NetBSD/sys/dev/scsipi/cd.c
2001-05-20 21:07:58 +00:00

1882 lines
47 KiB
C

/* $NetBSD: cd.c,v 1.150 2001/05/20 21:07:58 christos Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Originally written by Julian Elischer (julian@tfs.com)
* for TRW Financial Systems for use under the MACH(2.5) operating system.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992
*/
#include "rnd.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/cdio.h>
#include <sys/dvdio.h>
#include <sys/scsiio.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/vnode.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsipi_cd.h>
#include <dev/scsipi/scsipi_disk.h> /* rw_big and start_stop come */
/* from there */
#include <dev/scsipi/scsi_disk.h> /* rw comes from there */
#include <dev/scsipi/scsipiconf.h>
#include <dev/scsipi/cdvar.h>
#include "cd.h" /* NCD_SCSIBUS and NCD_ATAPIBUS come from here */
#define CDUNIT(z) DISKUNIT(z)
#define CDPART(z) DISKPART(z)
#define CDMINOR(unit, part) DISKMINOR(unit, part)
#define MAKECDDEV(maj, unit, part) MAKEDISKDEV(maj, unit, part)
#define MAXTRACK 99
#define CD_BLOCK_OFFSET 150
#define CD_FRAMES 75
#define CD_SECS 60
struct cd_toc {
struct ioc_toc_header header;
struct cd_toc_entry entries[MAXTRACK+1]; /* One extra for the */
/* leadout */
};
int cdlock __P((struct cd_softc *));
void cdunlock __P((struct cd_softc *));
void cdstart __P((struct scsipi_periph *));
void cdminphys __P((struct buf *));
void cdgetdefaultlabel __P((struct cd_softc *, struct disklabel *));
void cdgetdisklabel __P((struct cd_softc *));
void cddone __P((struct scsipi_xfer *));
int cd_interpret_sense __P((struct scsipi_xfer *));
u_long cd_size __P((struct cd_softc *, int));
void lba2msf __P((u_long, u_char *, u_char *, u_char *));
u_long msf2lba __P((u_char, u_char, u_char));
int cd_play __P((struct cd_softc *, int, int));
int cd_play_tracks __P((struct cd_softc *, int, int, int, int));
int cd_play_msf __P((struct cd_softc *, int, int, int, int, int, int));
int cd_pause __P((struct cd_softc *, int));
int cd_reset __P((struct cd_softc *));
int cd_read_subchannel __P((struct cd_softc *, int, int, int,
struct cd_sub_channel_info *, int, int));
int cd_read_toc __P((struct cd_softc *, int, int, void *, int, int, int));
int cd_get_parms __P((struct cd_softc *, int));
int cd_load_toc __P((struct cd_softc *, struct cd_toc *, int));
int dvd_auth __P((struct cd_softc *, dvd_authinfo *));
int dvd_read_physical __P((struct cd_softc *, dvd_struct *));
int dvd_read_copyright __P((struct cd_softc *, dvd_struct *));
int dvd_read_disckey __P((struct cd_softc *, dvd_struct *));
int dvd_read_bca __P((struct cd_softc *, dvd_struct *));
int dvd_read_manufact __P((struct cd_softc *, dvd_struct *));
int dvd_read_struct __P((struct cd_softc *, dvd_struct *));
extern struct cfdriver cd_cd;
struct dkdriver cddkdriver = { cdstrategy };
const struct scsipi_periphsw cd_switch = {
cd_interpret_sense, /* use our error handler first */
cdstart, /* we have a queue, which is started by this */
NULL, /* we do not have an async handler */
cddone, /* deal with stats at interrupt time */
};
/*
* The routine called by the low level scsi routine when it discovers
* A device suitable for this driver
*/
void
cdattach(parent, cd, periph, ops)
struct device *parent;
struct cd_softc *cd;
struct scsipi_periph *periph;
const struct cd_ops *ops;
{
SC_DEBUG(periph, SCSIPI_DB2, ("cdattach: "));
BUFQ_INIT(&cd->buf_queue);
/*
* Store information needed to contact our base driver
*/
cd->sc_periph = periph;
cd->sc_ops = ops;
periph->periph_dev = &cd->sc_dev;
periph->periph_switch = &cd_switch;
/*
* Increase our openings to the maximum-per-periph
* supported by the adapter. This will either be
* clamped down or grown by the adapter if necessary.
*/
periph->periph_openings =
SCSIPI_CHAN_MAX_PERIPH(periph->periph_channel);
periph->periph_flags |= PERIPH_GROW_OPENINGS;
/*
* Initialize and attach the disk structure.
*/
cd->sc_dk.dk_driver = &cddkdriver;
cd->sc_dk.dk_name = cd->sc_dev.dv_xname;
disk_attach(&cd->sc_dk);
#ifdef __BROKEN_DK_ESTABLISH
dk_establish(&cd->sc_dk, &cd->sc_dev); /* XXX */
#endif
printf("\n");
#if NRND > 0
rnd_attach_source(&cd->rnd_source, cd->sc_dev.dv_xname,
RND_TYPE_DISK, 0);
#endif
}
int
cdactivate(self, act)
struct device *self;
enum devact act;
{
int rv = 0;
switch (act) {
case DVACT_ACTIVATE:
rv = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
/*
* Nothing to do; we key off the device's DVF_ACTIVE.
*/
break;
}
return (rv);
}
int
cddetach(self, flags)
struct device *self;
int flags;
{
struct cd_softc *cd = (struct cd_softc *) self;
struct buf *bp;
int s, bmaj, cmaj, i, mn;
/* locate the major number */
for (bmaj = 0; bmaj <= nblkdev; bmaj++)
if (bdevsw[bmaj].d_open == cdopen)
break;
for (cmaj = 0; cmaj <= nchrdev; cmaj++)
if (cdevsw[cmaj].d_open == cdopen)
break;
s = splbio();
/* Kill off any queued buffers. */
while ((bp = BUFQ_FIRST(&cd->buf_queue)) != NULL) {
BUFQ_REMOVE(&cd->buf_queue, bp);
bp->b_error = EIO;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
}
/* Kill off any pending commands. */
scsipi_kill_pending(cd->sc_periph);
splx(s);
/* Nuke the vnodes for any open instances */
for (i = 0; i < MAXPARTITIONS; i++) {
mn = CDMINOR(self->dv_unit, i);
vdevgone(bmaj, mn, mn, VBLK);
vdevgone(cmaj, mn, mn, VCHR);
}
/* Detach from the disk list. */
disk_detach(&cd->sc_dk);
#if 0
/* Get rid of the shutdown hook. */
if (cd->sc_sdhook != NULL)
shutdownhook_disestablish(cd->sc_sdhook);
#endif
#if NRND > 0
/* Unhook the entropy source. */
rnd_detach_source(&cd->rnd_source);
#endif
return (0);
}
/*
* Wait interruptibly for an exclusive lock.
*
* XXX
* Several drivers do this; it should be abstracted and made MP-safe.
