NetBSD/sys/dev/usb/if_urtwn.c

4038 lines
109 KiB
C

/* $NetBSD: if_urtwn.c,v 1.25 2013/08/10 21:15:26 jnemeth Exp $ */
/* $OpenBSD: if_urtwn.c,v 1.20 2011/11/26 06:39:33 ckuethe Exp $ */
/*-
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188RU/RTL8192CU.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_urtwn.c,v 1.25 2013/08/10 21:15:26 jnemeth Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#endif
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_urtwnreg.h>
#include <dev/usb/if_urtwnvar.h>
#include <dev/usb/if_urtwn_data.h>
/*
* The sc_write_mtx locking is to prevent sequences of writes from
* being intermingled with each other. I don't know if this is really
* needed. I have added it just to be on the safe side.
*/
#ifdef URTWN_DEBUG
#define DBG_INIT __BIT(0)
#define DBG_FN __BIT(1)
#define DBG_TX __BIT(2)
#define DBG_RX __BIT(3)
#define DBG_STM __BIT(4)
#define DBG_RF __BIT(5)
#define DBG_REG __BIT(6)
#define DBG_ALL 0xffffffffU
u_int urtwn_debug = 0;
#define DPRINTFN(n, s) \
do { if (urtwn_debug & (n)) printf s; } while (/*CONSTCOND*/0)
#else
#define DPRINTFN(n, s)
#endif
static const struct usb_devno urtwn_devs[] = {
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_1 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_2 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8192CU },
{ USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_RTL8192CU },
{ USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_1 },
{ USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_2 },
{ USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CU },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8188CU },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192CU },
{ USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_1 },
{ USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_2 },
{ USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_3 },
{ USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_4 },
{ USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_5 },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RTL8192CU },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8188CU },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_1 },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_2 },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_3 },
{ USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8188CU },
{ USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192CU },
{ USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8188CU },
{ USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8192CU },
{ USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWNUP150 },
{ USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192CU },
{ USB_VENDOR_HP3, USB_PRODUCT_HP3_RTL8188CU },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000M },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_RTL8192CU },
{ USB_VENDOR_NETGEAR4, USB_PRODUCT_NETGEAR4_RTL8188CU },
{ USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RTL8188CU },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_1 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_2 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8192CU },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_3 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_4 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CUS },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_0 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_1 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CTV },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_0 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_1 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_2 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_COMBO },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CUS },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU_2 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8191CU },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CE },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CU },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU_2 },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8192CU },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8192CUR2 },
{ USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8188CU },
{ USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8192CU },
{ USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RTL8192CU }
};
static int urtwn_match(device_t, cfdata_t, void *);
static void urtwn_attach(device_t, device_t, void *);
static int urtwn_detach(device_t, int);
static int urtwn_activate(device_t, enum devact);
CFATTACH_DECL_NEW(urtwn, sizeof(struct urtwn_softc), urtwn_match,
urtwn_attach, urtwn_detach, urtwn_activate);
static int urtwn_open_pipes(struct urtwn_softc *);
static void urtwn_close_pipes(struct urtwn_softc *);
static int urtwn_alloc_rx_list(struct urtwn_softc *);
static void urtwn_free_rx_list(struct urtwn_softc *);
static int urtwn_alloc_tx_list(struct urtwn_softc *);
static void urtwn_free_tx_list(struct urtwn_softc *);
static void urtwn_task(void *);
static void urtwn_do_async(struct urtwn_softc *,
void (*)(struct urtwn_softc *, void *), void *, int);
static void urtwn_wait_async(struct urtwn_softc *);
static int urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
int);
static void urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t);
static void urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t);
static void urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t);
static int urtwn_write_region(struct urtwn_softc *, uint16_t, uint8_t *,
int);
static int urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
int);
static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t);
static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t);
static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t);
static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int);
static void urtwn_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t);
static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t);
static uint8_t urtwn_efuse_read_1(struct urtwn_softc *, uint16_t);
static void urtwn_efuse_read(struct urtwn_softc *);
static int urtwn_read_chipid(struct urtwn_softc *);
#ifdef URTWN_DEBUG
static void urtwn_dump_rom(struct urtwn_softc *, struct r92c_rom *);
#endif
static void urtwn_read_rom(struct urtwn_softc *);
static int urtwn_media_change(struct ifnet *);
static int urtwn_ra_init(struct urtwn_softc *);
static int urtwn_get_nettype(struct urtwn_softc *);
static void urtwn_set_nettype0_msr(struct urtwn_softc *, uint8_t);
static void urtwn_tsf_sync_enable(struct urtwn_softc *);
static void urtwn_set_led(struct urtwn_softc *, int, int);
static void urtwn_calib_to(void *);
static void urtwn_calib_to_cb(struct urtwn_softc *, void *);
static void urtwn_next_scan(void *);
static int urtwn_newstate(struct ieee80211com *, enum ieee80211_state,
int);
static void urtwn_newstate_cb(struct urtwn_softc *, void *);
static int urtwn_wme_update(struct ieee80211com *);
static void urtwn_wme_update_cb(struct urtwn_softc *, void *);
static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *);
static void urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int);
static void urtwn_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
static void urtwn_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
static int urtwn_tx(struct urtwn_softc *, struct mbuf *,
struct ieee80211_node *, struct urtwn_tx_data *);
static void urtwn_start(struct ifnet *);
static void urtwn_watchdog(struct ifnet *);
static int urtwn_ioctl(struct ifnet *, u_long, void *);
static int urtwn_power_on(struct urtwn_softc *);
static int urtwn_llt_init(struct urtwn_softc *);
static void urtwn_fw_reset(struct urtwn_softc *);
static int urtwn_fw_loadpage(struct urtwn_softc *, int, uint8_t *, int);
static int urtwn_load_firmware(struct urtwn_softc *);
static int urtwn_dma_init(struct urtwn_softc *);
static void urtwn_mac_init(struct urtwn_softc *);
static void urtwn_bb_init(struct urtwn_softc *);
static void urtwn_rf_init(struct urtwn_softc *);
static void urtwn_cam_init(struct urtwn_softc *);
static void urtwn_pa_bias_init(struct urtwn_softc *);
static void urtwn_rxfilter_init(struct urtwn_softc *);
static void urtwn_edca_init(struct urtwn_softc *);
static void urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]);
static void urtwn_get_txpower(struct urtwn_softc *, size_t, u_int, u_int,
uint16_t[]);
static void urtwn_set_txpower(struct urtwn_softc *, u_int, u_int);
static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *,
u_int);
static void urtwn_iq_calib(struct urtwn_softc *, bool);
static void urtwn_lc_calib(struct urtwn_softc *);
static void urtwn_temp_calib(struct urtwn_softc *);
static int urtwn_init(struct ifnet *);
static void urtwn_stop(struct ifnet *, int);
static int urtwn_reset(struct ifnet *);
static void urtwn_chip_stop(struct urtwn_softc *);
/* Aliases. */
#define urtwn_bb_write urtwn_write_4
#define urtwn_bb_read urtwn_read_4
static int
urtwn_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return ((usb_lookup(urtwn_devs, uaa->vendor, uaa->product) != NULL) ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE);
}
static void
urtwn_attach(device_t parent, device_t self, void *aux)
{
struct urtwn_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct usb_attach_arg *uaa = aux;
char *devinfop;
size_t i;
int error;
sc->sc_dev = self;
sc->sc_udev = uaa->device;
aprint_naive("\n");
aprint_normal("\n");
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET);
mutex_init(&sc->sc_tx_mtx, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_fwcmd_mtx, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_write_mtx, MUTEX_DEFAULT, IPL_NONE);
usb_init_task(&sc->sc_task, urtwn_task, sc, 0);
callout_init(&sc->sc_scan_to, 0);
callout_setfunc(&sc->sc_scan_to, urtwn_next_scan, sc);
callout_init(&sc->sc_calib_to, 0);
callout_setfunc(&sc->sc_calib_to, urtwn_calib_to, sc);
error = usbd_set_config_no(sc->sc_udev, 1, 0);
if (error != 0) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(error));
goto fail;
}
/* Get the first interface handle. */
error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
if (error != 0) {
aprint_error_dev(self, "could not get interface handle\n");
goto fail;
}
error = urtwn_read_chipid(sc);
if (error != 0) {
aprint_error_dev(self, "unsupported test chip\n");
goto fail;
}
/* Determine number of Tx/Rx chains. */
if (sc->chip & URTWN_CHIP_92C) {
sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
sc->nrxchains = 2;
} else {
sc->ntxchains = 1;
sc->nrxchains = 1;
}
urtwn_read_rom(sc);
aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %zdT%zdR, address %s\n",
(sc->chip & URTWN_CHIP_92C) ? "8192CU" :
(sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
(sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
"8188CUS", sc->ntxchains, sc->nrxchains,
ether_sprintf(ic->ic_myaddr));
error = urtwn_open_pipes(sc);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not open pipes\n");
goto fail;
}
aprint_normal_dev(self, "%d rx pipe%s, %d tx pipe%s\n",
sc->rx_npipe, sc->rx_npipe > 1 ? "s" : "",
sc->tx_npipe, sc->tx_npipe > 1 ? "s" : "");
/*
* Setup the 802.11 device.
