NetBSD/sys/arch/mvme68k/include/vmparam.h
2000-07-27 14:48:58 +00:00

166 lines
5.7 KiB
C

/* $NetBSD: vmparam.h,v 1.15 2000/07/27 14:48:58 scw Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1986, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: vmparam.h 1.16 91/01/18$
*
* @(#)vmparam.h 8.2 (Berkeley) 4/19/94
*/
#ifndef _MVME68K_VMPARAM_H_
#define _MVME68K_VMPARAM_H_
/*
* Machine dependent constants for MVME68K
*/
/*
* USRTEXT is the start of the user text/data space, while USRSTACK
* is the top (end) of the user stack. LOWPAGES and HIGHPAGES are
* the number of pages from the beginning of the P0 region to the
* beginning of the text and from the beginning of the P1 region to the
* beginning of the stack respectively.
*
* NOTE: the ONLY reason that HIGHPAGES is 0x100 instead of UPAGES (3)
* is for HPUX compatibility. Why?? Because HPUX's debuggers
* have the user's stack hard-wired at FFF00000 for post-mortems,
* and we must be compatible...
*/
#define USRTEXT 8192 /* Must equal __LDPGSZ */
#define USRSTACK (-HIGHPAGES*NBPG) /* Start of user stack */
#define BTOPUSRSTACK (0x100000-HIGHPAGES) /* btop(USRSTACK) */
#define P1PAGES 0x100000
#define LOWPAGES 0
#define HIGHPAGES (0x100000/NBPG)
/*
* Virtual memory related constants, all in bytes
*/
#ifndef MAXTSIZ
#define MAXTSIZ (8*1024*1024) /* max text size */
#endif
#ifndef DFLDSIZ
#define DFLDSIZ (32*1024*1024) /* initial data size limit */
#endif
#ifndef MAXDSIZ
#define MAXDSIZ (64*1024*1024) /* max data size */
#endif
#ifndef DFLSSIZ
#define DFLSSIZ (512*1024) /* initial stack size limit */
#endif
#ifndef MAXSSIZ
#define MAXSSIZ MAXDSIZ /* max stack size */
#endif
/*
* Sizes of the system and user portions of the system page table.
*/
/* SYSPTSIZE IS SILLY; IT SHOULD BE COMPUTED AT BOOT TIME */
#define SYSPTSIZE (2 * NPTEPG) /* 8mb */
#define USRPTSIZE (1 * NPTEPG) /* 4mb */
/*
* PTEs for mapping user space into the kernel for phyio operations.
* One page is enough to handle 4Mb of simultaneous raw IO operations.
*/
#ifndef USRIOSIZE
#define USRIOSIZE (1 * NPTEPG) /* 4mb */
#endif
/*
* PTEs for system V style shared memory.
* This is basically slop for kmempt which we actually allocate (malloc) from.
*/
#ifndef SHMMAXPGS
#define SHMMAXPGS 1024 /* 4mb */
#endif
/*
* The time for a process to be blocked before being very swappable.
* This is a number of seconds which the system takes as being a non-trivial
* amount of real time. You probably shouldn't change this;
* it is used in subtle ways (fractions and multiples of it are, that is, like
* half of a ``long time'', almost a long time, etc.)
* It is related to human patience and other factors which don't really
* change over time.
*/
#define MAXSLP 20
/*
* Mach derived constants
*/
/* user/kernel map constants */
#define VM_MIN_ADDRESS ((vaddr_t)0)
#define VM_MAXUSER_ADDRESS ((vaddr_t)0xFFF00000)
#define VM_MAX_ADDRESS ((vaddr_t)0xFFF00000)
#define VM_MIN_KERNEL_ADDRESS ((vaddr_t)0)
#define VM_MAX_KERNEL_ADDRESS ((vaddr_t)0xFFFFF000)
/* virtual sizes (bytes) for various kernel submaps */
#define VM_PHYS_SIZE (USRIOSIZE*NBPG)
/* # of kernel PT pages (initial only, can grow dynamically) */
#define VM_KERNEL_PT_PAGES ((vsize_t)2) /* XXX: SYSPTSIZE */
/* pcb base */
#define pcbb(p) ((u_int)(p)->p_addr)
/*
* Constants which control the way the VM system deals with memory segments.
* The mvme68k port has two physical memory segments: 1 for onboard RAM
* and another for contiguous VMEbus RAM.
*/
#define VM_PHYSSEG_MAX 2
#define VM_PHYSSEG_STRAT VM_PSTRAT_RANDOM
#define VM_PHYSSEG_NOADD
#define VM_NFREELIST 2
#define VM_FREELIST_DEFAULT 0
#define VM_FREELIST_VMEMEM 1
/*
* pmap-specific data stored in the vm_physmem[] array.
*/
struct pmap_physseg {
struct pv_entry *pvent; /* pv table for this seg */
char *attrs; /* page attributes for this seg */
};
#endif /* _MVME68K_VMPARAM_H_ */