*/
int
cdlock(cd)
struct cd_softc *cd;
{
int error;
while ((cd->flags & CDF_LOCKED) != 0) {
cd->flags |= CDF_WANTED;
if ((error = tsleep(cd, PRIBIO | PCATCH, "cdlck", 0)) != 0)
return (error);
}
cd->flags |= CDF_LOCKED;
return (0);
}
/*
* Unlock and wake up any waiters.
*/
void
cdunlock(cd)
struct cd_softc *cd;
{
cd->flags &= ~CDF_LOCKED;
if ((cd->flags & CDF_WANTED) != 0) {
cd->flags &= ~CDF_WANTED;
wakeup(cd);
}
}
/*
* open the device. Make sure the partition info is a up-to-date as can be.
*/
int
cdopen(dev, flag, fmt, p)
dev_t dev;
int flag, fmt;
struct proc *p;
{
struct cd_softc *cd;
struct scsipi_periph *periph;
struct scsipi_adapter *adapt;
int unit, part;
int error;
unit = CDUNIT(dev);
if (unit >= cd_cd.cd_ndevs)
return (ENXIO);
cd = cd_cd.cd_devs[unit];
if (cd == NULL)
return (ENXIO);
periph = cd->sc_periph;
adapt = periph->periph_channel->chan_adapter;
part = CDPART(dev);
SC_DEBUG(periph, SCSIPI_DB1,
("cdopen: dev=0x%x (unit %d (of %d), partition %d)\n", dev, unit,
cd_cd.cd_ndevs, CDPART(dev)));
/*
* If this is the first open of this device, add a reference
* to the adapter.
*/
if (cd->sc_dk.dk_openmask == 0 &&
(error = scsipi_adapter_addref(adapt)) != 0)
return (error);
if ((error = cdlock(cd)) != 0)
goto bad4;
if ((periph->periph_flags & PERIPH_OPEN) != 0) {
/*
* If any partition is open, but the disk has been invalidated,
* disallow further opens.
*/
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0 &&
(part != RAW_PART || fmt != S_IFCHR )) {
error = EIO;
goto bad3;
}
} else {
/* Check that it is still responding and ok. */
error = scsipi_test_unit_ready(periph,
XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE |
XS_CTL_IGNORE_NOT_READY);
SC_DEBUG(periph, SCSIPI_DB1,
("cdopen: scsipi_test_unit_ready, error=%d\n", error));
if (error)
goto bad3;
/*
* Start the pack spinning if necessary. Always allow the
* raw parition to be opened, for raw IOCTLs. Data transfers
* will check for SDEV_MEDIA_LOADED.
*/
error = scsipi_start(periph, SSS_START,
XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE |
XS_CTL_SILENT);
SC_DEBUG(periph, SCSIPI_DB1,
("cdopen: scsipi_start, error=%d\n", error));
if (error) {
if (part != RAW_PART || fmt != S_IFCHR)
goto bad3;
else
goto out;
}
periph->periph_flags |= PERIPH_OPEN;
/* Lock the pack in. */
error = scsipi_prevent(periph, PR_PREVENT,
XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE);
SC_DEBUG(periph, SCSIPI_DB1,
("cdopen: scsipi_prevent, error=%d\n", error));
if (error)
goto bad;
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) {
periph->periph_flags |= PERIPH_MEDIA_LOADED;
/* Load the physical device parameters. */
if (cd_get_parms(cd, 0) != 0) {
error = ENXIO;
goto bad2;
}
SC_DEBUG(periph, SCSIPI_DB3, ("Params loaded "));
/* Fabricate a disk label. */
cdgetdisklabel(cd);
SC_DEBUG(periph, SCSIPI_DB3, ("Disklabel fabricated "));
}
}
/* Check that the partition exists. */
if (part != RAW_PART &&
(part >= cd->sc_dk.dk_label->d_npartitions ||
cd->sc_dk.dk_label->d_partitions[part].p_fstype == FS_UNUSED)) {
error = ENXIO;
goto bad;
}
out: /* Insure only one open at a time. */
switch (fmt) {
case S_IFCHR:
cd->sc_dk.dk_copenmask |= (1 << part);
break;
case S_IFBLK:
cd->sc_dk.dk_bopenmask |= (1 << part);
break;
}
cd->sc_dk.dk_openmask =
cd->sc_dk.dk_copenmask | cd->sc_dk.dk_bopenmask;
SC_DEBUG(periph, SCSIPI_DB3, ("open complete\n"));
cdunlock(cd);
return (0);
bad2:
periph->periph_flags &= ~PERIPH_MEDIA_LOADED;
bad:
if (cd->sc_dk.dk_openmask == 0) {
scsipi_prevent(periph, PR_ALLOW,
XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE);
periph->periph_flags &= ~PERIPH_OPEN;
}
bad3:
cdunlock(cd);
bad4:
if (cd->sc_dk.dk_openmask == 0)
scsipi_adapter_delref(adapt);
return (error);
}
/*
* close the device.. only called if we are the LAST
* occurence of an open device
*/
int
cdclose(dev, flag, fmt, p)
dev_t dev;
int flag, fmt;
struct proc *p;
{
struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(dev)];
struct scsipi_periph *periph = cd->sc_periph;
struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter;
int part = CDPART(dev);
int error;
if ((error = cdlock(cd)) != 0)
return (error);
switch (fmt) {
case S_IFCHR:
cd->sc_dk.dk_copenmask &= ~(1 << part);
break;
case S_IFBLK:
cd->sc_dk.dk_bopenmask &= ~(1 << part);
break;
}
cd->sc_dk.dk_openmask =
cd->sc_dk.dk_copenmask | cd->sc_dk.dk_bopenmask;
if (cd->sc_dk.dk_openmask == 0) {
scsipi_wait_drain(periph);
scsipi_prevent(periph, PR_ALLOW,
XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_MEDIA_CHANGE |
XS_CTL_IGNORE_NOT_READY);
periph->periph_flags &= ~PERIPH_OPEN;
scsipi_wait_drain(periph);
scsipi_adapter_delref(adapt);
}
cdunlock(cd);
return (0);
}
/*
* Actually translate the requested transfer into one the physical driver can
* understand. The transfer is described by a buf and will include only one
* physical transfer.
*/
void
cdstrategy(bp)
struct buf *bp;
{
struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(bp->b_dev)];
struct disklabel *lp;
struct scsipi_periph *periph = cd->sc_periph;
daddr_t blkno;
int s;
SC_DEBUG(cd->sc_periph, SCSIPI_DB2, ("cdstrategy "));
SC_DEBUG(cd->sc_periph, SCSIPI_DB1,
("%ld bytes @ blk %d\n", bp->b_bcount, bp->b_blkno));
/*
* If the device has been made invalid, error out
* maybe the media changed
*/
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) {
if (periph->periph_flags & PERIPH_OPEN)
bp->b_error = EIO;
else
bp->b_error = ENODEV;
goto bad;
}
lp = cd->sc_dk.dk_label;
/*
* The transfer must be a whole number of blocks, offset must not
* be negative.