*/
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_MONITOR | /* Monitor mode supported. */
IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
IEEE80211_C_SHSLOT | /* Short slot time supported. */
IEEE80211_C_WME | /* 802.11e */
IEEE80211_C_WPA; /* 802.11i */
/* Set supported .11b and .11g rates. */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* Set supported .11b and .11g channels (1 through 14). */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = urtwn_init;
ifp->if_ioctl = urtwn_ioctl;
ifp->if_start = urtwn_start;
ifp->if_watchdog = urtwn_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
/* override default methods */
ic->ic_reset = urtwn_reset;
ic->ic_wme.wme_update = urtwn_wme_update;
/* Override state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = urtwn_newstate;
ieee80211_media_init(ic, urtwn_media_change, ieee80211_media_status);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
SET(sc->sc_flags, URTWN_FLAG_ATTACHED);
return;
fail:
sc->sc_dying = 1;
aprint_error_dev(self, "attach failed\n");
}
static int
urtwn_detach(device_t self, int flags)
{
struct urtwn_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_if;
int s;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
s = splusb();
sc->sc_dying = 1;
callout_stop(&sc->sc_scan_to);
callout_stop(&sc->sc_calib_to);
if (ISSET(sc->sc_flags, URTWN_FLAG_ATTACHED)) {
usb_rem_task(sc->sc_udev, &sc->sc_task);
urtwn_stop(ifp, 0);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
bpf_detach(ifp);
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
/* Abort and close Tx/Rx pipes. */
urtwn_close_pipes(sc);
}
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
callout_destroy(&sc->sc_scan_to);
callout_destroy(&sc->sc_calib_to);
mutex_destroy(&sc->sc_write_mtx);
mutex_destroy(&sc->sc_fwcmd_mtx);
mutex_destroy(&sc->sc_tx_mtx);
mutex_destroy(&sc->sc_task_mtx);
return (0);
}
static int
urtwn_activate(device_t self, enum devact act)
{
struct urtwn_softc *sc = device_private(self);
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(sc->sc_ic.ic_ifp);
return (0);
default:
return (EOPNOTSUPP);
}
}
static int
urtwn_open_pipes(struct urtwn_softc *sc)
{
/* Bulk-out endpoints addresses (from highest to lowest prio). */
static const uint8_t epaddr[] = { 0x02, 0x03, 0x05 };
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
size_t i, ntx = 0;
int error;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Determine the number of bulk-out pipes. */
id = usbd_get_interface_descriptor(sc->sc_iface);
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (ed != NULL &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT)
ntx++;
}
DPRINTFN(DBG_INIT, ("%s: %s: found %zd bulk-out pipes\n",
device_xname(sc->sc_dev), __func__, ntx));
if (ntx == 0 || ntx > R92C_MAX_EPOUT) {
aprint_error_dev(sc->sc_dev,
"%zd: invalid number of Tx bulk pipes\n", ntx);
return (EIO);
}
sc->rx_npipe = 1;
sc->tx_npipe = ntx;
/* Open bulk-in pipe at address 0x81. */
error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
&sc->rx_pipe);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not open Rx bulk pipe"
": %d\n", error);
goto fail;
}
/* Open bulk-out pipes (up to 3). */
for (i = 0; i < ntx; i++) {
error = usbd_open_pipe(sc->sc_iface, epaddr[i],
USBD_EXCLUSIVE_USE, &sc->tx_pipe[i]);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not open Tx bulk pipe 0x%02x: %d\n",
epaddr[i], error);
goto fail;
}
}
/* Map 802.11 access categories to USB pipes. */
sc->ac2idx[WME_AC_BK] =
sc->ac2idx[WME_AC_BE] = (ntx == 3) ? 2 : ((ntx == 2) ? 1 : 0);
sc->ac2idx[WME_AC_VI] = (ntx == 3) ? 1 : 0;
sc->ac2idx[WME_AC_VO] = 0; /* Always use highest prio. */
fail:
if (error != 0)
urtwn_close_pipes(sc);
return (error);
}
static void
urtwn_close_pipes(struct urtwn_softc *sc)
{
usbd_pipe_handle pipe;
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Close Rx pipe. */
CTASSERT(sizeof(pipe) == sizeof(void *));
pipe = atomic_swap_ptr(&sc->rx_pipe, NULL);
if (pipe != NULL) {
usbd_abort_pipe(pipe);
usbd_close_pipe(pipe);
}
/* Close Tx pipes. */
for (i = 0; i < R92C_MAX_EPOUT; i++) {
pipe = atomic_swap_ptr(&sc->tx_pipe[i], NULL);
if (pipe != NULL) {
usbd_abort_pipe(pipe);
usbd_close_pipe(pipe);
}
}
}
static int
urtwn_alloc_rx_list(struct urtwn_softc *sc)
{
struct urtwn_rx_data *data;
size_t i;
int error = 0;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
data = &sc->rx_data[i];
data->sc = sc; /* Backpointer for callbacks. */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer\n");
error = ENOMEM;
break;
}
data->buf = usbd_alloc_buffer(data->xfer, URTWN_RXBUFSZ);
if (data->buf == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer buffer\n");
error = ENOMEM;
break;
}
}
if (error != 0)
urtwn_free_rx_list(sc);
return (error);
}
static void
urtwn_free_rx_list(struct urtwn_softc *sc)
{
usbd_xfer_handle xfer;
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* NB: Caller must abort pipe first. */
for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
CTASSERT(sizeof(xfer) == sizeof(void *));
xfer = atomic_swap_ptr(&sc->rx_data[i].xfer, NULL);
if (xfer != NULL)
usbd_free_xfer(xfer);
}
}
static int
urtwn_alloc_tx_list(struct urtwn_softc *sc)
{
struct urtwn_tx_data *data;
size_t i;
int error = 0;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
mutex_enter(&sc->sc_tx_mtx);
TAILQ_INIT(&sc->tx_free_list);
for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
data->sc = sc; /* Backpointer for callbacks. */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer\n");
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer, URTWN_TXBUFSZ);
if (data->buf == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer buffer\n");
error = ENOMEM;
goto fail;
}
/* Append this Tx buffer to our free list. */
TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
}
mutex_exit(&sc->sc_tx_mtx);
return (0);
fail:
urtwn_free_tx_list(sc);
mutex_exit(&sc->sc_tx_mtx);
return (error);
}
static void
urtwn_free_tx_list(struct urtwn_softc *sc)
{
usbd_xfer_handle xfer;
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* NB: Caller must abort pipe first. */
for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
CTASSERT(sizeof(xfer) == sizeof(void *));
xfer = atomic_swap_ptr(&sc->tx_data[i].xfer, NULL);
if (xfer != NULL)
usbd_free_xfer(xfer);
}
}
static void
urtwn_task(void *arg)
{
struct urtwn_softc *sc = arg;
struct urtwn_host_cmd_ring *ring = &sc->cmdq;
struct urtwn_host_cmd *cmd;
int s;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Process host commands. */
s = splusb();
mutex_spin_enter(&sc->sc_task_mtx);
while (ring->next != ring->cur) {
cmd = &ring->cmd[ring->next];
mutex_spin_exit(&sc->sc_task_mtx);
splx(s);
/* Invoke callback with kernel lock held. */
cmd->cb(sc, cmd->data);
s = splusb();
mutex_spin_enter(&sc->sc_task_mtx);
ring->queued--;
ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT;
}
mutex_spin_exit(&sc->sc_task_mtx);
wakeup(&sc->cmdq);
splx(s);
}
static void
urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *),
void *arg, int len)
{
struct urtwn_host_cmd_ring *ring = &sc->cmdq;
struct urtwn_host_cmd *cmd;
int s;
DPRINTFN(DBG_FN, ("%s: %s: cb=%p, arg=%p, len=%d\n",
device_xname(sc->sc_dev), __func__, cb, arg, len));
s = splusb();
mutex_spin_enter(&sc->sc_task_mtx);
cmd = &ring->cmd[ring->cur];
cmd->cb = cb;
KASSERT(len <= sizeof(cmd->data));
memcpy(cmd->data, arg, len);
ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT;
/* If there is no pending command already, schedule a task. */
if (!sc->sc_dying && ++ring->queued == 1) {
mutex_spin_exit(&sc->sc_task_mtx);
usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
} else
mutex_spin_exit(&sc->sc_task_mtx);
splx(s);
}
static void
urtwn_wait_async(struct urtwn_softc *sc)
{
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Wait for all queued asynchronous commands to complete. */
while (sc->cmdq.queued > 0)
tsleep(&sc->cmdq, 0, "endtask", 0);
}
static int
urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
usbd_status error;
KASSERT(mutex_owned(&sc->sc_write_mtx));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = R92C_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != USBD_NORMAL_COMPLETION) {
DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
device_xname(sc->sc_dev), __func__, error, addr, len));
}
return (error);
}
static void
urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
{
DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
device_xname(sc->sc_dev), __func__, addr, val));
urtwn_write_region_1(sc, addr, &val, 1);
}
static void
urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
{
uint8_t buf[2];
DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
device_xname(sc->sc_dev), __func__, addr, val));
buf[0] = (uint8_t)val;
buf[1] = (uint8_t)(val >> 8);
urtwn_write_region_1(sc, addr, buf, 2);
}
static void
urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
{
uint8_t buf[4];
DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
device_xname(sc->sc_dev), __func__, addr, val));
buf[0] = (uint8_t)val;
buf[1] = (uint8_t)(val >> 8);
buf[2] = (uint8_t)(val >> 16);
buf[3] = (uint8_t)(val >> 24);
urtwn_write_region_1(sc, addr, buf, 4);
}
static int
urtwn_write_region(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len)
{
DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, len=0x%x\n",
device_xname(sc->sc_dev), __func__, addr, len));
return urtwn_write_region_1(sc, addr, buf, len);
}
static int
urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = R92C_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != USBD_NORMAL_COMPLETION) {
DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
device_xname(sc->sc_dev), __func__, error, addr, len));
}
return (error);
}
static uint8_t
urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
{
uint8_t val;
if (urtwn_read_region_1(sc, addr, &val, 1) != USBD_NORMAL_COMPLETION)
return (0xff);
DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
device_xname(sc->sc_dev), __func__, addr, val));
return (val);
}
static uint16_t
urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
{
uint8_t buf[2];
uint16_t val;
if (urtwn_read_region_1(sc, addr, buf, 2) != USBD_NORMAL_COMPLETION)
return (0xffff);
val = LE_READ_2(&buf[0]);
DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
device_xname(sc->sc_dev), __func__, addr, val));
return (val);
}
static uint32_t
urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
{
uint8_t buf[4];
uint32_t val;
if (urtwn_read_region_1(sc, addr, buf, 4) != USBD_NORMAL_COMPLETION)
return (0xffffffff);
val = LE_READ_4(&buf[0]);
DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
device_xname(sc->sc_dev), __func__, addr, val));
return (val);
}
static int
urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
{
struct r92c_fw_cmd cmd;
uint8_t *cp;
int fwcur;
int ntries;
DPRINTFN(DBG_REG, ("%s: %s: id=%d, buf=%p, len=%d\n",
device_xname(sc->sc_dev), __func__, id, buf, len));
KASSERT(mutex_owned(&sc->sc_write_mtx));
mutex_enter(&sc->sc_fwcmd_mtx);
fwcur = sc->fwcur;
sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
mutex_exit(&sc->sc_fwcmd_mtx);
/* Wait for current FW box to be empty. */
for (ntries = 0; ntries < 100; ntries++) {
if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << fwcur)))
break;
DELAY(1);
}
if (ntries == 100) {
aprint_error_dev(sc->sc_dev,
"could not send firmware command %d\n", id);
return (ETIMEDOUT);
}
memset(&cmd, 0, sizeof(cmd));
KASSERT(len <= sizeof(cmd.msg));
memcpy(cmd.msg, buf, len);
/* Write the first word last since that will trigger the FW. */
cp = (uint8_t *)&cmd;
if (len >= 4) {
cmd.id = id | R92C_CMD_FLAG_EXT;
urtwn_write_region(sc, R92C_HMEBOX_EXT(fwcur), &cp[1], 2);
urtwn_write_4(sc, R92C_HMEBOX(fwcur),
cp[0] + (cp[3] << 8) + (cp[4] << 16) + (cp[5] << 24));
} else {
cmd.id = id;
urtwn_write_region(sc, R92C_HMEBOX(fwcur), cp, len);
}
return (0);
}
static void
urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
{
urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
}
static uint32_t
urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
{
uint32_t reg[R92C_MAX_CHAINS], val;
reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
if (chain != 0) {
reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
}
urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) {
val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
} else {
val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
}
return (MS(val, R92C_LSSI_READBACK_DATA));
}
static int
urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
{
int ntries;
KASSERT(mutex_owned(&sc->sc_write_mtx));
urtwn_write_4(sc, R92C_LLT_INIT,
SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
SM(R92C_LLT_INIT_ADDR, addr) |
SM(R92C_LLT_INIT_DATA, data));
/* Wait for write operation to complete. */
for (ntries = 0; ntries < 20; ntries++) {
if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
R92C_LLT_INIT_OP_NO_ACTIVE) {
/* Done */
return (0);
}
DELAY(5);
}
return (ETIMEDOUT);
}
static uint8_t
urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr)
{
uint32_t reg;
int ntries;
KASSERT(mutex_owned(&sc->sc_write_mtx));
reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
reg &= ~R92C_EFUSE_CTRL_VALID;
urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
/* Wait for read operation to complete. */
for (ntries = 0; ntries < 100; ntries++) {
reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
if (reg & R92C_EFUSE_CTRL_VALID) {
/* Done */
return (MS(reg, R92C_EFUSE_CTRL_DATA));
}
DELAY(5);
}
aprint_error_dev(sc->sc_dev,
"could not read efuse byte at address 0x%04x\n", addr);
return (0xff);
}
static void
urtwn_efuse_read(struct urtwn_softc *sc)
{
uint8_t *rom = (uint8_t *)&sc->rom;
uint32_t reg;
uint16_t addr = 0;
uint8_t off, msk;
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
}
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
reg | R92C_SYS_FUNC_EN_ELDR);
}
reg = urtwn_read_2(sc, R92C_SYS_CLKR);
if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
(R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
urtwn_write_2(sc, R92C_SYS_CLKR,
reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
}
memset(&sc->rom, 0xff, sizeof(sc->rom));
while (addr < 512) {
reg = urtwn_efuse_read_1(sc, addr);
if (reg == 0xff)
break;
addr++;
off = reg >> 4;
msk = reg & 0xf;
for (i = 0; i < 4; i++) {
if (msk & (1U << i))
continue;
rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr);
addr++;
rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr);
addr++;
}
}
#ifdef URTWN_DEBUG
if (urtwn_debug & DBG_INIT) {
/* Dump ROM content. */
printf("%s: %s", device_xname(sc->sc_dev), __func__);
for (i = 0; i < (int)sizeof(sc->rom); i++)
printf(":%02x", rom[i]);
printf("\n");
}
#endif
}
static int
urtwn_read_chipid(struct urtwn_softc *sc)
{
uint32_t reg;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
sc->chip = 0;
reg = urtwn_read_4(sc, R92C_SYS_CFG);
if (reg & R92C_SYS_CFG_TRP_VAUX_EN) {
/* test chip, not supported */
return (EIO);
}
if (reg & R92C_SYS_CFG_TYPE_92C) {
sc->chip |= URTWN_CHIP_92C;
/* Check if it is a castrated 8192C. */
if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
R92C_HPON_FSM_CHIP_BONDING_ID) ==
R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) {
sc->chip |= URTWN_CHIP_92C_1T2R;
}
}
if (reg & R92C_SYS_CFG_VENDOR_UMC) {
sc->chip |= URTWN_CHIP_UMC;
if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) {
sc->chip |= URTWN_CHIP_UMC_A_CUT;
}
}
return (0);
}
#ifdef URTWN_DEBUG
static void
urtwn_dump_rom(struct urtwn_softc *sc, struct r92c_rom *rp)
{
aprint_normal_dev(sc->sc_dev,
"id 0x%04x, dbg_sel 0x%x, vid 0x%x, pid 0x%x\n",
rp->id, rp->dbg_sel, rp->vid, rp->pid);
aprint_normal_dev(sc->sc_dev,
"usb_opt 0x%x, ep_setting 0x%x, usb_phy 0x%x\n",
rp->usb_opt, rp->ep_setting, rp->usb_phy);
aprint_normal_dev(sc->sc_dev,
"macaddr %02x:%02x:%02x:%02x:%02x:%02x\n",
rp->macaddr[0], rp->macaddr[1],
rp->macaddr[2], rp->macaddr[3],
rp->macaddr[4], rp->macaddr[5]);
aprint_normal_dev(sc->sc_dev,
"string %s, subcustomer_id 0x%x\n",
rp->string, rp->subcustomer_id);
aprint_normal_dev(sc->sc_dev,
"cck_tx_pwr c0: %d %d %d, c1: %d %d %d\n",
rp->cck_tx_pwr[0][0], rp->cck_tx_pwr[0][1], rp->cck_tx_pwr[0][2],
rp->cck_tx_pwr[1][0], rp->cck_tx_pwr[1][1], rp->cck_tx_pwr[1][2]);
aprint_normal_dev(sc->sc_dev,
"ht40_1s_tx_pwr c0 %d %d %d, c1 %d %d %d\n",
rp->ht40_1s_tx_pwr[0][0], rp->ht40_1s_tx_pwr[0][1],
rp->ht40_1s_tx_pwr[0][2],
rp->ht40_1s_tx_pwr[1][0], rp->ht40_1s_tx_pwr[1][1],
rp->ht40_1s_tx_pwr[1][2]);
aprint_normal_dev(sc->sc_dev,
"ht40_2s_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
rp->ht40_2s_tx_pwr_diff[0] & 0xf, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
rp->ht40_2s_tx_pwr_diff[2] & 0xf,
rp->ht40_2s_tx_pwr_diff[0] >> 4, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
rp->ht40_2s_tx_pwr_diff[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"ht20_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
rp->ht20_tx_pwr_diff[0] & 0xf, rp->ht20_tx_pwr_diff[1] & 0xf,
rp->ht20_tx_pwr_diff[2] & 0xf,
rp->ht20_tx_pwr_diff[0] >> 4, rp->ht20_tx_pwr_diff[1] >> 4,
rp->ht20_tx_pwr_diff[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"ofdm_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
rp->ofdm_tx_pwr_diff[0] & 0xf, rp->ofdm_tx_pwr_diff[1] & 0xf,
rp->ofdm_tx_pwr_diff[2] & 0xf,
rp->ofdm_tx_pwr_diff[0] >> 4, rp->ofdm_tx_pwr_diff[1] >> 4,
rp->ofdm_tx_pwr_diff[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"ht40_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
rp->ht40_max_pwr[0] & 0xf, rp->ht40_max_pwr[1] & 0xf,
rp->ht40_max_pwr[2] & 0xf,
rp->ht40_max_pwr[0] >> 4, rp->ht40_max_pwr[1] >> 4,
rp->ht40_max_pwr[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"ht20_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
rp->ht20_max_pwr[0] & 0xf, rp->ht20_max_pwr[1] & 0xf,
rp->ht20_max_pwr[2] & 0xf,
rp->ht20_max_pwr[0] >> 4, rp->ht20_max_pwr[1] >> 4,
rp->ht20_max_pwr[2] >> 4);
aprint_normal_dev(sc->sc_dev,
"xtal_calib %d, tssi %d %d, thermal %d\n",
rp->xtal_calib, rp->tssi[0], rp->tssi[1], rp->thermal_meter);
aprint_normal_dev(sc->sc_dev,
"rf_opt1 0x%x, rf_opt2 0x%x, rf_opt3 0x%x, rf_opt4 0x%x\n",
rp->rf_opt1, rp->rf_opt2, rp->rf_opt3, rp->rf_opt4);
aprint_normal_dev(sc->sc_dev,
"channnel_plan %d, version %d customer_id 0x%x\n",
rp->channel_plan, rp->version, rp->curstomer_id);
}
#endif
static void
urtwn_read_rom(struct urtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92c_rom *rom = &sc->rom;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
mutex_enter(&sc->sc_write_mtx);
/* Read full ROM image. */
urtwn_efuse_read(sc);
#ifdef URTWN_DEBUG
if (urtwn_debug & DBG_REG)
urtwn_dump_rom(sc, rom);
#endif
/* XXX Weird but this is what the vendor driver does. */
sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa);
sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
DPRINTFN(DBG_INIT,
("%s: %s: PA setting=0x%x, board=0x%x, regulatory=%d\n",
device_xname(sc->sc_dev), __func__, sc->pa_setting,
sc->board_type, sc->regulatory));
IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
mutex_exit(&sc->sc_write_mtx);
}
static int
urtwn_media_change(struct ifnet *ifp)
{
#ifdef URTWN_DEBUG
struct urtwn_softc *sc = ifp->if_softc;
#endif
int error;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
if ((error = ieee80211_media_change(ifp)) != ENETRESET)
return (error);
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
urtwn_init(ifp);
}
return (0);
}
/*
* Initialize rate adaptation in firmware.
