NetBSD/sys/net/npf/npf_nat.c

881 lines
23 KiB
C

/* $NetBSD: npf_nat.c,v 1.21 2013/10/29 16:39:10 rmind Exp $ */
/*-
* Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NPF network address port translation (NAPT) and other forms of NAT.
* Described in RFC 2663, RFC 3022, etc.
*
* Overview
*
* There are few mechanisms: NAT policy, port map and translation.
* NAT module has a separate ruleset, where rules contain associated
* NAT policy, thus flexible filter criteria can be used.
*
* Translation types
*
* There are two types of translation: outbound (NPF_NATOUT) and
* inbound (NPF_NATIN). It should not be confused with connection
* direction.
*
* Outbound NAT rewrites:
* - Source on "forwards" stream.
* - Destination on "backwards" stream.
* Inbound NAT rewrites:
* - Destination on "forwards" stream.
* - Source on "backwards" stream.
*
* It should be noted that bi-directional NAT is a combined outbound
* and inbound translation, therefore constructed as two policies.
*
* NAT policies and port maps
*
* NAT (translation) policy is applied when a packet matches the rule.
* Apart from filter criteria, NAT policy has a translation IP address
* and associated port map. Port map is a bitmap used to reserve and
* use unique TCP/UDP ports for translation. Port maps are unique to
* the IP addresses, therefore multiple NAT policies with the same IP
* will share the same port map.
*
* Sessions, translation entries and their life-cycle
*
* NAT module relies on session management module. Each translated
* session has an associated translation entry (npf_nat_t), which
* contains information used for backwards stream translation, i.e.
* original IP address with port and translation port, allocated from
* the port map. Each NAT entry is associated with the policy, which
* contains translation IP address. Allocated port is returned to the
* port map and NAT entry is destroyed when session expires.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.21 2013/10/29 16:39:10 rmind Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/bitops.h>
#include <sys/condvar.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/cprng.h>
#include <net/pfil.h>
#include <netinet/in.h>
#include "npf_impl.h"
/*
* NPF portmap structure.
*/
typedef struct {
u_int p_refcnt;
uint32_t p_bitmap[0];
} npf_portmap_t;
/* Portmap range: [ 1024 .. 65535 ] */
#define PORTMAP_FIRST (1024)
#define PORTMAP_SIZE ((65536 - PORTMAP_FIRST) / 32)
#define PORTMAP_FILLED ((uint32_t)~0)
#define PORTMAP_MASK (31)
#define PORTMAP_SHIFT (5)
#define PORTMAP_MEM_SIZE \
(sizeof(npf_portmap_t) + (PORTMAP_SIZE * sizeof(uint32_t)))
/*
* NAT policy structure.
*/
struct npf_natpolicy {
LIST_HEAD(, npf_nat) n_nat_list;
volatile u_int n_refcnt;
kmutex_t n_lock;
kcondvar_t n_cv;
npf_portmap_t * n_portmap;
/* NPF_NP_CMP_START */
int n_type;
u_int n_flags;
size_t n_addr_sz;
npf_addr_t n_taddr;
in_port_t n_tport;
};
#define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
#define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
/*
* NAT translation entry for a session.
*/
struct npf_nat {
/* Association (list entry and a link pointer) with NAT policy. */
LIST_ENTRY(npf_nat) nt_entry;
npf_natpolicy_t * nt_natpolicy;
npf_session_t * nt_session;
/* Original address and port (for backwards translation). */
npf_addr_t nt_oaddr;
in_port_t nt_oport;
/* Translation port (for redirects). */
in_port_t nt_tport;
/* ALG (if any) associated with this NAT entry. */
npf_alg_t * nt_alg;
uintptr_t nt_alg_arg;
};
static pool_cache_t nat_cache __read_mostly;
/*
* npf_nat_sys{init,fini}: initialise/destroy NAT subsystem structures.
*/
void
npf_nat_sysinit(void)
{
nat_cache = pool_cache_init(sizeof(npf_nat_t), coherency_unit,
0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
KASSERT(nat_cache != NULL);
}
void
npf_nat_sysfini(void)
{
/* NAT policies should already be destroyed. */
pool_cache_destroy(nat_cache);
}
/*
* npf_nat_newpolicy: create a new NAT policy.