*/
if ((bp->b_bcount % lp->d_secsize) != 0 ||
bp->b_blkno < 0 ) {
bp->b_error = EINVAL;
goto bad;
}
/*
* If it's a null transfer, return immediately
*/
if (bp->b_bcount == 0)
goto done;
/*
* Do bounds checking, adjust transfer. if error, process.
* If end of partition, just return.
*/
if (CDPART(bp->b_dev) != RAW_PART &&
bounds_check_with_label(bp, lp,
(cd->flags & (CDF_WLABEL|CDF_LABELLING)) != 0) <= 0)
goto done;
/*
* Now convert the block number to absolute and put it in
* terms of the device's logical block size.
*/
blkno = bp->b_blkno / (lp->d_secsize / DEV_BSIZE);
if (CDPART(bp->b_dev) != RAW_PART)
blkno += lp->d_partitions[CDPART(bp->b_dev)].p_offset;
bp->b_rawblkno = blkno;
s = splbio();
/*
* Place it in the queue of disk activities for this disk.
*
* XXX Only do disksort() if the current operating mode does not
* XXX include tagged queueing.
*/
disksort_blkno(&cd->buf_queue, bp);
/*
* Tell the device to get going on the transfer if it's
* not doing anything, otherwise just wait for completion
*/
cdstart(cd->sc_periph);
splx(s);
return;
bad:
bp->b_flags |= B_ERROR;
done:
/*
* Correctly set the buf to indicate a completed xfer
*/
bp->b_resid = bp->b_bcount;
biodone(bp);
}
/*
* cdstart looks to see if there is a buf waiting for the device
* and that the device is not already busy. If both are true,
* It deques the buf and creates a scsi command to perform the
* transfer in the buf. The transfer request will call scsipi_done
* on completion, which will in turn call this routine again
* so that the next queued transfer is performed.
* The bufs are queued by the strategy routine (cdstrategy)
*
* This routine is also called after other non-queued requests
* have been made of the scsi driver, to ensure that the queue
* continues to be drained.
*
* must be called at the correct (highish) spl level
* cdstart() is called at splbio from cdstrategy and scsipi_done
*/
void
cdstart(periph)
struct scsipi_periph *periph;
{
struct cd_softc *cd = (void *)periph->periph_dev;
struct disklabel *lp = cd->sc_dk.dk_label;
struct buf *bp = 0;
struct scsipi_rw_big cmd_big;
#if NCD_SCSIBUS > 0
struct scsi_rw cmd_small;
#endif
struct scsipi_generic *cmdp;
int flags, nblks, cmdlen, error;
SC_DEBUG(periph, SCSIPI_DB2, ("cdstart "));
/*
* Check if the device has room for another command
*/
while (periph->periph_active < periph->periph_openings) {
/*
* there is excess capacity, but a special waits
* It'll need the adapter as soon as we clear out of the
* way and let it run (user level wait).
*/
if (periph->periph_flags & PERIPH_WAITING) {
periph->periph_flags &= ~PERIPH_WAITING;
wakeup((caddr_t)periph);
return;
}
/*
* See if there is a buf with work for us to do..
*/
if ((bp = BUFQ_FIRST(&cd->buf_queue)) == NULL)
return;
BUFQ_REMOVE(&cd->buf_queue, bp);
/*
* If the device has become invalid, abort all the
* reads and writes until all files have been closed and
* re-opened
*/
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) {
bp->b_error = EIO;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
continue;
}
/*
* We have a buf, now we should make a command.
*/
nblks = howmany(bp->b_bcount, lp->d_secsize);
#if NCD_SCSIBUS > 0
/*
* Fill out the scsi command. If the transfer will
* fit in a "small" cdb, use it.
*/
if (((bp->b_rawblkno & 0x1fffff) == bp->b_rawblkno) &&
((nblks & 0xff) == nblks) &&
!(periph->periph_quirks & PQUIRK_ONLYBIG) &&
scsipi_periph_bustype(periph) == SCSIPI_BUSTYPE_SCSI) {
/*
* We can fit in a small cdb.
*/
bzero(&cmd_small, sizeof(cmd_small));
cmd_small.opcode = (bp->b_flags & B_READ) ?
SCSI_READ_COMMAND : SCSI_WRITE_COMMAND;
_lto3b(bp->b_rawblkno, cmd_small.addr);
cmd_small.length = nblks & 0xff;
cmdlen = sizeof(cmd_small);
cmdp = (struct scsipi_generic *)&cmd_small;
} else
#endif
{
/*
* Need a large cdb.
*/
bzero(&cmd_big, sizeof(cmd_big));
cmd_big.opcode = (bp->b_flags & B_READ) ?
READ_BIG : WRITE_BIG;
_lto4b(bp->b_rawblkno, cmd_big.addr);
_lto2b(nblks, cmd_big.length);
cmdlen = sizeof(cmd_big);
cmdp = (struct scsipi_generic *)&cmd_big;
}
/* Instrumentation. */
disk_busy(&cd->sc_dk);
/*
* Figure out what flags to use.
*/
flags = XS_CTL_NOSLEEP|XS_CTL_ASYNC;
if (bp->b_flags & B_READ)
flags |= XS_CTL_DATA_IN;
else
flags |= XS_CTL_DATA_OUT;
if (bp->b_flags & B_ORDERED)
flags |= XS_CTL_ORDERED_TAG;
else
flags |= XS_CTL_SIMPLE_TAG;
/*
* Call the routine that chats with the adapter.
* Note: we cannot sleep as we may be an interrupt
*/
error = scsipi_command(periph, cmdp, cmdlen,
(u_char *)bp->b_data, bp->b_bcount,
CDRETRIES, 30000, bp, flags);
if (error) {
disk_unbusy(&cd->sc_dk, 0);
printf("%s: not queued, error %d\n",
cd->sc_dev.dv_xname, error);
}
}
}
void
cddone(xs)
struct scsipi_xfer *xs;
{
struct cd_softc *cd = (void *)xs->xs_periph->periph_dev;
if (xs->bp != NULL) {
disk_unbusy(&cd->sc_dk, xs->bp->b_bcount - xs->bp->b_resid);
#if NRND > 0
rnd_add_uint32(&cd->rnd_source, xs->bp->b_rawblkno);
#endif
}
}
int cd_interpret_sense(xs)
struct scsipi_xfer *xs;
{
struct scsipi_periph *periph = xs->xs_periph;
struct scsipi_sense_data *sense = &xs->sense.scsi_sense;
int retval = EJUSTRETURN;
/*
* If it isn't a extended or extended/deferred error, let
* the generic code handle it.
