg_names[REGNO (op)]);
}
}
else if (GET_CODE (op) == MEM)
{
output_address (XEXP (op, 0));
if (letter == 'd' && ! TARGET_68020
&& CONSTANT_ADDRESS_P (XEXP (op, 0))
&& !(GET_CODE (XEXP (op, 0)) == CONST_INT
&& INTVAL (XEXP (op, 0)) < 0x8000
&& INTVAL (XEXP (op, 0)) >= -0x8000))
{
fprintf (file, ":l");
}
}
#ifdef SUPPORT_SUN_FPA
else if ((letter == 'y' || letter == 'w')
&& GET_CODE (op) == CONST_DOUBLE
&& (i = standard_sun_fpa_constant_p (op)))
{
fprintf (file, "%%%d", i & 0x1ff);
}
#endif
else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
ASM_OUTPUT_FLOAT_OPERAND (letter, file, r);
}
else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
ASM_OUTPUT_LONG_DOUBLE_OPERAND (file, r);
}
else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
ASM_OUTPUT_DOUBLE_OPERAND (file, r);
}
else
{
asm_fprintf (file, "%0I"); output_addr_const (file, op);
}
}
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. ADDR is an RTL expression.
Note that this contains a kludge that knows that the only reason
we have an address (plus (label_ref...) (reg...)) when not generating
PIC code is in the insn before a tablejump, and we know that m68k.md
generates a label LInnn: on such an insn.
It is possible for PIC to generate a (plus (label_ref...) (reg...))
and we handle that just like we would a (plus (symbol_ref...) (reg...)).
Some SGS assemblers have a bug such that "Lnnn-LInnn-2.b(pc,d0.l*2)"
fails to assemble. Luckily "Lnnn(pc,d0.l*2)" produces the results
we want. This difference can be accommodated by using an assembler
define such "LDnnn" to be either "Lnnn-LInnn-2.b", "Lnnn", or any other
string, as necessary. This is accomplished via the ASM_OUTPUT_CASE_END
macro. See m68k/sgs.h for an example; for versions without the bug.
They also do not like things like "pea 1.w", so we simple leave off
the .w on small constants.
This routine is responsible for distinguishing between -fpic and -fPIC
style relocations in an address. When generating -fpic code the
offset is output in word mode (eg movel a5@(_foo:w), a0). When generating
-fPIC code the offset is output in long mode (eg movel a5@(_foo:l), a0) */
void
print_operand_address (file, addr)
FILE *file;
rtx addr;
{
register rtx reg1, reg2, breg, ireg;
rtx offset;
switch (GET_CODE (addr))
{
case REG:
#ifdef MOTOROLA
fprintf (file, "(%s)", reg_names[REGNO (addr)]);
#else
fprintf (file, "%s@", reg_names[REGNO (addr)]);
#endif
break;
case PRE_DEC:
#ifdef MOTOROLA
fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
#else
fprintf (file, "%s@-", reg_names[REGNO (XEXP (addr, 0))]);
#endif
break;
case POST_INC:
#ifdef MOTOROLA
fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
#else
fprintf (file, "%s@+", reg_names[REGNO (XEXP (addr, 0))]);
#endif
break;
case PLUS:
reg1 = reg2 = ireg = breg = offset = 0;
if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
{
offset = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
{
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) != PLUS)
{
;
}
else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == MULT)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == MULT)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == REG)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == REG)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT
|| GET_CODE (addr) == SIGN_EXTEND)
{
if (reg1 == 0)
{
reg1 = addr;
}
else
{
reg2 = addr;
}
addr = 0;
}
#if 0 /* for OLD_INDEXING */
else if (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
{
reg2 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == REG)
{
reg2 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
}
#endif
if (offset != 0)
{
if (addr != 0)
{
abort ();
}
addr = offset;
}
if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND
|| GET_CODE (reg1) == MULT))
|| (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
{
breg = reg2;
ireg = reg1;
}
else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
{
breg = reg1;
ireg = reg2;
}
if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF
&& ! (flag_pic && ireg == pic_offset_table_rtx))
{
int scale = 1;
if (GET_CODE (ireg) == MULT)
{
scale = INTVAL (XEXP (ireg, 1));
ireg = XEXP (ireg, 0);
}
if (GET_CODE (ireg) == SIGN_EXTEND)
{
#ifdef MOTOROLA
#ifdef SGS
asm_fprintf (file, "%LLD%d(%Rpc,%s.w",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (XEXP (ireg, 0))]);
#else
asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.w",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (XEXP (ireg, 0))]);
#endif
#else
asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:w",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (XEXP (ireg, 0))]);