*
* => Shares portmap if policy is on existing translation address.
* => XXX: serialise at upper layer.
*/
npf_natpolicy_t *
npf_nat_newpolicy(prop_dictionary_t natdict, npf_ruleset_t *nrlset)
{
npf_natpolicy_t *np;
prop_object_t obj;
npf_portmap_t *pm;
np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
/* Translation type and flags. */
prop_dictionary_get_int32(natdict, "type", &np->n_type);
prop_dictionary_get_uint32(natdict, "flags", &np->n_flags);
/* Should be exclusively either inbound or outbound NAT. */
if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
kmem_free(np, sizeof(npf_natpolicy_t));
return NULL;
}
mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
cv_init(&np->n_cv, "npfnatcv");
LIST_INIT(&np->n_nat_list);
/* Translation IP. */
obj = prop_dictionary_get(natdict, "translation-ip");
np->n_addr_sz = prop_data_size(obj);
KASSERT(np->n_addr_sz > 0 && np->n_addr_sz <= sizeof(npf_addr_t));
memcpy(&np->n_taddr, prop_data_data_nocopy(obj), np->n_addr_sz);
/* Translation port (for redirect case). */
prop_dictionary_get_uint16(natdict, "translation-port", &np->n_tport);
/* Determine if port map is needed. */
np->n_portmap = NULL;
if ((np->n_flags & NPF_NAT_PORTMAP) == 0) {
/* No port map. */
return np;
}
/*
* Inspect NAT policies in the ruleset for port map sharing.
* Note that npf_ruleset_sharepm() will increase the reference count.
*/
if (!npf_ruleset_sharepm(nrlset, np)) {
/* Allocate a new port map for the NAT policy. */
pm = kmem_zalloc(PORTMAP_MEM_SIZE, KM_SLEEP);
pm->p_refcnt = 1;
KASSERT((uintptr_t)pm->p_bitmap == (uintptr_t)pm + sizeof(*pm));
np->n_portmap = pm;
} else {
KASSERT(np->n_portmap != NULL);
}
return np;
}
/*
* npf_nat_freepolicy: free NAT policy and, on last reference, free portmap.
*
* => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
*/
void
npf_nat_freepolicy(npf_natpolicy_t *np)
{
npf_portmap_t *pm = np->n_portmap;
npf_session_t *se;
npf_nat_t *nt;
/* De-associate all entries from the policy. */
mutex_enter(&np->n_lock);
LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
se = nt->nt_session; /* XXXSMP */
if (se == NULL) {
continue;
}
npf_session_expire(se);
}
while (!LIST_EMPTY(&np->n_nat_list)) {
cv_wait(&np->n_cv, &np->n_lock);
}
mutex_exit(&np->n_lock);
/* Kick the worker - all references should be going away. */
npf_worker_signal();
while (np->n_refcnt) {
kpause("npfgcnat", false, 1, NULL);
}
/* Destroy the port map, on last reference. */
if (pm && --pm->p_refcnt == 0) {
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
kmem_free(pm, PORTMAP_MEM_SIZE);
}
cv_destroy(&np->n_cv);
mutex_destroy(&np->n_lock);
kmem_free(np, sizeof(npf_natpolicy_t));
}
void
npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
{
npf_nat_t *nt;
mutex_enter(&np->n_lock);
LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
if (nt->nt_alg != alg) {
continue;
}
nt->nt_alg = NULL;
}
mutex_exit(&np->n_lock);
}
/*
* npf_nat_matchpolicy: compare two NAT policies.
*
* => Return 0 on match, and non-zero otherwise.
*/
bool
npf_nat_matchpolicy(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
{
void *np_raw, *mnp_raw;
/*
* Compare the relevant NAT policy information (in raw form),
* which is enough for matching criterion.