*/
if ((sense->error_code & SSD_ERRCODE) != 0x70 &&
(sense->error_code & SSD_ERRCODE) != 0x71) { /* DEFFERRED */
return (retval);
}
/*
* If we got a "Unit not ready" (SKEY_NOT_READY) and "Logical Unit
* Is In The Process of Becoming Ready" (Sense code 0x04,0x01), then
* wait a bit for the drive to spin up
*/
if ((sense->flags & SSD_KEY) == SKEY_NOT_READY &&
sense->add_sense_code == 0x4 &&
sense->add_sense_code_qual == 0x01) {
/*
* Sleep for 5 seconds to wait for the drive to spin up
*/
SC_DEBUG(periph, SCSIPI_DB1, ("Waiting 5 sec for CD "
"spinup\n"));
scsipi_periph_freeze(periph, 1);
callout_reset(&periph->periph_callout,
5 * hz, scsipi_periph_timed_thaw, periph);
retval = ERESTART;
}
return (retval);
}
void
cdminphys(bp)
struct buf *bp;
{
struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(bp->b_dev)];
long max;
/*
* If the device is ancient, we want to make sure that
* the transfer fits into a 6-byte cdb.
*
* XXX Note that the SCSI-I spec says that 256-block transfers
* are allowed in a 6-byte read/write, and are specified
* by settng the "length" to 0. However, we're conservative
* here, allowing only 255-block transfers in case an
* ancient device gets confused by length == 0. A length of 0
* in a 10-byte read/write actually means 0 blocks.
*/
if (cd->flags & CDF_ANCIENT) {
max = cd->sc_dk.dk_label->d_secsize * 0xff;
if (bp->b_bcount > max)
bp->b_bcount = max;
}
(*cd->sc_periph->periph_channel->chan_adapter->adapt_minphys)(bp);
}
int
cdread(dev, uio, ioflag)
dev_t dev;
struct uio *uio;
int ioflag;
{
return (physio(cdstrategy, NULL, dev, B_READ, cdminphys, uio));
}
int
cdwrite(dev, uio, ioflag)
dev_t dev;
struct uio *uio;
int ioflag;
{
return (physio(cdstrategy, NULL, dev, B_WRITE, cdminphys, uio));
}
/*
* conversion between minute-seconde-frame and logical block adress
* adresses format
*/
void
lba2msf (lba, m, s, f)
u_long lba;
u_char *m, *s, *f;
{
u_long tmp;
tmp = lba + CD_BLOCK_OFFSET; /* offset of first logical frame */
tmp &= 0xffffff; /* negative lbas use only 24 bits */
*m = tmp / (CD_SECS * CD_FRAMES);
tmp %= (CD_SECS * CD_FRAMES);
*s = tmp / CD_FRAMES;
*f = tmp % CD_FRAMES;
}
u_long
msf2lba (m, s, f)
u_char m, s, f;
{
return ((((m * CD_SECS) + s) * CD_FRAMES + f) - CD_BLOCK_OFFSET);
}
/*
* Perform special action on behalf of the user.
* Knows about the internals of this device
*/
int
cdioctl(dev, cmd, addr, flag, p)
dev_t dev;
u_long cmd;
caddr_t addr;
int flag;
struct proc *p;
{
struct cd_softc *cd = cd_cd.cd_devs[CDUNIT(dev)];
struct scsipi_periph *periph = cd->sc_periph;
int part = CDPART(dev);
int error;
#ifdef __HAVE_OLD_DISKLABEL
struct disklabel newlabel;
#endif
SC_DEBUG(cd->sc_periph, SCSIPI_DB2, ("cdioctl 0x%lx ", cmd));
/*
* If the device is not valid, some IOCTLs can still be
* handled on the raw partition. Check this here.
*/
if ((periph->periph_flags & PERIPH_MEDIA_LOADED) == 0) {
switch (cmd) {
case DIOCWLABEL:
case DIOCLOCK:
case ODIOCEJECT:
case DIOCEJECT:
case SCIOCIDENTIFY:
case OSCIOCIDENTIFY:
case SCIOCCOMMAND:
case SCIOCDEBUG:
case CDIOCGETVOL:
case CDIOCSETVOL:
case CDIOCSETMONO:
case CDIOCSETSTEREO:
case CDIOCSETMUTE:
case CDIOCSETLEFT:
case CDIOCSETRIGHT:
case CDIOCCLOSE:
case CDIOCEJECT:
case CDIOCALLOW:
case CDIOCPREVENT:
case CDIOCSETDEBUG:
case CDIOCCLRDEBUG:
case CDIOCRESET:
case SCIOCRESET:
case CDIOCLOADUNLOAD:
case DVD_AUTH:
case DVD_READ_STRUCT:
if (part == RAW_PART)
break;
/* FALLTHROUGH */
default:
if ((periph->periph_flags & PERIPH_OPEN) == 0)
return (ENODEV);
else
return (EIO);
}
}
switch (cmd) {
case DIOCGDINFO:
*(struct disklabel *)addr = *(cd->sc_dk.dk_label);
return (0);
#ifdef __HAVE_OLD_DISKLABEL
case ODIOCGDINFO:
newlabel = *(cd->sc_dk.dk_label);
if (newlabel.d_npartitions > OLDMAXPARTITIONS)
return ENOTTY;
memcpy(addr, &newlabel, sizeof (struct olddisklabel));
return (0);
#endif
case DIOCGPART:
((struct partinfo *)addr)->disklab = cd->sc_dk.dk_label;
((struct partinfo *)addr)->part =
&cd->sc_dk.dk_label->d_partitions[part];
return (0);
case DIOCWDINFO:
case DIOCSDINFO:
#ifdef __HAVE_OLD_DISKLABEL
case ODIOCWDINFO:
case ODIOCSDINFO:
#endif
{
struct disklabel *lp;
#ifdef __HAVE_OLD_DISKLABEL
if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
memset(&newlabel, 0, sizeof newlabel);
memcpy(&newlabel, addr, sizeof (struct olddisklabel));
lp = &newlabel;
} else
#endif
lp = (struct disklabel *)addr;
if ((flag & FWRITE) == 0)
return (EBADF);
if ((error = cdlock(cd)) != 0)
return (error);
cd->flags |= CDF_LABELLING;
error = setdisklabel(cd->sc_dk.dk_label,
lp, /*cd->sc_dk.dk_openmask : */0,
cd->sc_dk.dk_cpulabel);
if (error == 0) {
/* XXX ? */
}
cd->flags &= ~CDF_LABELLING;
cdunlock(cd);
return (error);
}
case DIOCWLABEL:
return (EBADF);
case DIOCGDEFLABEL:
cdgetdefaultlabel(cd, (struct disklabel *)addr);
return (0);
#ifdef __HAVE_OLD_DISKLABEL
case ODIOCGDEFLABEL:
cdgetdefaultlabel(cd, &newlabel);
if (newlabel.d_npartitions > OLDMAXPARTITIONS)
return ENOTTY;
memcpy(addr, &newlabel, sizeof (struct olddisklabel));
return (0);
#endif
case CDIOCPLAYTRACKS: {
struct ioc_play_track *args = (struct ioc_play_track *)addr;