*/
static int
urtwn_ra_init(struct urtwn_softc *sc)
{
static const uint8_t map[] = {
2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108
};
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct ieee80211_rateset *rs = &ni->ni_rates;
struct r92c_fw_cmd_macid_cfg cmd;
uint32_t rates, basicrates;
uint32_t mask;
uint8_t mode;
size_t maxrate, maxbasicrate, i, j;
int error;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Get normal and basic rates mask. */
rates = basicrates = 0;
maxrate = maxbasicrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
/* Convert 802.11 rate to HW rate index. */
for (j = 0; j < __arraycount(map); j++) {
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) {
break;
}
}
if (j == __arraycount(map)) {
/* Unknown rate, skip. */
continue;
}
rates |= 1U << j;
if (j > maxrate) {
maxrate = j;
}
if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
basicrates |= 1U << j;
if (j > maxbasicrate) {
maxbasicrate = j;
}
}
}
if (ic->ic_curmode == IEEE80211_MODE_11B) {
mode = R92C_RAID_11B;
} else {
mode = R92C_RAID_11BG;
}
DPRINTFN(DBG_INIT, ("%s: %s: mode=0x%x rates=0x%x, basicrates=0x%x, "
"maxrate=%zx, maxbasicrate=%zx\n",
device_xname(sc->sc_dev), __func__, mode, rates, basicrates,
maxrate, maxbasicrate));
if (basicrates == 0) {
basicrates |= 1; /* add 1Mbps */
}
/* Set rates mask for group addressed frames. */
cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID;
mask = (mode << 28) | basicrates;
cmd.mask[0] = (uint8_t)mask;
cmd.mask[1] = (uint8_t)(mask >> 8);
cmd.mask[2] = (uint8_t)(mask >> 16);
cmd.mask[3] = (uint8_t)(mask >> 24);
error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not add broadcast station\n");
return (error);
}
/* Set initial MRR rate. */
DPRINTFN(DBG_INIT, ("%s: %s: maxbasicrate=%zd\n",
device_xname(sc->sc_dev), __func__, maxbasicrate));
urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC), maxbasicrate);
/* Set rates mask for unicast frames. */
cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID;
mask = (mode << 28) | rates;
cmd.mask[0] = (uint8_t)mask;
cmd.mask[1] = (uint8_t)(mask >> 8);
cmd.mask[2] = (uint8_t)(mask >> 16);
cmd.mask[3] = (uint8_t)(mask >> 24);
error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not add BSS station\n");
return (error);
}
/* Set initial MRR rate. */
DPRINTFN(DBG_INIT, ("%s: %s: maxrate=%zd\n", device_xname(sc->sc_dev),
__func__, maxrate));
urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS), maxrate);
/* Indicate highest supported rate. */
ni->ni_txrate = rs->rs_nrates - 1;
return (0);
}
static int
urtwn_get_nettype(struct urtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int type;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
type = R92C_CR_NETTYPE_INFRA;
break;
case IEEE80211_M_IBSS:
type = R92C_CR_NETTYPE_ADHOC;
break;
default:
type = R92C_CR_NETTYPE_NOLINK;
break;
}
return (type);
}
static void
urtwn_set_nettype0_msr(struct urtwn_softc *sc, uint8_t type)
{
uint8_t reg;
DPRINTFN(DBG_FN, ("%s: %s: type=%d\n", device_xname(sc->sc_dev),
__func__, type));
KASSERT(mutex_owned(&sc->sc_write_mtx));
reg = urtwn_read_1(sc, R92C_CR + 2) & 0x0c;
urtwn_write_1(sc, R92C_CR + 2, reg | type);
}
static void
urtwn_tsf_sync_enable(struct urtwn_softc *sc)
{
struct ieee80211_node *ni = sc->sc_ic.ic_bss;
uint64_t tsf;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Enable TSF synchronization. */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Correct TSF */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
/* Set initial TSF. */
tsf = ni->ni_tstamp.tsf;
tsf = le64toh(tsf);
tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU));
tsf -= IEEE80211_DUR_TU;
urtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf);
urtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32));
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
}
static void
urtwn_set_led(struct urtwn_softc *sc, int led, int on)
{
uint8_t reg;
DPRINTFN(DBG_FN, ("%s: %s: led=%d, on=%d\n", device_xname(sc->sc_dev),
__func__, led, on));
KASSERT(mutex_owned(&sc->sc_write_mtx));
if (led == URTWN_LED_LINK) {
reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
if (!on) {
reg |= R92C_LEDCFG0_DIS;
}
urtwn_write_1(sc, R92C_LEDCFG0, reg);
sc->ledlink = on; /* Save LED state. */
}
}
static void
urtwn_calib_to(void *arg)
{
struct urtwn_softc *sc = arg;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
if (sc->sc_dying)
return;
/* Do it in a process context. */
urtwn_do_async(sc, urtwn_calib_to_cb, NULL, 0);
}
/* ARGSUSED */
static void
urtwn_calib_to_cb(struct urtwn_softc *sc, void *arg)
{
struct r92c_fw_cmd_rssi cmd;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
goto restart_timer;
mutex_enter(&sc->sc_write_mtx);
if (sc->avg_pwdb != -1) {
/* Indicate Rx signal strength to FW for rate adaptation. */
memset(&cmd, 0, sizeof(cmd));
cmd.macid = 0; /* BSS. */
cmd.pwdb = sc->avg_pwdb;
DPRINTFN(DBG_RF, ("%s: %s: sending RSSI command avg=%d\n",
device_xname(sc->sc_dev), __func__, sc->avg_pwdb));
urtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd));
}
/* Do temperature compensation. */
urtwn_temp_calib(sc);
mutex_exit(&sc->sc_write_mtx);
restart_timer:
if (!sc->sc_dying) {
/* Restart calibration timer. */
callout_schedule(&sc->sc_calib_to, hz);
}
}
static void
urtwn_next_scan(void *arg)
{
struct urtwn_softc *sc = arg;
int s;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
if (sc->sc_dying)
return;
s = splnet();
if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(&sc->sc_ic);
splx(s);
}
static int
urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct urtwn_softc *sc = ic->ic_ifp->if_softc;
struct urtwn_cmd_newstate cmd;
DPRINTFN(DBG_FN, ("%s: %s: nstate=%s(%d), arg=%d\n",
device_xname(sc->sc_dev), __func__,
ieee80211_state_name[nstate], nstate, arg));
callout_stop(&sc->sc_scan_to);
callout_stop(&sc->sc_calib_to);
/* Do it in a process context. */
cmd.state = nstate;
cmd.arg = arg;
urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd));
return (0);
}
static void
urtwn_newstate_cb(struct urtwn_softc *sc, void *arg)
{
struct urtwn_cmd_newstate *cmd = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
enum ieee80211_state ostate = ic->ic_state;
enum ieee80211_state nstate = cmd->state;
uint32_t reg;
uint8_t sifs_time;
int s;
DPRINTFN(DBG_FN|DBG_STM, ("%s: %s: %s(%d)->%s(%d)\n",
device_xname(sc->sc_dev), __func__,
ieee80211_state_name[ostate], ostate,
ieee80211_state_name[nstate], nstate));
s = splnet();
mutex_enter(&sc->sc_write_mtx);
callout_stop(&sc->sc_scan_to);
callout_stop(&sc->sc_calib_to);
switch (ostate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_SCAN:
if (nstate != IEEE80211_S_SCAN) {
/*
* End of scanning
*/
/* flush 4-AC Queue after site_survey */
urtwn_write_1(sc, R92C_TXPAUSE, 0x0);
/* Allow Rx from our BSSID only. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) |
R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
}
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
/* Turn link LED off. */
urtwn_set_led(sc, URTWN_LED_LINK, 0);
/* Set media status to 'No Link'. */
urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Stop Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
/* Reset TSF. */
urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
/* Disable TSF synchronization. */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) |
R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Back to 20MHz mode */
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
if (ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_opmode == IEEE80211_M_HOSTAP) {
/* Stop BCN */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) &
~(R92C_BCN_CTRL_EN_BCN | R92C_BCN_CTRL_TXBCN_RPT));
}
/* Reset EDCA parameters. */
urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
/* flush all cam entries */
urtwn_cam_init(sc);
break;
}
switch (nstate) {
case IEEE80211_S_INIT:
/* Turn link LED off. */
urtwn_set_led(sc, URTWN_LED_LINK, 0);
break;
case IEEE80211_S_SCAN:
if (ostate != IEEE80211_S_SCAN) {
/*
* Begin of scanning
*/
/* Set gain for scanning. */
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
/* Set media status to 'No Link'. */
urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Allow Rx from any BSSID. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Stop Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
/* Disable update TSF */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) |
R92C_BCN_CTRL_DIS_TSF_UDT0);
}
/* Make link LED blink during scan. */
urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
/* Pause AC Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE,
urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
/* Start periodic scan. */
if (!sc->sc_dying)
callout_schedule(&sc->sc_scan_to, hz / 5);
break;
case IEEE80211_S_AUTH:
/* Set initial gain under link. */
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
#ifdef doaslinux
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
#else
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
#endif
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
#ifdef doaslinux
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
#else
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
#endif
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
/* Set media status to 'No Link'. */
urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Allow Rx from any BSSID. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
break;
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
ni = ic->ic_bss;
/* XXX: Set 20MHz mode */
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Back to 20MHz mode */
urtwn_set_chan(sc, ic->ic_curchan,
IEEE80211_HTINFO_2NDCHAN_NONE);
/* Set media status to 'No Link'. */
urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Enable Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Allow Rx from any BSSID. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Accept Rx data/control/management frames */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) |
R92C_RCR_ADF | R92C_RCR_ACF | R92C_RCR_AMF);
/* Turn link LED on. */
urtwn_set_led(sc, URTWN_LED_LINK, 1);
break;
}
/* Set media status to 'Associated'. */
urtwn_set_nettype0_msr(sc, urtwn_get_nettype(sc));
/* Set BSSID. */
urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
if (ic->ic_curmode == IEEE80211_MODE_11B) {
urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
} else {
/* 802.11b/g */
urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
}
/* Enable Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Set beacon interval. */
urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
if (ic->ic_opmode == IEEE80211_M_STA) {
/* Allow Rx from our BSSID only. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) |
R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
/* Enable TSF synchronization. */
urtwn_tsf_sync_enable(sc);
}
sifs_time = 10;
urtwn_write_1(sc, R92C_SIFS_CCK + 1, sifs_time);
urtwn_write_1(sc, R92C_SIFS_OFDM + 1, sifs_time);
urtwn_write_1(sc, R92C_SPEC_SIFS + 1, sifs_time);
urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, sifs_time);
urtwn_write_1(sc, R92C_R2T_SIFS + 1, sifs_time);
urtwn_write_1(sc, R92C_T2T_SIFS + 1, sifs_time);
/* Intialize rate adaptation. */
urtwn_ra_init(sc);
/* Turn link LED on. */
urtwn_set_led(sc, URTWN_LED_LINK, 1);
/* Reset average RSSI. */
sc->avg_pwdb = -1;
/* Reset temperature calibration state machine. */
sc->thcal_state = 0;
sc->thcal_lctemp = 0;
/* Start periodic calibration. */
if (!sc->sc_dying)
callout_schedule(&sc->sc_calib_to, hz);
break;
}
(*sc->sc_newstate)(ic, nstate, cmd->arg);
mutex_exit(&sc->sc_write_mtx);
splx(s);
}
static int
urtwn_wme_update(struct ieee80211com *ic)
{
struct urtwn_softc *sc = ic->ic_ifp->if_softc;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* don't override default WME values if WME is not actually enabled */
if (!(ic->ic_flags & IEEE80211_F_WME))
return (0);
/* Do it in a process context. */
urtwn_do_async(sc, urtwn_wme_update_cb, NULL, 0);
return (0);
}
static void
urtwn_wme_update_cb(struct urtwn_softc *sc, void *arg)
{
static const uint16_t ac2reg[WME_NUM_AC] = {
R92C_EDCA_BE_PARAM,
R92C_EDCA_BK_PARAM,
R92C_EDCA_VI_PARAM,
R92C_EDCA_VO_PARAM
};
struct ieee80211com *ic = &sc->sc_ic;
const struct wmeParams *wmep;
int ac, aifs, slottime;
int s;
DPRINTFN(DBG_FN|DBG_STM, ("%s: %s\n", device_xname(sc->sc_dev),
__func__));
s = splnet();
mutex_enter(&sc->sc_write_mtx);
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
for (ac = 0; ac < WME_NUM_AC; ac++) {
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
/* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
aifs = wmep->wmep_aifsn * slottime + 10;
urtwn_write_4(sc, ac2reg[ac],
SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) |
SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) |
SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) |
SM(R92C_EDCA_PARAM_AIFS, aifs));
}
mutex_exit(&sc->sc_write_mtx);
splx(s);
}
static void
urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
{
int pwdb;
DPRINTFN(DBG_FN, ("%s: %s: rate=%d, rsst=%d\n",
device_xname(sc->sc_dev), __func__, rate, rssi));
/* Convert antenna signal to percentage. */
if (rssi <= -100 || rssi >= 20)
pwdb = 0;
else if (rssi >= 0)
pwdb = 100;
else
pwdb = 100 + rssi;
if (rate <= 3) {
/* CCK gain is smaller than OFDM/MCS gain. */
pwdb += 6;
if (pwdb > 100)
pwdb = 100;
if (pwdb <= 14)
pwdb -= 4;
else if (pwdb <= 26)
pwdb -= 8;
else if (pwdb <= 34)
pwdb -= 6;
else if (pwdb <= 42)
pwdb -= 2;
}
if (sc->avg_pwdb == -1) /* Init. */
sc->avg_pwdb = pwdb;
else if (sc->avg_pwdb < pwdb)
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
else
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
DPRINTFN(DBG_RF, ("%s: %s: rate=%d rssi=%d PWDB=%d EMA=%d\n",
device_xname(sc->sc_dev), __func__,
rate, rssi, pwdb, sc->avg_pwdb));
}
static int8_t
urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
{
static const int8_t cckoff[] = { 16, -12, -26, -46 };
struct r92c_rx_phystat *phy;
struct r92c_rx_cck *cck;
uint8_t rpt;
int8_t rssi;
DPRINTFN(DBG_FN, ("%s: %s: rate=%d\n", device_xname(sc->sc_dev),
__func__, rate));
if (rate <= 3) {
cck = (struct r92c_rx_cck *)physt;
if (ISSET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR)) {
rpt = (cck->agc_rpt >> 5) & 0x3;
rssi = (cck->agc_rpt & 0x1f) << 1;
} else {
rpt = (cck->agc_rpt >> 6) & 0x3;
rssi = cck->agc_rpt & 0x3e;
}
rssi = cckoff[rpt] - rssi;
} else { /* OFDM/HT. */
phy = (struct r92c_rx_phystat *)physt;
rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
}
return (rssi);
}
static void
urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct r92c_rx_stat *stat;
uint32_t rxdw0, rxdw3;
struct mbuf *m;
uint8_t rate;
int8_t rssi = 0;
int s, infosz;
DPRINTFN(DBG_FN, ("%s: %s: buf=%p, pktlen=%d\n",
device_xname(sc->sc_dev), __func__, buf, pktlen));
stat = (struct r92c_rx_stat *)buf;
rxdw0 = le32toh(stat->rxdw0);
rxdw3 = le32toh(stat->rxdw3);
if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) {
/*
* This should not happen since we setup our Rx filter
* to not receive these frames.