*/
KASSERT(np && mnp && np != mnp);
np_raw = (uint8_t *)np + NPF_NP_CMP_START;
mnp_raw = (uint8_t *)mnp + NPF_NP_CMP_START;
return (memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0);
}
bool
npf_nat_sharepm(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
{
npf_portmap_t *pm, *mpm;
KASSERT(np && mnp && np != mnp);
/* Using port map and having equal translation address? */
if ((np->n_flags & mnp->n_flags & NPF_NAT_PORTMAP) == 0) {
return false;
}
if (np->n_addr_sz != mnp->n_addr_sz) {
return false;
}
if (memcmp(&np->n_taddr, &mnp->n_taddr, np->n_addr_sz) != 0) {
return false;
}
/* If NAT policy has an old port map - drop the reference. */
mpm = mnp->n_portmap;
if (mpm) {
/* Note: at this point we cannot hold a last reference. */
KASSERT(mpm->p_refcnt > 1);
mpm->p_refcnt--;
}
/* Share the port map. */
pm = np->n_portmap;
mnp->n_portmap = pm;
pm->p_refcnt++;
return true;
}
/*
* npf_nat_getport: allocate and return a port in the NAT policy portmap.
*
* => Returns in network byte-order.
* => Zero indicates failure.
*/
static in_port_t
npf_nat_getport(npf_natpolicy_t *np)
{
npf_portmap_t *pm = np->n_portmap;
u_int n = PORTMAP_SIZE, idx, bit;
uint32_t map, nmap;
idx = cprng_fast32() % PORTMAP_SIZE;
for (;;) {
KASSERT(idx < PORTMAP_SIZE);
map = pm->p_bitmap[idx];
if (__predict_false(map == PORTMAP_FILLED)) {
if (n-- == 0) {
/* No space. */
return 0;
}
/* This bitmap is filled, next. */
idx = (idx ? idx : PORTMAP_SIZE) - 1;
continue;
}
bit = ffs32(~map) - 1;
nmap = map | (1 << bit);
if (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map) {
/* Success. */
break;
}
}
return htons(PORTMAP_FIRST + (idx << PORTMAP_SHIFT) + bit);
}
/*
* npf_nat_takeport: allocate specific port in the NAT policy portmap.
*/
static bool
npf_nat_takeport(npf_natpolicy_t *np, in_port_t port)
{
npf_portmap_t *pm = np->n_portmap;
uint32_t map, nmap;
u_int idx, bit;
port = ntohs(port) - PORTMAP_FIRST;
idx = port >> PORTMAP_SHIFT;
bit = port & PORTMAP_MASK;
map = pm->p_bitmap[idx];
nmap = map | (1 << bit);
if (map == nmap) {
/* Already taken. */
return false;
}
return atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map;
}
/*
* npf_nat_putport: return port as available in the NAT policy portmap.
*
* => Port should be in network byte-order.
*/
static void
npf_nat_putport(npf_natpolicy_t *np, in_port_t port)
{
npf_portmap_t *pm = np->n_portmap;
uint32_t map, nmap;
u_int idx, bit;
port = ntohs(port) - PORTMAP_FIRST;
idx = port >> PORTMAP_SHIFT;
bit = port & PORTMAP_MASK;
do {
map = pm->p_bitmap[idx];
KASSERT(map | (1 << bit));
nmap = map & ~(1 << bit);
} while (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) != map);
}
/*
* npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
*
* => Acquire a reference on the policy, if found.
*/
static npf_natpolicy_t *
npf_nat_inspect(npf_cache_t *npc, nbuf_t *nbuf, const int di)
{
int slock = npf_config_read_enter();
npf_ruleset_t *rlset = npf_config_natset();
npf_natpolicy_t *np;
npf_rule_t *rl;
rl = npf_ruleset_inspect(npc, nbuf, rlset, di, NPF_LAYER_3);
if (rl == NULL) {
npf_config_read_exit(slock);
return NULL;
}
np = npf_rule_getnat(rl);
atomic_inc_uint(&np->n_refcnt);
npf_config_read_exit(slock);
return np;
}
/*
* npf_nat_create: create a new NAT translation entry.