if ((error = (*cd->sc_ops->cdo_set_pa_immed)(cd, 0)) != 0)
return (error);
return (cd_play_tracks(cd, args->start_track,
args->start_index, args->end_track, args->end_index));
}
case CDIOCPLAYMSF: {
struct ioc_play_msf *args = (struct ioc_play_msf *)addr;
if ((error = (*cd->sc_ops->cdo_set_pa_immed)(cd, 0)) != 0)
return (error);
return (cd_play_msf(cd, args->start_m, args->start_s,
args->start_f, args->end_m, args->end_s, args->end_f));
}
case CDIOCPLAYBLOCKS: {
struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr;
if ((error = (*cd->sc_ops->cdo_set_pa_immed)(cd, 0)) != 0)
return (error);
return (cd_play(cd, args->blk, args->len));
}
case CDIOCREADSUBCHANNEL: {
struct ioc_read_subchannel *args =
(struct ioc_read_subchannel *)addr;
struct cd_sub_channel_info data;
int len = args->data_len;
if (len > sizeof(data) ||
len < sizeof(struct cd_sub_channel_header))
return (EINVAL);
error = cd_read_subchannel(cd, args->address_format,
args->data_format, args->track, &data, len,
XS_CTL_DATA_ONSTACK);
if (error)
return (error);
len = min(len, _2btol(data.header.data_len) +
sizeof(struct cd_sub_channel_header));
return (copyout(&data, args->data, len));
}
case CDIOREADTOCHEADER: {
struct ioc_toc_header th;
if ((error = cd_read_toc(cd, 0, 0, &th, sizeof(th),
XS_CTL_DATA_ONSTACK, 0)) != 0)
return (error);
if (cd->sc_periph->periph_quirks & PQUIRK_LITTLETOC) {
#if BYTE_ORDER == BIG_ENDIAN
bswap((u_int8_t *)&th.len, sizeof(th.len));
#endif
} else
th.len = ntohs(th.len);
bcopy(&th, addr, sizeof(th));
return (0);
}
case CDIOREADTOCENTRYS: {
struct cd_toc toc;
struct ioc_read_toc_entry *te =
(struct ioc_read_toc_entry *)addr;
struct ioc_toc_header *th;
struct cd_toc_entry *cte;
int len = te->data_len;
int ntracks;
th = &toc.header;
if (len > sizeof(toc.entries) ||
len < sizeof(struct cd_toc_entry))
return (EINVAL);
error = cd_read_toc(cd, te->address_format, te->starting_track,
&toc, len + sizeof(struct ioc_toc_header),
XS_CTL_DATA_ONSTACK, 0);
if (error)
return (error);
if (te->address_format == CD_LBA_FORMAT)
for (ntracks =
th->ending_track - th->starting_track + 1;
ntracks >= 0; ntracks--) {
cte = &toc.entries[ntracks];
cte->addr_type = CD_LBA_FORMAT;
if (periph->periph_quirks & PQUIRK_LITTLETOC) {
#if BYTE_ORDER == BIG_ENDIAN
bswap((u_int8_t*)&cte->addr,
sizeof(cte->addr));
#endif
} else
cte->addr.lba = ntohl(cte->addr.lba);
}
if (periph->periph_quirks & PQUIRK_LITTLETOC) {
#if BYTE_ORDER == BIG_ENDIAN
bswap((u_int8_t*)&th->len, sizeof(th->len));
#endif
} else
th->len = ntohs(th->len);
len = min(len, th->len - (sizeof(th->starting_track) +
sizeof(th->ending_track)));
return (copyout(toc.entries, te->data, len));
}
case CDIOREADMSADDR: {
struct cd_toc toc;
int sessno = *(int*)addr;
struct cd_toc_entry *cte;
if (sessno != 0)
return (EINVAL);
error = cd_read_toc(cd, 0, 0, &toc,
sizeof(struct ioc_toc_header) + sizeof(struct cd_toc_entry),
XS_CTL_DATA_ONSTACK,
0x40 /* control word for "get MS info" */);
if (error)
return (error);
cte = &toc.entries[0];
if (periph->periph_quirks & PQUIRK_LITTLETOC) {
#if BYTE_ORDER == BIG_ENDIAN
bswap((u_int8_t*)&cte->addr, sizeof(cte->addr));
#endif
} else
cte->addr.lba = ntohl(cte->addr.lba);
if (periph->periph_quirks & PQUIRK_LITTLETOC) {
#if BYTE_ORDER == BIG_ENDIAN
bswap((u_int8_t*)&toc.header.len,
sizeof(toc.header.len));
#endif
} else
toc.header.len = ntohs(toc.header.len);
*(int*)addr = (toc.header.len >= 10 && cte->track > 1) ?
cte->addr.lba : 0;
return 0;
}
case CDIOCSETPATCH: {
struct ioc_patch *arg = (struct ioc_patch *)addr;
return ((*cd->sc_ops->cdo_setchan)(cd, arg->patch[0],
arg->patch[1], arg->patch[2], arg->patch[3], 0));
}
case CDIOCGETVOL: {
struct ioc_vol *arg = (struct ioc_vol *)addr;
return ((*cd->sc_ops->cdo_getvol)(cd, arg, 0));
}
case CDIOCSETVOL: {
struct ioc_vol *arg = (struct ioc_vol *)addr;
return ((*cd->sc_ops->cdo_setvol)(cd, arg, 0));
}
case CDIOCSETMONO:
return ((*cd->sc_ops->cdo_setchan)(cd, BOTH_CHANNEL,
BOTH_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL, 0));
case CDIOCSETSTEREO:
return ((*cd->sc_ops->cdo_setchan)(cd, LEFT_CHANNEL,
RIGHT_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL, 0));
case CDIOCSETMUTE:
return ((*cd->sc_ops->cdo_setchan)(cd, MUTE_CHANNEL,
MUTE_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL, 0));
case CDIOCSETLEFT:
return ((*cd->sc_ops->cdo_setchan)(cd, LEFT_CHANNEL,
LEFT_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL, 0));
case CDIOCSETRIGHT:
return ((*cd->sc_ops->cdo_setchan)(cd, RIGHT_CHANNEL,
RIGHT_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL, 0));
case CDIOCRESUME:
return (cd_pause(cd, PA_RESUME));
case CDIOCPAUSE:
return (cd_pause(cd, PA_PAUSE));
case CDIOCSTART:
return (scsipi_start(periph, SSS_START, 0));
case CDIOCSTOP:
return (scsipi_start(periph, SSS_STOP, 0));
case CDIOCCLOSE:
return (scsipi_start(periph, SSS_START|SSS_LOEJ,
XS_CTL_IGNORE_NOT_READY | XS_CTL_IGNORE_MEDIA_CHANGE));
case DIOCEJECT:
if (*(int *)addr == 0) {
/*
* Don't force eject: check that we are the only
* partition open. If so, unlock it.