*/
DPRINTFN(DBG_RX, ("%s: %s: CRC error\n",
device_xname(sc->sc_dev), __func__));
ifp->if_ierrors++;
return;
}
/*
* XXX: This will drop most control packets. Do we really
* want this in IEEE80211_M_MONITOR mode?
*/
// if (__predict_false(pktlen < (int)sizeof(*wh))) {
if (__predict_false(pktlen < (int)sizeof(struct ieee80211_frame_ack))) {
DPRINTFN(DBG_RX, ("%s: %s: packet too short %d\n",
device_xname(sc->sc_dev), __func__, pktlen));
ic->ic_stats.is_rx_tooshort++;
ifp->if_ierrors++;
return;
}
if (__predict_false(pktlen > MCLBYTES)) {
DPRINTFN(DBG_RX, ("%s: %s: packet too big %d\n",
device_xname(sc->sc_dev), __func__, pktlen));
ifp->if_ierrors++;
return;
}
rate = MS(rxdw3, R92C_RXDW3_RATE);
infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
/* Get RSSI from PHY status descriptor if present. */
if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
rssi = urtwn_get_rssi(sc, rate, &stat[1]);
/* Update our average RSSI. */
urtwn_update_avgrssi(sc, rate, rssi);
}
DPRINTFN(DBG_RX, ("%s: %s: Rx frame len=%d rate=%d infosz=%d rssi=%d\n",
device_xname(sc->sc_dev), __func__, pktlen, rate, infosz, rssi));
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (__predict_false(m == NULL)) {
aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf\n");
ic->ic_stats.is_rx_nobuf++;
ifp->if_ierrors++;
return;
}
if (pktlen > (int)MHLEN) {
MCLGET(m, M_DONTWAIT);
if (__predict_false(!(m->m_flags & M_EXT))) {
aprint_error_dev(sc->sc_dev,
"couldn't allocate rx mbuf cluster\n");
m_freem(m);
ic->ic_stats.is_rx_nobuf++;
ifp->if_ierrors++;
return;
}
}
/* Finalize mbuf. */
m->m_pkthdr.rcvif = ifp;
wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
memcpy(mtod(m, uint8_t *), wh, pktlen);
m->m_pkthdr.len = m->m_len = pktlen;
s = splnet();
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
if (!(rxdw3 & R92C_RXDW3_HT)) {
switch (rate) {
/* CCK. */
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
/* OFDM. */
case 4: tap->wr_rate = 12; break;
case 5: tap->wr_rate = 18; break;
case 6: tap->wr_rate = 24; break;
case 7: tap->wr_rate = 36; break;
case 8: tap->wr_rate = 48; break;
case 9: tap->wr_rate = 72; break;
case 10: tap->wr_rate = 96; break;
case 11: tap->wr_rate = 108; break;
}
} else if (rate >= 12) { /* MCS0~15. */
/* Bit 7 set means HT MCS instead of rate. */
tap->wr_rate = 0x80 | (rate - 12);
}
tap->wr_dbm_antsignal = rssi;
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* push the frame up to the 802.11 stack */
ieee80211_input(ic, m, ni, rssi, 0);
/* Node is no longer needed. */
ieee80211_free_node(ni);
splx(s);
}
static void
urtwn_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct urtwn_rx_data *data = priv;
struct urtwn_softc *sc = data->sc;
struct r92c_rx_stat *stat;
uint32_t rxdw0;
uint8_t *buf;
int len, totlen, pktlen, infosz, npkts;
DPRINTFN(DBG_FN|DBG_RX, ("%s: %s: status=%d\n",
device_xname(sc->sc_dev), __func__, status));
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->rx_pipe);
else if (status != USBD_CANCELLED)
goto resubmit;
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
if (__predict_false(len < (int)sizeof(*stat))) {
DPRINTFN(DBG_RX, ("%s: %s: xfer too short %d\n",
device_xname(sc->sc_dev), __func__, len));
goto resubmit;
}
buf = data->buf;
/* Get the number of encapsulated frames. */
stat = (struct r92c_rx_stat *)buf;
npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
DPRINTFN(DBG_RX, ("%s: %s: Rx %d frames in one chunk\n",
device_xname(sc->sc_dev), __func__, npkts));
/* Process all of them. */
while (npkts-- > 0) {
if (__predict_false(len < (int)sizeof(*stat))) {
DPRINTFN(DBG_RX,
("%s: %s: len(%d) is short than header\n",
device_xname(sc->sc_dev), __func__, len));
break;
}
stat = (struct r92c_rx_stat *)buf;
rxdw0 = le32toh(stat->rxdw0);
pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
if (__predict_false(pktlen == 0)) {
DPRINTFN(DBG_RX, ("%s: %s: pktlen is 0 byte\n",
device_xname(sc->sc_dev), __func__));
break;
}
infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
/* Make sure everything fits in xfer. */
totlen = sizeof(*stat) + infosz + pktlen;
if (__predict_false(totlen > len)) {
DPRINTFN(DBG_RX, ("%s: %s: pktlen %d(%d+%d+%d) > %d\n",
device_xname(sc->sc_dev), __func__, totlen,
(int)sizeof(*stat), infosz, pktlen, len));
break;
}
/* Process 802.11 frame. */
urtwn_rx_frame(sc, buf, pktlen);
/* Next chunk is 128-byte aligned. */
totlen = roundup2(totlen, 128);
buf += totlen;
len -= totlen;
}
resubmit:
/* Setup a new transfer. */
usbd_setup_xfer(xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ,
USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof);
(void)usbd_transfer(xfer);
}
static void
urtwn_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct urtwn_tx_data *data = priv;
struct urtwn_softc *sc = data->sc;
struct ifnet *ifp = &sc->sc_if;
usbd_pipe_handle pipe = data->pipe;
int s;
DPRINTFN(DBG_FN|DBG_TX, ("%s: %s: status=%d\n",
device_xname(sc->sc_dev), __func__, status));
mutex_enter(&sc->sc_tx_mtx);
/* Put this Tx buffer back to our free list. */
TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
mutex_exit(&sc->sc_tx_mtx);
s = splnet();
sc->tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) {
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(pipe);
ifp->if_oerrors++;
}
splx(s);
return;
}
ifp->if_opackets++;
urtwn_start(ifp);
splx(s);
}
static int
urtwn_tx(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
struct urtwn_tx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
struct r92c_tx_desc *txd;
usbd_pipe_handle pipe;
size_t i, padsize, xferlen;
uint16_t seq, sum;
uint8_t raid, type, tid, qid;
int s, hasqos, error;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m);
if (k == NULL)
return ENOBUFS;
/* packet header may have moved, reset our local pointer */
wh = mtod(m, struct ieee80211_frame *);
}
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
/* XXX: set tap->wt_rate? */
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
}
if ((hasqos = ieee80211_has_qos(wh))) {
/* data frames in 11n mode */
struct ieee80211_qosframe *qwh = (void *)wh;
tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
qid = TID_TO_WME_AC(tid);
} else if (type != IEEE80211_FC0_TYPE_DATA) {
/* Use AC_VO for management frames. */
qid = WME_AC_VO;
tid = 0; /* compiler happy */
} else {
/* non-qos data frames */
tid = R92C_TXDW1_QSEL_BE;
qid = WME_AC_BE;
}
/* Get the USB pipe to use for this AC. */
pipe = sc->tx_pipe[sc->ac2idx[qid]];
if (((sizeof(*txd) + m->m_pkthdr.len) % 64) == 0) /* XXX: 64 */
padsize = 8;
else
padsize = 0;
/* Fill Tx descriptor. */
txd = (struct r92c_tx_desc *)data->buf;
memset(txd, 0, sizeof(*txd) + padsize);
txd->txdw0 |= htole32(
SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) |
SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
/* fix pad field */
if (padsize > 0) {
DPRINTFN(DBG_TX, ("%s: %s: padding: size=%zd\n",
device_xname(sc->sc_dev), __func__, padsize));
txd->txdw1 |= htole32(SM(R92C_TXDW1_PKTOFF, (padsize / 8)));
}
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
type == IEEE80211_FC0_TYPE_DATA) {
if (ic->ic_curmode == IEEE80211_MODE_11B)
raid = R92C_RAID_11B;
else
raid = R92C_RAID_11BG;
DPRINTFN(DBG_TX,
("%s: %s: data packet: tid=%d, raid=%d\n",
device_xname(sc->sc_dev), __func__, tid, raid));
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
SM(R92C_TXDW1_QSEL, tid) |
SM(R92C_TXDW1_RAID, raid) |
R92C_TXDW1_AGGBK);
if (hasqos) {
txd->txdw4 |= htole32(R92C_TXDW4_QOS);
}
if (ic->ic_flags & IEEE80211_F_USEPROT) {
/* for 11g */
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
R92C_TXDW4_HWRTSEN);
} else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
R92C_TXDW4_HWRTSEN);
}
}
/* Send RTS at OFDM24. */
txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
txd->txdw5 |= htole32(0x0001ff00);
/* Send data at OFDM54. */
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
} else if (type == IEEE80211_FC0_TYPE_MGT) {
DPRINTFN(DBG_TX, ("%s: %s: mgmt packet\n",
device_xname(sc->sc_dev), __func__));
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
SM(R92C_TXDW1_RAID, R92C_RAID_11B));
/* Force CCK1. */
txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
/* Use 1Mbps */
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
} else {
/* broadcast or multicast packets */
DPRINTFN(DBG_TX, ("%s: %s: bc or mc packet\n",
device_xname(sc->sc_dev), __func__));
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, URTWN_MACID_BC) |
SM(R92C_TXDW1_RAID, R92C_RAID_11B));
/* Force CCK1. */
txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
/* Use 1Mbps */
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
}
/* Set sequence number */
seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT;
txd->txdseq |= htole16(seq);
if (!hasqos) {
/* Use HW sequence numbering for non-QoS frames. */
txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ);
txd->txdseq |= htole16(0x8000); /* WTF? */
}
/* Compute Tx descriptor checksum. */
sum = 0;
for (i = 0; i < sizeof(*txd) / 2; i++)
sum ^= ((uint16_t *)txd)[i];
txd->txdsum = sum; /* NB: already little endian. */
xferlen = sizeof(*txd) + m->m_pkthdr.len + padsize;
m_copydata(m, 0, m->m_pkthdr.len, (char *)&txd[1] + padsize);
s = splnet();
data->pipe = pipe;
usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER | USBD_NO_COPY, URTWN_TX_TIMEOUT,
urtwn_txeof);
error = usbd_transfer(data->xfer);
if (__predict_false(error != USBD_NORMAL_COMPLETION &&
error != USBD_IN_PROGRESS)) {
splx(s);
DPRINTFN(DBG_TX, ("%s: %s: transfer failed %d\n",
device_xname(sc->sc_dev), __func__, error));
return error;
}
splx(s);
return 0;
}
static void
urtwn_start(struct ifnet *ifp)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct urtwn_tx_data *data;
struct ether_header *eh;
struct ieee80211_node *ni;
struct mbuf *m;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
data = NULL;
for (;;) {
mutex_enter(&sc->sc_tx_mtx);
if (data == NULL && !TAILQ_EMPTY(&sc->tx_free_list)) {
data = TAILQ_FIRST(&sc->tx_free_list);
TAILQ_REMOVE(&sc->tx_free_list, data, next);
}
mutex_exit(&sc->sc_tx_mtx);
if (data == NULL) {
ifp->if_flags |= IFF_OACTIVE;
DPRINTFN(DBG_TX, ("%s: empty tx_free_list\n",
device_xname(sc->sc_dev)));
return;
}
/* Send pending management frames first. */