*/
static npf_nat_t *
npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np)
{
const int proto = npc->npc_proto;
npf_nat_t *nt;
KASSERT(npf_iscached(npc, NPC_IP46));
KASSERT(npf_iscached(npc, NPC_LAYER4));
/* New NAT association. */
nt = pool_cache_get(nat_cache, PR_NOWAIT);
if (nt == NULL){
return NULL;
}
npf_stats_inc(NPF_STAT_NAT_CREATE);
nt->nt_natpolicy = np;
nt->nt_session = NULL;
nt->nt_alg = NULL;
/* Save the original address which may be rewritten. */
if (np->n_type == NPF_NATOUT) {
/* Source (local) for Outbound NAT. */
memcpy(&nt->nt_oaddr, npc->npc_srcip, npc->npc_alen);
} else {
/* Destination (external) for Inbound NAT. */
KASSERT(np->n_type == NPF_NATIN);
memcpy(&nt->nt_oaddr, npc->npc_dstip, npc->npc_alen);
}
/*
* Port translation, if required, and if it is TCP/UDP.
*/
if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
(proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
nt->nt_oport = 0;
nt->nt_tport = 0;
goto out;
}
/* Save the relevant TCP/UDP port. */
if (proto == IPPROTO_TCP) {
const struct tcphdr *th = npc->npc_l4.tcp;
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
th->th_sport : th->th_dport;
} else {
const struct udphdr *uh = npc->npc_l4.udp;
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
uh->uh_sport : uh->uh_dport;
}
/* Get a new port for translation. */
if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
nt->nt_tport = npf_nat_getport(np);
} else {
nt->nt_tport = np->n_tport;
}
out:
mutex_enter(&np->n_lock);
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
mutex_exit(&np->n_lock);
return nt;
}
/*
* npf_nat_translate: perform address and/or port translation.
*/
int
npf_nat_translate(npf_cache_t *npc, nbuf_t *nbuf, npf_nat_t *nt,
const bool forw, const int di)
{
const int proto = npc->npc_proto;
const npf_natpolicy_t *np = nt->nt_natpolicy;
const npf_addr_t *addr;
in_port_t port;
KASSERT(npf_iscached(npc, NPC_IP46));
KASSERT(npf_iscached(npc, NPC_LAYER4));
if (forw) {
/* "Forwards" stream: use translation address/port. */
addr = &np->n_taddr;
port = nt->nt_tport;
} else {
/* "Backwards" stream: use original address/port. */
addr = &nt->nt_oaddr;
port = nt->nt_oport;
}
KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
/* Process delayed checksums (XXX: NetBSD). */
if (nbuf_cksum_barrier(nbuf, di)) {
npf_recache(npc, nbuf);
}
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
/* Execute ALG hook first. */
if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
npc->npc_info |= NPC_ALG_EXEC;
npf_alg_exec(npc, nbuf, nt, di);
}
/*
* Rewrite IP and/or TCP/UDP checksums first, since it will use
* the cache containing original values for checksum calculation.
*/
if (!npf_rwrcksum(npc, di, addr, port)) {
return EINVAL;
}
/*
* Address translation: rewrite source/destination address, depending
* on direction (PFIL_OUT - for source, PFIL_IN - for destination).
*/
if (!npf_rwrip(npc, di, addr)) {
return EINVAL;
}
if ((np->n_flags & NPF_NAT_PORTS) == 0) {
/* Done. */
return 0;
}
switch (proto) {
case IPPROTO_TCP:
case IPPROTO_UDP:
KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
/* Rewrite source/destination port. */
if (!npf_rwrport(npc, di, port)) {
return EINVAL;
}
break;
case IPPROTO_ICMP:
KASSERT(npf_iscached(npc, NPC_ICMP));
/* Nothing. */
break;
default:
return ENOTSUP;
}
return 0;
}
/*
* npf_do_nat:
* - Inspect packet for a NAT policy, unless a session with a NAT
* association already exists. In such case, determine whether it
* is a "forwards" or "backwards" stream.
* - Perform translation: rewrite source or destination fields,
* depending on translation type and direction.