*/
if ((cd->sc_dk.dk_openmask & ~(1 << part)) == 0 &&
cd->sc_dk.dk_bopenmask + cd->sc_dk.dk_copenmask ==
cd->sc_dk.dk_openmask) {
error = scsipi_prevent(periph, PR_ALLOW,
XS_CTL_IGNORE_NOT_READY);
if (error)
return (error);
} else {
return (EBUSY);
}
}
/* FALLTHROUGH */
case CDIOCEJECT: /* FALLTHROUGH */
case ODIOCEJECT:
return (scsipi_start(periph, SSS_STOP|SSS_LOEJ, 0));
case CDIOCALLOW:
return (scsipi_prevent(periph, PR_ALLOW, 0));
case CDIOCPREVENT:
return (scsipi_prevent(periph, PR_PREVENT, 0));
case DIOCLOCK:
return (scsipi_prevent(periph,
(*(int *)addr) ? PR_PREVENT : PR_ALLOW, 0));
case CDIOCSETDEBUG:
cd->sc_periph->periph_dbflags |= (SCSIPI_DB1 | SCSIPI_DB2);
return (0);
case CDIOCCLRDEBUG:
cd->sc_periph->periph_dbflags &= ~(SCSIPI_DB1 | SCSIPI_DB2);
return (0);
case CDIOCRESET:
case SCIOCRESET:
return (cd_reset(cd));
case CDIOCLOADUNLOAD: {
struct ioc_load_unload *args = (struct ioc_load_unload *)addr;
return ((*cd->sc_ops->cdo_load_unload)(cd, args->options,
args->slot));
case DVD_AUTH:
return (dvd_auth(cd, (dvd_authinfo *)addr));
case DVD_READ_STRUCT:
return (dvd_read_struct(cd, (dvd_struct *)addr));
}
default:
if (part != RAW_PART)
return (ENOTTY);
return (scsipi_do_ioctl(periph, dev, cmd, addr, flag, p));
}
#ifdef DIAGNOSTIC
panic("cdioctl: impossible");
#endif
}
void
cdgetdefaultlabel(cd, lp)
struct cd_softc *cd;
struct disklabel *lp;
{
bzero(lp, sizeof(struct disklabel));
lp->d_secsize = cd->params.blksize;
lp->d_ntracks = 1;
lp->d_nsectors = 100;
lp->d_ncylinders = (cd->params.disksize / 100) + 1;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
switch (scsipi_periph_bustype(cd->sc_periph)) {
#if NCD_SCSIBUS > 0
case SCSIPI_BUSTYPE_SCSI:
lp->d_type = DTYPE_SCSI;
break;
#endif
#if NCD_ATAPIBUS > 0
case SCSIPI_BUSTYPE_ATAPI:
lp->d_type = DTYPE_ATAPI;
break;
#endif
}
strncpy(lp->d_typename, cd->name, 16);
strncpy(lp->d_packname, "fictitious", 16);
lp->d_secperunit = cd->params.disksize;
lp->d_rpm = 300;
lp->d_interleave = 1;
lp->d_flags = D_REMOVABLE;
lp->d_partitions[0].p_offset = 0;
lp->d_partitions[0].p_size =
lp->d_secperunit * (lp->d_secsize / DEV_BSIZE);
lp->d_partitions[0].p_fstype = FS_ISO9660;
lp->d_partitions[RAW_PART].p_offset = 0;
lp->d_partitions[RAW_PART].p_size =
lp->d_secperunit * (lp->d_secsize / DEV_BSIZE);
lp->d_partitions[RAW_PART].p_fstype = FS_ISO9660;
lp->d_npartitions = RAW_PART + 1;
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(lp);
}
/*
* Load the label information on the named device
* Actually fabricate a disklabel
*
* EVENTUALLY take information about different
* data tracks from the TOC and put it in the disklabel
*/
void
cdgetdisklabel(cd)
struct cd_softc *cd;
{
struct disklabel *lp = cd->sc_dk.dk_label;
bzero(cd->sc_dk.dk_cpulabel, sizeof(struct cpu_disklabel));
cdgetdefaultlabel(cd, lp);
}
/*
* Find out from the device what it's capacity is
*/
u_long
cd_size(cd, flags)
struct cd_softc *cd;
int flags;
{
struct scsipi_read_cd_cap_data rdcap;
struct scsipi_read_cd_capacity scsipi_cmd;
int blksize;
u_long size;
if (cd->sc_periph->periph_quirks & PQUIRK_NOCAPACITY) {
/*
* the drive doesn't support the READ_CD_CAPACITY command
* use a fake size
*/
cd->params.blksize = 2048;
cd->params.disksize = 400000;
return (400000);
}
/*
* make up a scsi command and ask the scsi driver to do
* it for you.
*/
bzero(&scsipi_cmd, sizeof(scsipi_cmd));
scsipi_cmd.opcode = READ_CD_CAPACITY;
/*
* If the command works, interpret the result as a 4 byte
* number of blocks and a blocksize
*/
if (scsipi_command(cd->sc_periph,
(struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd),
(u_char *)&rdcap, sizeof(rdcap), CDRETRIES, 30000, NULL,
flags | XS_CTL_DATA_IN | XS_CTL_DATA_IN) != 0)
return (0);
blksize = _4btol(rdcap.length);
if ((blksize < 512) || ((blksize & 511) != 0))
blksize = 2048; /* some drives lie ! */
cd->params.blksize = blksize;
size = _4btol(rdcap.addr) + 1;
if (size < 100)
size = 400000; /* ditto */
cd->params.disksize = size;
SC_DEBUG(cd->sc_periph, SCSIPI_DB2,
("cd_size: %d %ld\n", blksize, size));
return (size);
}
/*
* Get scsi driver to send a "start playing" command
*/
int
cd_play(cd, blkno, nblks)
struct cd_softc *cd;
int blkno, nblks;
{
struct scsipi_play scsipi_cmd;
bzero(&scsipi_cmd, sizeof(scsipi_cmd));
scsipi_cmd.opcode = PLAY;
_lto4b(blkno, scsipi_cmd.blk_addr);
_lto2b(nblks, scsipi_cmd.xfer_len);
return (scsipi_command(cd->sc_periph,
(struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd),
0, 0, CDRETRIES, 30000, NULL, 0));
}
/*
* Get scsi driver to send a "start playing" command
*/
int
cd_play_tracks(cd, strack, sindex, etrack, eindex)
struct cd_softc *cd;
int strack, sindex, etrack, eindex;
{
struct cd_toc toc;
int error;
if (!etrack)
return (EIO);
if (strack > etrack)
return (EINVAL);
if ((error = cd_load_toc(cd, &toc, XS_CTL_DATA_ONSTACK)) != 0)
return (error);
if (++etrack > (toc.header.ending_track+1))
etrack = toc.header.ending_track+1;
strack -= toc.header.starting_track;
etrack -= toc.header.starting_track;
if (strack < 0)
return (EINVAL);
return (cd_play_msf(cd, toc.entries[strack].addr.msf.minute,
toc.entries[strack].addr.msf.second,
toc.entries[strack].addr.msf.frame,
toc.entries[etrack].addr.msf.minute,