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m != NULL) {
ni = (void *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* Encapsulate and send data frames. */
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (m->m_len < (int)sizeof(*eh) &&
(m = m_pullup(m, sizeof(*eh))) == NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m);
ifp->if_oerrors++;
continue;
}
bpf_mtap(ifp, m);
if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sendit:
bpf_mtap3(ic->ic_rawbpf, m);
if (urtwn_tx(sc, m, ni, data) != 0) {
m_freem(m);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
data = NULL;
m_freem(m);
ieee80211_free_node(ni);
sc->tx_timer = 5;
ifp->if_timer = 1;
}
/* Return the Tx buffer to the free list */
mutex_enter(&sc->sc_tx_mtx);
TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
mutex_exit(&sc->sc_tx_mtx);
}
static void
urtwn_watchdog(struct ifnet *ifp)
{
struct urtwn_softc *sc = ifp->if_softc;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
ifp->if_timer = 0;
if (sc->tx_timer > 0) {
if (--sc->tx_timer == 0) {
aprint_error_dev(sc->sc_dev, "device timeout\n");
/* urtwn_init(ifp); XXX needs a process context! */
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
urtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
DPRINTFN(DBG_FN, ("%s: %s: cmd=0x%08lx, data=%p\n",
device_xname(sc->sc_dev), __func__, cmd, data));
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
case IFF_UP | IFF_RUNNING:
break;
case IFF_UP:
urtwn_init(ifp);
break;
case IFF_RUNNING:
urtwn_stop(ifp, 1);
break;
case 0:
break;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
break;
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING) &&
ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
urtwn_init(ifp);
}
error = 0;
}
splx(s);
return (error);
}
static int
urtwn_power_on(struct urtwn_softc *sc)
{
uint32_t reg;
int ntries;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Wait for autoload done bit. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for chip autoload\n");
return (ETIMEDOUT);
}
/* Unlock ISO/CLK/Power control register. */
urtwn_write_1(sc, R92C_RSV_CTRL, 0);
/* Move SPS into PWM mode. */
urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
DELAY(100);
reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
urtwn_write_1(sc, R92C_LDOV12D_CTRL,
reg | R92C_LDOV12D_CTRL_LDV12_EN);
DELAY(100);
urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
~R92C_SYS_ISO_CTRL_MD2PP);
}
/* Auto enable WLAN. */
urtwn_write_2(sc, R92C_APS_FSMCO,
urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
for (ntries = 0; ntries < 1000; ntries++) {
if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
R92C_APS_FSMCO_APFM_ONMAC))
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for MAC auto ON\n");
return (ETIMEDOUT);
}
/* Enable radio, GPIO and LED functions. */
KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN |
R92C_APS_FSMCO_PFM_ALDN) == 0x0812);
urtwn_write_2(sc, R92C_APS_FSMCO,
R92C_APS_FSMCO_AFSM_HSUS |
R92C_APS_FSMCO_PDN_EN |
R92C_APS_FSMCO_PFM_ALDN);
/* Release RF digital isolation. */
urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
/* Initialize MAC. */
urtwn_write_1(sc, R92C_APSD_CTRL,
urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
for (ntries = 0; ntries < 200; ntries++) {
if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
R92C_APSD_CTRL_OFF_STATUS))
break;
DELAY(5);
}
if (ntries == 200) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for MAC initialization\n");
return (ETIMEDOUT);
}
/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
reg = urtwn_read_2(sc, R92C_CR);
reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
R92C_CR_ENSEC;
urtwn_write_2(sc, R92C_CR, reg);
urtwn_write_1(sc, 0xfe10, 0x19);
return (0);
}
static int
urtwn_llt_init(struct urtwn_softc *sc)
{
size_t i;
int error;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Reserve pages [0; R92C_TX_PAGE_COUNT]. */
for (i = 0; i < R92C_TX_PAGE_COUNT; i++) {
if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
return (error);
}
/* NB: 0xff indicates end-of-list. */
if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
return (error);
/*
* Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1]
* as ring buffer.
*/
for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) {
if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
return (error);
}
/* Make the last page point to the beginning of the ring buffer. */
error = urtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1);
return (error);
}
static void
urtwn_fw_reset(struct urtwn_softc *sc)
{
uint16_t reg;
int ntries;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Tell 8051 to reset itself. */
urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
/* Wait until 8051 resets by itself. */
for (ntries = 0; ntries < 100; ntries++) {
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
return;
DELAY(50);
}
/* Force 8051 reset. */
urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
}
static int
urtwn_fw_loadpage(struct urtwn_softc *sc, int page, uint8_t *buf, int len)
{
uint32_t reg;
int off, mlen, error = 0;
DPRINTFN(DBG_FN, ("%s: %s: page=%d, buf=%p, len=%d\n",
device_xname(sc->sc_dev), __func__, page, buf, len));
reg = urtwn_read_4(sc, R92C_MCUFWDL);
reg = RW(reg, R92C_MCUFWDL_PAGE, page);
urtwn_write_4(sc, R92C_MCUFWDL, reg);
off = R92C_FW_START_ADDR;
while (len > 0) {
if (len > 196)
mlen = 196;
else if (len > 4)
mlen = 4;
else
mlen = 1;
error = urtwn_write_region(sc, off, buf, mlen);
if (error != 0)
break;
off += mlen;
buf += mlen;
len -= mlen;
}
return (error);
}
static int
urtwn_load_firmware(struct urtwn_softc *sc)
{
firmware_handle_t fwh;
const struct r92c_fw_hdr *hdr;
const char *name;
u_char *fw, *ptr;
size_t len;
uint32_t reg;
int mlen, ntries, page, error;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Read firmware image from the filesystem. */
if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
URTWN_CHIP_UMC_A_CUT)
name = "rtl8192cfwU.bin";
else
name = "rtl8192cfw.bin";
if ((error = firmware_open("if_urtwn", name, &fwh)) != 0) {
aprint_error_dev(sc->sc_dev,
"failed loadfirmware of file %s (error %d)\n", name, error);
return (error);
}
len = firmware_get_size(fwh);
fw = firmware_malloc(len);
if (fw == NULL) {
aprint_error_dev(sc->sc_dev,
"failed to allocate firmware memory\n");
firmware_close(fwh);
return (ENOMEM);
}
error = firmware_read(fwh, 0, fw, len);
firmware_close(fwh);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"failed to read firmware (error %d)\n", error);
firmware_free(fw, 0);
return (error);
}
ptr = fw;
hdr = (const struct r92c_fw_hdr *)ptr;
/* Check if there is a valid FW header and skip it. */
if ((le16toh(hdr->signature) >> 4) == 0x88c ||
(le16toh(hdr->signature) >> 4) == 0x92c) {
DPRINTFN(DBG_INIT, ("%s: %s: FW V%d.%d %02d-%02d %02d:%02d\n",
device_xname(sc->sc_dev), __func__,
le16toh(hdr->version), le16toh(hdr->subversion),
hdr->month, hdr->date, hdr->hour, hdr->minute));
ptr += sizeof(*hdr);
len -= sizeof(*hdr);
}
if (urtwn_read_1(sc, R92C_MCUFWDL) & 0x80) {
urtwn_fw_reset(sc);
urtwn_write_1(sc, R92C_MCUFWDL, 0);
}
/* download enabled */
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_CPUEN);
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
urtwn_write_1(sc, R92C_MCUFWDL + 2,
urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
/* download firmware */
for (page = 0; len > 0; page++) {
mlen = MIN(len, R92C_FW_PAGE_SIZE);
error = urtwn_fw_loadpage(sc, page, ptr, mlen);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load firmware page %d\n", page);
goto fail;
}
ptr += mlen;
len -= mlen;
}
/* download disable */
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
/* Wait for checksum report. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for checksum report\n");
error = ETIMEDOUT;
goto fail;
}
/* Wait for firmware readiness. */
reg = urtwn_read_4(sc, R92C_MCUFWDL);
reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
urtwn_write_4(sc, R92C_MCUFWDL, reg);
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for firmware readiness\n");
error = ETIMEDOUT;
goto fail;
}
fail:
firmware_free(fw, 0);
return (error);
}
static int
urtwn_dma_init(struct urtwn_softc *sc)
{
int hashq, hasnq, haslq, nqueues, nqpages, nrempages;
uint32_t reg;
int error;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Initialize LLT table. */
error = urtwn_llt_init(sc);
if (error != 0)
return (error);
/* Get Tx queues to USB endpoints mapping. */
hashq = hasnq = haslq = 0;
reg = urtwn_read_2(sc, R92C_USB_EP + 1);
DPRINTFN(DBG_INIT, ("%s: %s: USB endpoints mapping 0x%x\n",
device_xname(sc->sc_dev), __func__, reg));
if (MS(reg, R92C_USB_EP_HQ) != 0)
hashq = 1;
if (MS(reg, R92C_USB_EP_NQ) != 0)
hasnq = 1;
if (MS(reg, R92C_USB_EP_LQ) != 0)
haslq = 1;
nqueues = hashq + hasnq + haslq;
if (nqueues == 0)
return (EIO);
/* Get the number of pages for each queue. */
nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues;
/* The remaining pages are assigned to the high priority queue. */
nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues;
/* Set number of pages for normal priority queue. */
urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
urtwn_write_4(sc, R92C_RQPN,
/* Set number of pages for public queue. */
SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
/* Set number of pages for high priority queue. */
SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
/* Set number of pages for low priority queue. */
SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
/* Load values. */
R92C_RQPN_LD);
urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
/* Set queue to USB pipe mapping. */
reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
if (nqueues == 1) {
if (hashq) {
reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
} else if (hasnq) {
reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
} else {
reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
}
} else if (nqueues == 2) {
/* All 2-endpoints configs have a high priority queue. */
if (!hashq) {
return (EIO);
}
if (hasnq) {
reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
} else {
reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ;
}
} else {
reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