* - Associate a NAT policy with a session (may establish a new).
*/
int
npf_do_nat(npf_cache_t *npc, npf_session_t *se, nbuf_t *nbuf, const int di)
{
npf_session_t *nse = NULL;
npf_natpolicy_t *np;
npf_nat_t *nt;
int error;
bool forw, new;
/* All relevant IPv4 data should be already cached. */
if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
return 0;
}
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
/*
* Return the NAT entry associated with the session, if any.
* Determines whether the stream is "forwards" or "backwards".
* Note: no need to lock, since reference on session is held.
*/
if (se && (nt = npf_session_retnat(se, di, &forw)) != NULL) {
np = nt->nt_natpolicy;
new = false;
goto translate;
}
/*
* Inspect the packet for a NAT policy, if there is no session.
* Note: acquires a reference if found.
*/
np = npf_nat_inspect(npc, nbuf, di);
if (np == NULL) {
/* If packet does not match - done. */
return 0;
}
forw = true;
/*
* Create a new NAT entry (not yet associated with any session).
* We will consume the reference on success (release on error).
*/
nt = npf_nat_create(npc, np);
if (nt == NULL) {
atomic_dec_uint(&np->n_refcnt);
return ENOMEM;
}
new = true;
/* Determine whether any ALG matches. */
if (npf_alg_match(npc, nbuf, nt, di)) {
KASSERT(nt->nt_alg != NULL);
}
/*
* If there is no local session (no "stateful" rule - unusual, but
* possible configuration), establish one before translation. Note
* that it is not a "pass" session, therefore passing of "backwards"
* stream depends on other, stateless filtering rules.
*/
if (se == NULL) {
nse = npf_session_establish(npc, nbuf, di);
if (nse == NULL) {
error = ENOMEM;
goto out;
}
se = nse;
}
translate:
/* Perform the translation. */
error = npf_nat_translate(npc, nbuf, nt, forw, di);
if (error) {
goto out;
}
if (__predict_false(new)) {
/*
* Associate NAT translation entry with the session.
* Note: packet now has a translated address in the cache.
*/
nt->nt_session = se;
error = npf_session_setnat(se, nt, np->n_type);
out:
if (error) {
/* If session was for NAT only - expire it. */
if (nse) {
npf_session_expire(nse);
}
/* Will free the structure and return the port. */
npf_nat_expire(nt);
}
if (nse) {
npf_session_release(nse);
}
}
return error;
}
/*
* npf_nat_gettrans: return translation IP address and port.
*/
void
npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
{
npf_natpolicy_t *np = nt->nt_natpolicy;
*addr = &np->n_taddr;
*port = nt->nt_tport;
}
/*
* npf_nat_getorig: return original IP address and port from translation entry.
*/
void
npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
{
*addr = &nt->nt_oaddr;
*port = nt->nt_oport;
}
/*
* npf_nat_setalg: associate an ALG with the NAT entry.
*/
void
npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
{
nt->nt_alg = alg;
nt->nt_alg_arg = arg;
}
/*
* npf_nat_expire: free NAT-related data structures on session expiration.
*/
void
npf_nat_expire(npf_nat_t *nt)
{
npf_natpolicy_t *np = nt->nt_natpolicy;
/* Return any taken port to the portmap. */
if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
npf_nat_putport(np, nt->nt_tport);
}
/* Remove NAT entry from the list, notify any waiters if last entry. */
mutex_enter(&np->n_lock);
LIST_REMOVE(nt, nt_entry);
if (LIST_EMPTY(&np->n_nat_list)) {
cv_broadcast(&np->n_cv);
}
atomic_dec_uint(&np->n_refcnt);
mutex_exit(&np->n_lock);
/* Free structure, increase the counter. */
pool_cache_put(nat_cache, nt);
npf_stats_inc(NPF_STAT_NAT_DESTROY);
}
/*
* npf_nat_save: construct NAT entry and reference to the NAT policy.