#endif
}
else
{
#ifdef MOTOROLA
#ifdef SGS
asm_fprintf (file, "%LLD%d(%Rpc,%s.l",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (ireg)]);
#else
asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.l",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (ireg)]);
#endif
#else
asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:l",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (ireg)]);
#endif
}
if (scale != 1)
{
#ifdef MOTOROLA
fprintf (file, "*%d", scale);
#else
fprintf (file, ":%d", scale);
#endif
}
putc (')', file);
break;
}
if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF
&& ! (flag_pic && breg == pic_offset_table_rtx))
{
#ifdef MOTOROLA
#ifdef SGS
asm_fprintf (file, "%LLD%d(%Rpc,%s.l",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (breg)]);
#else
asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.l",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (breg)]);
#endif
#else
asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:l",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (breg)]);
#endif
putc (')', file);
break;
}
if (ireg != 0 || breg != 0)
{
int scale = 1;
if (breg == 0)
{
abort ();
}
if (! flag_pic && addr && GET_CODE (addr) == LABEL_REF)
{
abort ();
}
#ifdef MOTOROLA
if (addr != 0)
{
output_addr_const (file, addr);
if (flag_pic && (breg == pic_offset_table_rtx))
fprintf (file, "@GOT");
}
fprintf (file, "(%s", reg_names[REGNO (breg)]);
if (ireg != 0)
{
putc (',', file);
}
#else
fprintf (file, "%s@(", reg_names[REGNO (breg)]);
if (addr != 0)
{
output_addr_const (file, addr);
if ((flag_pic == 1) && (breg == pic_offset_table_rtx))
fprintf (file, ":w");
if ((flag_pic == 2) && (breg == pic_offset_table_rtx))
fprintf (file, ":l");
}
if (addr != 0 && ireg != 0)
{
putc (',', file);
}
#endif
if (ireg != 0 && GET_CODE (ireg) == MULT)
{
scale = INTVAL (XEXP (ireg, 1));
ireg = XEXP (ireg, 0);
}
if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND)
{
#ifdef MOTOROLA
fprintf (file, "%s.w", reg_names[REGNO (XEXP (ireg, 0))]);
#else
fprintf (file, "%s:w", reg_names[REGNO (XEXP (ireg, 0))]);
#endif
}
else if (ireg != 0)
{
#ifdef MOTOROLA
fprintf (file, "%s.l", reg_names[REGNO (ireg)]);
#else
fprintf (file, "%s:l", reg_names[REGNO (ireg)]);
#endif
}
if (scale != 1)
{
#ifdef MOTOROLA
fprintf (file, "*%d", scale);
#else
fprintf (file, ":%d", scale);
#endif
}
putc (')', file);
break;
}
else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF
&& ! (flag_pic && reg1 == pic_offset_table_rtx))
{
#ifdef MOTOROLA
#ifdef SGS
asm_fprintf (file, "%LLD%d(%Rpc,%s.l)",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (reg1)]);
#else
asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.l)",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (reg1)]);
#endif
#else
asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:l)",
CODE_LABEL_NUMBER (XEXP (addr, 0)),
CODE_LABEL_NUMBER (XEXP (addr, 0)),
reg_names[REGNO (reg1)]);
#endif
break;
}
/* FALL-THROUGH (is this really what we want? */
default:
if (GET_CODE (addr) == CONST_INT
&& INTVAL (addr) < 0x8000
&& INTVAL (addr) >= -0x8000)
{
#ifdef MOTOROLA
#ifdef SGS
/* Many SGS assemblers croak on size specifiers for constants. */
fprintf (file, "%d", INTVAL (addr));
#else
fprintf (file, "%d.w", INTVAL (addr));
#endif
#else
fprintf (file, "%d:w", INTVAL (addr));
#endif
}
else
{
output_addr_const (file, addr);
}
break;
}
}
/* Check for cases where a clr insns can be omitted from code using
strict_low_part sets. For example, the second clrl here is not needed:
clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
insn we are checking for redundancy. TARGET is the register set by the
clear insn. */
int
strict_low_part_peephole_ok (mode, first_insn, target)
enum machine_mode mode;
rtx first_insn;
rtx target;
{
rtx p;
p = prev_nonnote_insn (first_insn);
while (p)
{
/* If it isn't an insn, then give up. */
if (GET_CODE (p) != INSN)
return 0;
if (reg_set_p (target, p))
{
rtx set = single_set (p);
rtx dest;
/* If it isn't an easy to recognize insn, then give up. */
if (! set)
return 0;
dest = SET_DEST (set);
/* If this sets the entire target register to zero, then our
first_insn is redundant. */
if (rtx_equal_p (dest, target)
&& SET_SRC (set) == const0_rtx)
return 1;
else if (GET_CODE (dest) == STRICT_LOW_PART
&& GET_CODE (XEXP (dest, 0)) == REG
&& REGNO (XEXP (dest, 0)) == REGNO (target)
&& (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
<= GET_MODE_SIZE (mode)))
/* This is a strict low part set which modifies less than
we are using, so it is safe. */
;
else
return 0;
}
p = prev_nonnote_insn (p);
}
return 0;
}