NetBSD/usr.bin/moduli/qsafe/qsafe.c
2011-09-04 20:55:43 +00:00

335 lines
8.2 KiB
C

/* $NetBSD: qsafe.c,v 1.3 2011/09/04 20:55:43 joerg Exp $ */
/*-
* Copyright 1994 Phil Karn <karn@qualcomm.com>
* Copyright 1996-1998, 2003 William Allen206 Simpson <wsimpson@greendragon.com>
* Copyright 2000 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Test probable "safe" primes,
*
* suitable for use as Diffie-Hellman moduli;
* that is, where q = (p-1)/2 is also prime.
*
* This is the second of two steps.
* This step is processor intensive.
*
* 1996 May William Allen Simpson
* extracted from earlier code by Phil Karn, April 1994.
* read large prime candidates list (q),
* and check prime probability of (p).
* 1998 May William Allen Simpson
* parameterized.
* optionally limit to a single generator.
* 2000 Dec Niels Provos
* convert from GMP to openssl BN.
* 2003 Jun William Allen Simpson
* change outfile definition slightly to match openssh mistake.
* move common file i/o to own file for better documentation.
* redo debugprint again.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <openssl/bn.h>
#include "qfile.h"
/* define DEBUGPRINT 1 */
#define TRIAL_MINIMUM (4)
__dead static void usage(void);
/*
* perform a Miller-Rabin primality test
* on the list of candidates
* (checking both q and p)
* from standard input.
* The result is a list of so-call "safe" primes
* to standard output,
*/
int
main(int argc, char *argv[])
{
BIGNUM *q, *p, *a;
BN_CTX *ctx;
char *cp;
char *lp;
uint32_t count_in = 0;
uint32_t count_out = 0;
uint32_t count_possible = 0;
uint32_t generator_known;
uint32_t generator_wanted = 0;
uint32_t in_tests;
uint32_t in_tries;
uint32_t in_type;
uint32_t in_size;
int trials;
time_t time_start;
time_t time_stop;
setprogname(argv[0]);
if (argc < 2) {
usage();
}
if ((trials = strtoul(argv[1], NULL, 10)) < TRIAL_MINIMUM) {
trials = TRIAL_MINIMUM;
}
if (argc > 2) {
generator_wanted = strtoul(argv[2], NULL, 16);
}
time(&time_start);
p = BN_new();
q = BN_new();
ctx = BN_CTX_new();
(void)fprintf(stderr,
"%.24s Final %d Miller-Rabin trials (%x generator)\n",
ctime(&time_start), trials, generator_wanted);
lp = (char *) malloc((unsigned long) QLINESIZE + 1);
while (fgets(lp, QLINESIZE, stdin) != NULL) {
size_t ll = strlen(lp);
count_in++;
if (ll < 14 || *lp == '!' || *lp == '#') {
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: comment or short"
" line\n", count_in);
#endif
continue;
}
/* time */
cp = &lp[14]; /* (skip) */
/* type */
in_type = strtoul(cp, &cp, 10);
/* tests */
in_tests = strtoul(cp, &cp, 10);
if (in_tests & QTEST_COMPOSITE) {
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: known composite\n",
count_in);
#endif
continue;
}
/* tries */
in_tries = (uint32_t) strtoul(cp, &cp, 10);
/* size (most significant bit) */
in_size = (uint32_t) strtoul(cp, &cp, 10);
/* generator (hex) */
generator_known = (uint32_t) strtoul(cp, &cp, 16);
/* Skip white space */
cp += strspn(cp, " ");
/* modulus (hex) */
switch (in_type) {
case QTYPE_SOPHIE_GERMAINE:
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: (%lu) "
"Sophie-Germaine\n", count_in,
in_type);
#endif
a = q;
BN_hex2bn(&a, cp);
/* p = 2*q + 1 */
BN_lshift(p, q, 1);
BN_add_word(p, 1UL);
in_size += 1;
generator_known = 0;
break;
default:
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: (%lu)\n",
count_in, in_type);
#endif
a = p;
BN_hex2bn(&a, cp);
/* q = (p-1) / 2 */
BN_rshift(q, p, 1);
break;
}
/*
* due to earlier inconsistencies in interpretation, check the
* proposed bit size.
*/
if ((uint32_t)BN_num_bits(p) != (in_size + 1)) {
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: bit size %ul "
"mismatch\n", count_in, in_size);
#endif
continue;
}
if (in_size < QSIZE_MINIMUM) {
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: bit size %ul "
"too short\n", count_in, in_size);
#endif
continue;
}
if (in_tests & QTEST_MILLER_RABIN)
in_tries += trials;
else
in_tries = trials;
/*
* guess unknown generator
*/
if (generator_known == 0) {
if (BN_mod_word(p, 24UL) == 11)
generator_known = 2;
else if (BN_mod_word(p, 12UL) == 5)
generator_known = 3;
else {
BN_ULONG r = BN_mod_word(p, 10UL);
if (r == 3 || r == 7) {
generator_known = 5;
}
}
}
/*
* skip tests when desired generator doesn't match
*/
if (generator_wanted > 0 &&
generator_wanted != generator_known) {
#ifdef DEBUGPRINT
(void)fprintf(stderr,
"%10lu: generator %ld != %ld\n",
count_in, generator_known, generator_wanted);
#endif
continue;
}
count_possible++;
/*
* The (1/4)^N performance bound on Miller-Rabin is extremely
* pessimistic, so don't spend a lot of time really verifying
* that q is prime until after we know that p is also prime. A
* single pass will weed out the vast majority of composite
* q's.
*/
if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: q failed first "
"possible prime test\n", count_in);
#endif
continue;
}
/*
* q is possibly prime, so go ahead and really make sure that
* p is prime. If it is, then we can go back and do the same
* for q. If p is composite, chances are that will show up on
* the first Rabin-Miller iteration so it doesn't hurt to
* specify a high iteration count.
*/
if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: p is not prime\n",
count_in);
#endif
continue;
}
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: p is almost certainly "
"prime\n", count_in);
#endif
/* recheck q more rigorously */
if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
#ifdef DEBUGPRINT
(void)fprintf(stderr, "%10lu: q is not prime\n",
count_in);
#endif
continue;
}
#ifdef DEBUGPRINT
fprintf(stderr, "%10lu: q is almost certainly prime\n",
count_in);
#endif
if (0 > qfileout(stdout,
QTYPE_SAFE,
(in_tests | QTEST_MILLER_RABIN),
in_tries,
in_size,
generator_known,
p)) {
break;
}
count_out++;
#ifdef DEBUGPRINT
fflush(stderr);
fflush(stdout);
#endif
}
time(&time_stop);
free(lp);
BN_free(p);
BN_free(q);
BN_CTX_free(ctx);
fflush(stdout); /* fclose(stdout); */
/* fclose(stdin); */
(void)fprintf(stderr,
"%.24s Found %u safe primes of %u candidates in %lu seconds\n",
ctime(&time_stop), count_out, count_possible,
(long) (time_stop - time_start));
return (0);
}
static void
usage(void)
{
(void)fprintf(stderr, "Usage: %s <trials> [generator]\n",
getprogname());
exit(1);
}