*/
int
npf_nat_save(prop_dictionary_t sedict, prop_array_t natlist, npf_nat_t *nt)
{
npf_natpolicy_t *np = nt->nt_natpolicy;
prop_object_iterator_t it;
prop_dictionary_t npdict;
prop_data_t nd, npd;
uint64_t itnp;
/* Set NAT entry data. */
nd = prop_data_create_data(nt, sizeof(npf_nat_t));
prop_dictionary_set(sedict, "nat-data", nd);
prop_object_release(nd);
/* Find or create a NAT policy. */
it = prop_array_iterator(natlist);
while ((npdict = prop_object_iterator_next(it)) != NULL) {
CTASSERT(sizeof(uintptr_t) <= sizeof(uint64_t));
prop_dictionary_get_uint64(npdict, "id-ptr", &itnp);
if ((uintptr_t)itnp == (uintptr_t)np) {
break;
}
}
if (npdict == NULL) {
/* Create NAT policy dictionary and copy the data. */
npdict = prop_dictionary_create();
npd = prop_data_create_data(np, sizeof(npf_natpolicy_t));
prop_dictionary_set(npdict, "nat-policy-data", npd);
prop_object_release(npd);
CTASSERT(sizeof(uintptr_t) <= sizeof(uint64_t));
prop_dictionary_set_uint64(npdict, "id-ptr", (uintptr_t)np);
prop_array_add(natlist, npdict);
prop_object_release(npdict);
}
prop_dictionary_set(sedict, "nat-policy", npdict);
prop_object_release(npdict);
return 0;
}
/*
* npf_nat_restore: find a matching NAT policy and restore NAT entry.
*
* => Caller should lock the active NAT ruleset.
*/
npf_nat_t *
npf_nat_restore(prop_dictionary_t sedict, npf_session_t *se)
{
const npf_natpolicy_t *onp;
const npf_nat_t *ntraw;
prop_object_t obj;
npf_natpolicy_t *np;
npf_rule_t *rl;
npf_nat_t *nt;
/* Get raw NAT entry. */
obj = prop_dictionary_get(sedict, "nat-data");
ntraw = prop_data_data_nocopy(obj);
if (ntraw == NULL || prop_data_size(obj) != sizeof(npf_nat_t)) {
return NULL;
}
/* Find a stored NAT policy information. */
obj = prop_dictionary_get(
prop_dictionary_get(sedict, "nat-policy"), "nat-policy-data");
onp = prop_data_data_nocopy(obj);
if (onp == NULL || prop_data_size(obj) != sizeof(npf_natpolicy_t)) {
return NULL;
}
/*
* Match if there is an existing NAT policy. Will acquire the
* reference on it if further operations are successful.
*/
KASSERT(npf_config_locked_p());
rl = npf_ruleset_matchnat(npf_config_natset(), __UNCONST(onp));
if (rl == NULL) {
return NULL;
}
np = npf_rule_getnat(rl);
KASSERT(np != NULL);
/* Take a specific port from port-map. */
if (!npf_nat_takeport(np, ntraw->nt_tport)) {
return NULL;
}
atomic_inc_uint(&np->n_refcnt);
/* Create and return NAT entry for association. */
nt = pool_cache_get(nat_cache, PR_WAITOK);
memcpy(nt, ntraw, sizeof(npf_nat_t));
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
nt->nt_natpolicy = np;
nt->nt_session = se;
nt->nt_alg = NULL;
return nt;
}
#if defined(DDB) || defined(_NPF_TESTING)
void
npf_nat_dump(const npf_nat_t *nt)
{
const npf_natpolicy_t *np;
struct in_addr ip;
np = nt->nt_natpolicy;
memcpy(&ip, &np->n_taddr, sizeof(ip));
printf("\tNATP(%p): type %d flags 0x%x taddr %s tport %d\n",
np, np->n_type, np->n_flags, inet_ntoa(ip), np->n_tport);
memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
printf("\tNAT: original address %s oport %d tport %d\n",
inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
if (nt->nt_alg) {
printf("\tNAT ALG = %p, ARG = %p\n",
nt->nt_alg, (void *)nt->nt_alg_arg);
}
}
#endif