}
urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
/* Set Tx/Rx transfer page boundary. */
urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
/* Set Tx/Rx transfer page size. */
urtwn_write_1(sc, R92C_PBP,
SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128));
return (0);
}
static void
urtwn_mac_init(struct urtwn_softc *sc)
{
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Write MAC initialization values. */
for (i = 0; i < __arraycount(rtl8192cu_mac); i++)
urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val);
}
static void
urtwn_bb_init(struct urtwn_softc *sc)
{
const struct urtwn_bb_prog *prog;
uint32_t reg;
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Enable BB and RF. */
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
R92C_SYS_FUNC_EN_DIO_RF);
urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x83);
urtwn_write_1(sc, R92C_AFE_PLL_CTRL + 1, 0xdb);
urtwn_write_1(sc, R92C_RF_CTRL,
R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
urtwn_write_1(sc, 0x15, 0xe9);
urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
/* Select BB programming based on board type. */
if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
prog = &rtl8188ce_bb_prog;
} else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
prog = &rtl8188ru_bb_prog;
} else {
prog = &rtl8188cu_bb_prog;
}
} else {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
prog = &rtl8192ce_bb_prog;
} else {
prog = &rtl8192cu_bb_prog;
}
}
/* Write BB initialization values. */
for (i = 0; i < prog->count; i++) {
/* additional delay depend on registers */
switch (prog->regs[i]) {
case 0xfe:
usbd_delay_ms(sc->sc_udev, 50);
break;
case 0xfd:
usbd_delay_ms(sc->sc_udev, 5);
break;
case 0xfc:
usbd_delay_ms(sc->sc_udev, 1);
break;
case 0xfb:
DELAY(50);
break;
case 0xfa:
DELAY(5);
break;
case 0xf9:
DELAY(1);
break;
}
urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
DELAY(1);
}
if (sc->chip & URTWN_CHIP_92C_1T2R) {
/* 8192C 1T only configuration. */
reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
reg = (reg & ~0x00000003) | 0x2;
urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
reg = (reg & ~0x00300033) | 0x00200022;
urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
reg = (reg & ~0xff000000) | (0x45 << 24);
urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
reg = (reg & ~0x000000ff) | 0x23;
urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
reg = (reg & ~0x00000030) | (1 << 4);
urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
reg = urtwn_bb_read(sc, 0xe74);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe74, reg);
reg = urtwn_bb_read(sc, 0xe78);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe78, reg);
reg = urtwn_bb_read(sc, 0xe7c);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe7c, reg);
reg = urtwn_bb_read(sc, 0xe80);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe80, reg);
reg = urtwn_bb_read(sc, 0xe88);
reg = (reg & ~0x0c000000) | (2 << 26);
urtwn_bb_write(sc, 0xe88, reg);
}
/* Write AGC values. */
for (i = 0; i < prog->agccount; i++) {
urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]);
DELAY(1);
}
if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
R92C_HSSI_PARAM2_CCK_HIPWR) {
SET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR);
}
}
static void
urtwn_rf_init(struct urtwn_softc *sc)
{
const struct urtwn_rf_prog *prog;
uint32_t reg, mask, saved;
size_t i, j, idx;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Select RF programming based on board type. */
if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
prog = rtl8188ce_rf_prog;
} else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
prog = rtl8188ru_rf_prog;
} else {
prog = rtl8188cu_rf_prog;
}
} else {
prog = rtl8192ce_rf_prog;
}
for (i = 0; i < sc->nrxchains; i++) {
/* Save RF_ENV control type. */
idx = i / 2;
mask = 0xffffU << ((i % 2) * 16);
saved = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & mask;
/* Set RF_ENV enable. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x100000;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(1);
/* Set RF_ENV output high. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x10;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(1);
/* Set address and data lengths of RF registers. */
reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(1);
reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(1);
/* Write RF initialization values for this chain. */
for (j = 0; j < prog[i].count; j++) {
if (prog[i].regs[j] >= 0xf9 &&
prog[i].regs[j] <= 0xfe) {
/*
* These are fake RF registers offsets that
* indicate a delay is required.
*/
usbd_delay_ms(sc->sc_udev, 50);
continue;
}
urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]);
DELAY(1);
}
/* Restore RF_ENV control type. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & ~mask;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg | saved);
}
if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
URTWN_CHIP_UMC_A_CUT) {
urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
}
/* Cache RF register CHNLBW. */
for (i = 0; i < 2; i++) {
sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
}
}
static void
urtwn_cam_init(struct urtwn_softc *sc)
{
uint32_t content, command;
uint8_t idx;
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
content = (idx & 3)
| (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
| R92C_CAM_VALID;
command = R92C_CAMCMD_POLLING
| R92C_CAMCMD_WRITE
| R92C_CAM_CTL0(idx);
urtwn_write_4(sc, R92C_CAMWRITE, content);
urtwn_write_4(sc, R92C_CAMCMD, command);
}
for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
for (i = 0; i < /* CAM_CONTENT_COUNT */ 8; i++) {
if (i == 0) {
content = (idx & 3)
| (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
| R92C_CAM_VALID;
} else {
content = 0;
}
command = R92C_CAMCMD_POLLING
| R92C_CAMCMD_WRITE
| R92C_CAM_CTL0(idx)
| i;
urtwn_write_4(sc, R92C_CAMWRITE, content);
urtwn_write_4(sc, R92C_CAMCMD, command);
}
}
/* Invalidate all CAM entries. */
urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
}
static void
urtwn_pa_bias_init(struct urtwn_softc *sc)
{
uint8_t reg;
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
for (i = 0; i < sc->nrxchains; i++) {
if (sc->pa_setting & (1U << i))
continue;
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
}
if (!(sc->pa_setting & 0x10)) {
reg = urtwn_read_1(sc, 0x16);
reg = (reg & ~0xf0) | 0x90;
urtwn_write_1(sc, 0x16, reg);
}
}
static void
urtwn_rxfilter_init(struct urtwn_softc *sc)
{
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* Initialize Rx filter. */
/* TODO: use better filter for monitor mode. */
urtwn_write_4(sc, R92C_RCR,
R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
/* Accept all multicast frames. */
urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
/* Accept all management frames. */
urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
/* Reject all control frames. */
urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
/* Accept all data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
}
static void
urtwn_edca_init(struct urtwn_softc *sc)
{
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
/* set spec SIFS (used in NAV) */
urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
/* set SIFS CCK/OFDM */
urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
/* TXOP */
urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
}
static void
urtwn_write_txpower(struct urtwn_softc *sc, int chain,
uint16_t power[URTWN_RIDX_COUNT])
{
uint32_t reg;
DPRINTFN(DBG_FN, ("%s: %s: chain=%d\n", device_xname(sc->sc_dev),
__func__, chain));
/* Write per-CCK rate Tx power. */
if (chain == 0) {
reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]);
urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
} else {
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]);
reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
}
/* Write per-OFDM rate Tx power. */
urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
SM(R92C_TXAGC_RATE06, power[ 4]) |
SM(R92C_TXAGC_RATE09, power[ 5]) |
SM(R92C_TXAGC_RATE12, power[ 6]) |
SM(R92C_TXAGC_RATE18, power[ 7]));
urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
SM(R92C_TXAGC_RATE24, power[ 8]) |
SM(R92C_TXAGC_RATE36, power[ 9]) |
SM(R92C_TXAGC_RATE48, power[10]) |
SM(R92C_TXAGC_RATE54, power[11]));
/* Write per-MCS Tx power. */
urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
SM(R92C_TXAGC_MCS00, power[12]) |
SM(R92C_TXAGC_MCS01, power[13]) |
SM(R92C_TXAGC_MCS02, power[14]) |
SM(R92C_TXAGC_MCS03, power[15]));
urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
SM(R92C_TXAGC_MCS04, power[16]) |
SM(R92C_TXAGC_MCS05, power[17]) |
SM(R92C_TXAGC_MCS06, power[18]) |
SM(R92C_TXAGC_MCS07, power[19]));
urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
SM(R92C_TXAGC_MCS08, power[20]) |
SM(R92C_TXAGC_MCS09, power[21]) |
SM(R92C_TXAGC_MCS10, power[22]) |
SM(R92C_TXAGC_MCS11, power[23]));
urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
SM(R92C_TXAGC_MCS12, power[24]) |
SM(R92C_TXAGC_MCS13, power[25]) |
SM(R92C_TXAGC_MCS14, power[26]) |
SM(R92C_TXAGC_MCS15, power[27]));
}
static void
urtwn_get_txpower(struct urtwn_softc *sc, size_t chain, u_int chan, u_int ht40m,
uint16_t power[URTWN_RIDX_COUNT])
{
struct r92c_rom *rom = &sc->rom;
uint16_t cckpow, ofdmpow, htpow, diff, maxpow;
const struct urtwn_txpwr *base;
int ridx, group;
DPRINTFN(DBG_FN, ("%s: %s: chain=%zd, chan=%d\n",
device_xname(sc->sc_dev), __func__, chain, chan));
/* Determine channel group. */
if (chan <= 3) {
group = 0;
} else if (chan <= 9) {
group = 1;
} else {
group = 2;
}
/* Get original Tx power based on board type and RF chain. */
if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
base = &rtl8188ru_txagc[chain];
} else {
base = &rtl8192cu_txagc[chain];
}
} else {
base = &rtl8192cu_txagc[chain];
}
memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
if (sc->regulatory == 0) {
for (ridx = 0; ridx <= 3; ridx++) {
power[ridx] = base->pwr[0][ridx];
}
}
for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
if (sc->regulatory == 3) {
power[ridx] = base->pwr[0][ridx];
/* Apply vendor limits. */
if (ht40m != IEEE80211_HTINFO_2NDCHAN_NONE) {