toc.entries[etrack].addr.msf.second,
toc.entries[etrack].addr.msf.frame));
}
/*
* Get scsi driver to send a "play msf" command
*/
int
cd_play_msf(cd, startm, starts, startf, endm, ends, endf)
struct cd_softc *cd;
int startm, starts, startf, endm, ends, endf;
{
struct scsipi_play_msf scsipi_cmd;
bzero(&scsipi_cmd, sizeof(scsipi_cmd));
scsipi_cmd.opcode = PLAY_MSF;
scsipi_cmd.start_m = startm;
scsipi_cmd.start_s = starts;
scsipi_cmd.start_f = startf;
scsipi_cmd.end_m = endm;
scsipi_cmd.end_s = ends;
scsipi_cmd.end_f = endf;
return (scsipi_command(cd->sc_periph,
(struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd),
0, 0, CDRETRIES, 30000, NULL, 0));
}
/*
* Get scsi driver to send a "start up" command
*/
int
cd_pause(cd, go)
struct cd_softc *cd;
int go;
{
struct scsipi_pause scsipi_cmd;
bzero(&scsipi_cmd, sizeof(scsipi_cmd));
scsipi_cmd.opcode = PAUSE;
scsipi_cmd.resume = go & 0xff;
return (scsipi_command(cd->sc_periph,
(struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd),
0, 0, CDRETRIES, 30000, NULL, 0));
}
/*
* Get scsi driver to send a "RESET" command
*/
int
cd_reset(cd)
struct cd_softc *cd;
{
return (scsipi_command(cd->sc_periph, 0, 0, 0, 0,
CDRETRIES, 30000, NULL, XS_CTL_RESET));
}
/*
* Read subchannel
*/
int
cd_read_subchannel(cd, mode, format, track, data, len, flags)
struct cd_softc *cd;
int mode, format, track, len;
struct cd_sub_channel_info *data;
int flags;
{
struct scsipi_read_subchannel scsipi_cmd;
bzero(&scsipi_cmd, sizeof(scsipi_cmd));
scsipi_cmd.opcode = READ_SUBCHANNEL;
if (mode == CD_MSF_FORMAT)
scsipi_cmd.byte2 |= CD_MSF;
scsipi_cmd.byte3 = SRS_SUBQ;
scsipi_cmd.subchan_format = format;
scsipi_cmd.track = track;
_lto2b(len, scsipi_cmd.data_len);
return (scsipi_command(cd->sc_periph,
(struct scsipi_generic *)&scsipi_cmd,
sizeof(struct scsipi_read_subchannel), (u_char *)data, len,
CDRETRIES, 30000, NULL, flags | XS_CTL_DATA_IN | XS_CTL_SILENT));
}
/*
* Read table of contents
*/
int
cd_read_toc(cd, mode, start, data, len, flags, control)
struct cd_softc *cd;
int mode, start, len, control;
void *data;
int flags;
{
struct scsipi_read_toc scsipi_cmd;
int ntoc;
bzero(&scsipi_cmd, sizeof(scsipi_cmd));
#if 0
if (len != sizeof(struct ioc_toc_header))
ntoc = ((len) - sizeof(struct ioc_toc_header)) /
sizeof(struct cd_toc_entry);
else
#endif
ntoc = len;
scsipi_cmd.opcode = READ_TOC;
if (mode == CD_MSF_FORMAT)
scsipi_cmd.byte2 |= CD_MSF;
scsipi_cmd.from_track = start;
_lto2b(ntoc, scsipi_cmd.data_len);
scsipi_cmd.control = control;
return (scsipi_command(cd->sc_periph,
(struct scsipi_generic *)&scsipi_cmd,
sizeof(struct scsipi_read_toc), (u_char *)data, len, CDRETRIES,
30000, NULL, flags | XS_CTL_DATA_IN));
}
int
cd_load_toc(cd, toc, flags)
struct cd_softc *cd;
struct cd_toc *toc;
int flags;
{
int ntracks, len, error;
if ((error = cd_read_toc(cd, 0, 0, toc, sizeof(toc->header),
flags, 0)) != 0)
return (error);
ntracks = toc->header.ending_track - toc->header.starting_track + 1;
len = (ntracks + 1) * sizeof(struct cd_toc_entry) +
sizeof(toc->header);
if ((error = cd_read_toc(cd, CD_MSF_FORMAT, 0, toc, len,
flags, 0)) != 0)
return (error);
return (0);
}
/*
* Get the scsi driver to send a full inquiry to the device and use the
* results to fill out the disk parameter structure.
*/
int
cd_get_parms(cd, flags)
struct cd_softc *cd;
int flags;
{
/*
* give a number of sectors so that sec * trks * cyls
* is <= disk_size
*/
if (cd_size(cd, flags) == 0)
return (ENXIO);
return (0);
}
int
cdsize(dev)
dev_t dev;
{
/* CD-ROMs are read-only. */
return (-1);
}
int
cddump(dev, blkno, va, size)
dev_t dev;
daddr_t blkno;
caddr_t va;
size_t size;
{
/* Not implemented. */
return (ENXIO);
}
#define dvd_copy_key(dst, src) memcpy((dst), (src), sizeof(dvd_key))
#define dvd_copy_challenge(dst, src) memcpy((dst), (src), sizeof(dvd_challenge))
int
dvd_auth(cd, a)
struct cd_softc *cd;
dvd_authinfo *a;
{
struct scsipi_generic cmd;
u_int8_t buf[20];
int error;
memset(cmd.bytes, 0, 15);
memset(buf, 0, sizeof(buf));
switch (a->type) {
case DVD_LU_SEND_AGID:
cmd.opcode = GPCMD_REPORT_KEY;
cmd.bytes[8] = 8;
cmd.bytes[9] = 0 | (0 << 6);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, 8,
CDRETRIES, 30000, NULL,
XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
a->lsa.agid = buf[7] >> 6;
return (0);
case DVD_LU_SEND_CHALLENGE:
cmd.opcode = GPCMD_REPORT_KEY;
cmd.bytes[8] = 16;
cmd.bytes[9] = 1 | (a->lsc.agid << 6);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, 16,
CDRETRIES, 30000, NULL,
XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
dvd_copy_challenge(a->lsc.chal, &buf[4]);
return (0);
case DVD_LU_SEND_KEY1:
cmd.opcode = GPCMD_REPORT_KEY;
cmd.bytes[8] = 12;
cmd.bytes[9] = 2 | (a->lsk.agid << 6);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, 12,
CDRETRIES, 30000, NULL,
XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
dvd_copy_key(a->lsk.key, &buf[4]);
return (0);
case DVD_LU_SEND_TITLE_KEY:
cmd.opcode = GPCMD_REPORT_KEY;
_lto4b(a->lstk.lba, &cmd.bytes[1]);
cmd.bytes[8] = 12;
cmd.bytes[9] = 4 | (a->lstk.agid << 6);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, 12,
CDRETRIES, 30000, NULL,
XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
a->lstk.cpm = (buf[4] >> 7) & 1;
a->lstk.cp_sec = (buf[4] >> 6) & 1;
a->lstk.cgms = (buf[4] >> 4) & 3;
dvd_copy_key(a->lstk.title_key, &buf[5]);
return (0);
case DVD_LU_SEND_ASF:
cmd.opcode = GPCMD_REPORT_KEY;
cmd.bytes[8] = 8;
cmd.bytes[9] = 5 | (a->lsasf.agid << 6);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, 8,
CDRETRIES, 30000, NULL,
XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
a->lsasf.asf = buf[7] & 1;
return (0);
case DVD_HOST_SEND_CHALLENGE:
cmd.opcode = GPCMD_SEND_KEY;
cmd.bytes[8] = 16;
cmd.bytes[9] = 1 | (a->hsc.agid << 6);
buf[1] = 14;
dvd_copy_challenge(&buf[4], a->hsc.chal);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, 16,
CDRETRIES, 30000, NULL,
XS_CTL_DATA_OUT|XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
a->type = DVD_LU_SEND_KEY1;
return (0);
case DVD_HOST_SEND_KEY2:
cmd.opcode = GPCMD_SEND_KEY;
cmd.bytes[8] = 12;
cmd.bytes[9] = 3 | (a->hsk.agid << 6);
buf[1] = 10;
dvd_copy_key(&buf[4], a->hsk.key);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, 12,
CDRETRIES, 30000, NULL,
XS_CTL_DATA_OUT|XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error) {
a->type = DVD_AUTH_FAILURE;
return (error);
}
a->type = DVD_AUTH_ESTABLISHED;
return (0);
case DVD_INVALIDATE_AGID:
cmd.opcode = GPCMD_REPORT_KEY;
cmd.bytes[9] = 0x3f | (a->lsa.agid << 6);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, 16,
CDRETRIES, 30000, NULL, 0);
if (error)
return (error);
return (0);
default:
return (ENOTTY);
}
}
int
dvd_read_physical(cd, s)
struct cd_softc *cd;
dvd_struct *s;
{
struct scsipi_generic cmd;
u_int8_t buf[4 + 4 * 20], *bufp;
int error;
struct dvd_layer *layer;
int i;
memset(cmd.bytes, 0, 15);
memset(buf, 0, sizeof(buf));
cmd.opcode = GPCMD_READ_DVD_STRUCTURE;
cmd.bytes[6] = s->type;
_lto2b(sizeof(buf), &cmd.bytes[7]);
cmd.bytes[5] = s->physical.layer_num;
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, sizeof(buf),
CDRETRIES, 30000, NULL, XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
for (i = 0, bufp = &buf[4], layer = &s->physical.layer[0]; i < 4;
i++, bufp += 20, layer++) {
memset(layer, 0, sizeof(*layer));
layer->book_version = bufp[0] & 0xf;
layer->book_type = bufp[0] >> 4;
layer->min_rate = bufp[1] & 0xf;
layer->disc_size = bufp[1] >> 4;
layer->layer_type = bufp[2] & 0xf;
layer->track_path = (bufp[2] >> 4) & 1;
layer->nlayers = (bufp[2] >> 5) & 3;
layer->track_density = bufp[3] & 0xf;
layer->linear_density = bufp[3] >> 4;
layer->start_sector = _4btol(&bufp[4]);
layer->end_sector = _4btol(&bufp[8]);
layer->end_sector_l0 = _4btol(&bufp[12]);
layer->bca = bufp[16] >> 7;
}
return (0);
}
int
dvd_read_copyright(cd, s)
struct cd_softc *cd;
dvd_struct *s;
{
struct scsipi_generic cmd;
u_int8_t buf[8];
int error;
memset(cmd.bytes, 0, 15);
memset(buf, 0, sizeof(buf));
cmd.opcode = GPCMD_READ_DVD_STRUCTURE;
cmd.bytes[6] = s->type;
_lto2b(sizeof(buf), &cmd.bytes[7]);
cmd.bytes[5] = s->copyright.layer_num;
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, sizeof(buf),
CDRETRIES, 30000, NULL, XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
s->copyright.cpst = buf[4];
s->copyright.rmi = buf[5];
return (0);
}
int
dvd_read_disckey(cd, s)
struct cd_softc *cd;
dvd_struct *s;
{
struct scsipi_generic cmd;
u_int8_t buf[4 + 2048];
int error;
memset(cmd.bytes, 0, 15);
memset(buf, 0, sizeof(buf));
cmd.opcode = GPCMD_READ_DVD_STRUCTURE;
cmd.bytes[6] = s->type;
_lto2b(sizeof(buf), &cmd.bytes[7]);
cmd.bytes[9] = s->disckey.agid << 6;
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, sizeof(buf),
CDRETRIES, 30000, NULL, XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
memcpy(s->disckey.value, &buf[4], 2048);
return (0);
}
int
dvd_read_bca(cd, s)
struct cd_softc *cd;
dvd_struct *s;
{
struct scsipi_generic cmd;
u_int8_t buf[4 + 188];
int error;
memset(cmd.bytes, 0, 15);
memset(buf, 0, sizeof(buf));
cmd.opcode = GPCMD_READ_DVD_STRUCTURE;
cmd.bytes[6] = s->type;
_lto2b(sizeof(buf), &cmd.bytes[7]);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, sizeof(buf),
CDRETRIES, 30000, NULL, XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
s->bca.len = _2btol(&buf[0]);
if (s->bca.len < 12 || s->bca.len > 188)
return (EIO);
memcpy(s->bca.value, &buf[4], s->bca.len);
return (0);
}
int
dvd_read_manufact(cd, s)
struct cd_softc *cd;
dvd_struct *s;
{
struct scsipi_generic cmd;
u_int8_t buf[4 + 2048];
int error;
memset(cmd.bytes, 0, 15);
memset(buf, 0, sizeof(buf));
cmd.opcode = GPCMD_READ_DVD_STRUCTURE;
cmd.bytes[6] = s->type;
_lto2b(sizeof(buf), &cmd.bytes[7]);
error = scsipi_command(cd->sc_periph, &cmd, 12, buf, sizeof(buf),
CDRETRIES, 30000, NULL, XS_CTL_DATA_IN|XS_CTL_DATA_ONSTACK);
if (error)
return (error);
s->manufact.len = _2btol(&buf[0]);
if (s->manufact.len < 0 || s->manufact.len > 2048)
return (EIO);
memcpy(s->manufact.value, &buf[4], s->manufact.len);
return (0);
}
int
dvd_read_struct(cd, s)
struct cd_softc *cd;
dvd_struct *s;
{
switch (s->type) {
case DVD_STRUCT_PHYSICAL:
return (dvd_read_physical(cd, s));
case DVD_STRUCT_COPYRIGHT:
return (dvd_read_copyright(cd, s));
case DVD_STRUCT_DISCKEY:
return (dvd_read_disckey(cd, s));
case DVD_STRUCT_BCA:
return (dvd_read_bca(cd, s));
case DVD_STRUCT_MANUFACT:
return (dvd_read_manufact(cd, s));
default:
return (EINVAL);
}
}