maxpow = rom->ht40_max_pwr[group];
} else {
maxpow = rom->ht20_max_pwr[group];
}
maxpow = (maxpow >> (chain * 4)) & 0xf;
if (power[ridx] > maxpow) {
power[ridx] = maxpow;
}
} else if (sc->regulatory == 1) {
if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
power[ridx] = base->pwr[group][ridx];
}
} else if (sc->regulatory != 2) {
power[ridx] = base->pwr[0][ridx];
}
}
/* Compute per-CCK rate Tx power. */
cckpow = rom->cck_tx_pwr[chain][group];
for (ridx = 0; ridx <= 3; ridx++) {
power[ridx] += cckpow;
if (power[ridx] > R92C_MAX_TX_PWR) {
power[ridx] = R92C_MAX_TX_PWR;
}
}
htpow = rom->ht40_1s_tx_pwr[chain][group];
if (sc->ntxchains > 1) {
/* Apply reduction for 2 spatial streams. */
diff = rom->ht40_2s_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow = (htpow > diff) ? htpow - diff : 0;
}
/* Compute per-OFDM rate Tx power. */
diff = rom->ofdm_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
ofdmpow = htpow + diff; /* HT->OFDM correction. */
for (ridx = 4; ridx <= 11; ridx++) {
power[ridx] += ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR) {
power[ridx] = R92C_MAX_TX_PWR;
}
}
/* Compute per-MCS Tx power. */
if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
diff = rom->ht20_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow += diff; /* HT40->HT20 correction. */
}
for (ridx = 12; ridx < URTWN_RIDX_COUNT; ridx++) {
power[ridx] += htpow;
if (power[ridx] > R92C_MAX_TX_PWR) {
power[ridx] = R92C_MAX_TX_PWR;
}
}
#ifdef URTWN_DEBUG
if (urtwn_debug & DBG_RF) {
/* Dump per-rate Tx power values. */
printf("%s: %s: Tx power for chain %zd:\n",
device_xname(sc->sc_dev), __func__, chain);
for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++) {
printf("%s: %s: Rate %d = %u\n",
device_xname(sc->sc_dev), __func__, ridx,
power[ridx]);
}
}
#endif
}
static void
urtwn_set_txpower(struct urtwn_softc *sc, u_int chan, u_int ht40m)
{
uint16_t power[URTWN_RIDX_COUNT];
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
for (i = 0; i < sc->ntxchains; i++) {
/* Compute per-rate Tx power values. */
urtwn_get_txpower(sc, i, chan, ht40m, power);
/* Write per-rate Tx power values to hardware. */
urtwn_write_txpower(sc, i, power);
}
}
static void
urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, u_int ht40m)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int chan;
size_t i;
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
DPRINTFN(DBG_FN, ("%s: %s: chan=%d\n", device_xname(sc->sc_dev),
__func__, chan));
KASSERT(mutex_owned(&sc->sc_write_mtx));
if (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE) {
chan += 2;
} else if (ht40m == IEEE80211_HTINFO_2NDCHAN_BELOW){
chan -= 2;
}
/* Set Tx power for this new channel. */
urtwn_set_txpower(sc, chan, ht40m);
for (i = 0; i < sc->nrxchains; i++) {
urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
}
if (ht40m) {
/* Is secondary channel below or above primary? */
int prichlo = (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE);
uint32_t reg;
urtwn_write_1(sc, R92C_BWOPMODE,
urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
reg = urtwn_read_1(sc, R92C_RRSR + 2);
reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
urtwn_write_1(sc, R92C_RRSR + 2, (uint8_t)reg);
urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
/* Set CCK side band. */
reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
~R92C_FPGA0_ANAPARAM2_CBW20);
reg = urtwn_bb_read(sc, 0x818);
reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
urtwn_bb_write(sc, 0x818, reg);
/* Select 40MHz bandwidth. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | chan);
} else {
urtwn_write_1(sc, R92C_BWOPMODE,
urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
R92C_FPGA0_ANAPARAM2_CBW20);
/* Select 20MHz bandwidth. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan);
}
}
static void
urtwn_iq_calib(struct urtwn_softc *sc, bool inited)
{
DPRINTFN(DBG_FN, ("%s: %s: inited=%d\n", device_xname(sc->sc_dev),
__func__, inited));
/* TODO */
}
static void
urtwn_lc_calib(struct urtwn_softc *sc)
{
uint32_t rf_ac[2];
uint8_t txmode;
size_t i;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
if ((txmode & 0x70) != 0) {
/* Disable all continuous Tx. */
urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
/* Set RF mode to standby mode. */
for (i = 0; i < sc->nrxchains; i++) {
rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
urtwn_rf_write(sc, i, R92C_RF_AC,
RW(rf_ac[i], R92C_RF_AC_MODE,
R92C_RF_AC_MODE_STANDBY));
}
} else {
/* Block all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, 0xff);
}
/* Start calibration. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
/* Give calibration the time to complete. */
usbd_delay_ms(sc->sc_udev, 100);
/* Restore configuration. */
if ((txmode & 0x70) != 0) {
/* Restore Tx mode. */
urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
/* Restore RF mode. */
for (i = 0; i < sc->nrxchains; i++) {
urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
}
} else {
/* Unblock all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
}
}
static void
urtwn_temp_calib(struct urtwn_softc *sc)
{
int temp;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
KASSERT(mutex_owned(&sc->sc_write_mtx));
if (sc->thcal_state == 0) {
/* Start measuring temperature. */
DPRINTFN(DBG_RF, ("%s: %s: start measuring temperature\n",
device_xname(sc->sc_dev), __func__));
urtwn_rf_write(sc, 0, R92C_RF_T_METER, 0x60);
sc->thcal_state = 1;
return;
}
sc->thcal_state = 0;
/* Read measured temperature. */
temp = urtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f;
DPRINTFN(DBG_RF, ("%s: %s: temperature=%d\n", device_xname(sc->sc_dev),
__func__, temp));
if (temp == 0) /* Read failed, skip. */
return;
/*
* Redo LC calibration if temperature changed significantly since
* last calibration.
*/
if (sc->thcal_lctemp == 0) {
/* First LC calibration is performed in urtwn_init(). */
sc->thcal_lctemp = temp;
} else if (abs(temp - sc->thcal_lctemp) > 1) {
DPRINTFN(DBG_RF,
("%s: %s: LC calib triggered by temp: %d -> %d\n",
device_xname(sc->sc_dev), __func__, sc->thcal_lctemp,
temp));
urtwn_lc_calib(sc);
/* Record temperature of last LC calibration. */
sc->thcal_lctemp = temp;
}
}
static int
urtwn_init(struct ifnet *ifp)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct urtwn_rx_data *data;
uint32_t reg;
size_t i;
int error;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
urtwn_stop(ifp, 0);
mutex_enter(&sc->sc_write_mtx);
mutex_enter(&sc->sc_task_mtx);
/* Init host async commands ring. */
sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
mutex_exit(&sc->sc_task_mtx);
mutex_enter(&sc->sc_fwcmd_mtx);
/* Init firmware commands ring. */
sc->fwcur = 0;
mutex_exit(&sc->sc_fwcmd_mtx);
/* Allocate Tx/Rx buffers. */
error = urtwn_alloc_rx_list(sc);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate Rx buffers\n");
goto fail;
}
error = urtwn_alloc_tx_list(sc);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate Tx buffers\n");
goto fail;
}
/* Power on adapter. */
error = urtwn_power_on(sc);
if (error != 0)
goto fail;
/* Initialize DMA. */
error = urtwn_dma_init(sc);
if (error != 0)
goto fail;
/* Set info size in Rx descriptors (in 64-bit words). */
urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
/* Init interrupts. */
urtwn_write_4(sc, R92C_HISR, 0xffffffff);
urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
/* Set MAC address. */
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
urtwn_write_region(sc, R92C_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN);
/* Set initial network type. */
reg = urtwn_read_4(sc, R92C_CR);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
default:
reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
break;
case IEEE80211_M_IBSS:
reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_ADHOC);
break;
}
urtwn_write_4(sc, R92C_CR, reg);
/* Set response rate */
reg = urtwn_read_4(sc, R92C_RRSR);
reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
urtwn_write_4(sc, R92C_RRSR, reg);
/* SIFS (used in NAV) */
urtwn_write_2(sc, R92C_SPEC_SIFS,
SM(R92C_SPEC_SIFS_CCK, 0x10) | SM(R92C_SPEC_SIFS_OFDM, 0x10));
/* Set short/long retry limits. */
urtwn_write_2(sc, R92C_RL,
SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
/* Initialize EDCA parameters. */
urtwn_edca_init(sc);
/* Setup rate fallback. */
urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
/* Set ACK timeout. */
urtwn_write_1(sc, R92C_ACKTO, 0x40);
/* Setup USB aggregation. */
/* Tx */
reg = urtwn_read_4(sc, R92C_TDECTRL);
reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
urtwn_write_4(sc, R92C_TDECTRL, reg);
/* Rx */
urtwn_write_1(sc, R92C_TRXDMA_CTRL,
urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) &
~R92C_USB_SPECIAL_OPTION_AGG_EN);
urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
/* Initialize beacon parameters. */
urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
urtwn_write_1(sc, R92C_DRVERLYINT, 0x05);
urtwn_write_1(sc, R92C_BCNDMATIM, 0x02);
urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
/* Setup AMPDU aggregation. */
urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
urtwn_write_2(sc, 0x4ca, 0x0708);
urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
urtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Load 8051 microcode. */
error = urtwn_load_firmware(sc);
if (error != 0)
goto fail;
SET(sc->sc_flags, URTWN_FLAG_FWREADY);
/* Initialize MAC/BB/RF blocks. */
/*
* XXX: urtwn_mac_init() sets R92C_RCR[0:15] = R92C_RCR_APM |
* R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_AICV | R92C_RCR_AMF.
* XXX: This setting should be removed from rtl8192cu_mac[].
*/
urtwn_mac_init(sc); // sets R92C_RCR[0:15]
urtwn_rxfilter_init(sc); // reset R92C_RCR
urtwn_bb_init(sc);
urtwn_rf_init(sc);
/* Turn CCK and OFDM blocks on. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_CCK_EN;
urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_OFDM_EN;
urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
/* Clear per-station keys table. */
urtwn_cam_init(sc);
/* Enable hardware sequence numbering. */
urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
/* Perform LO and IQ calibrations. */
urtwn_iq_calib(sc, sc->iqk_inited);
sc->iqk_inited = true;
/* Perform LC calibration. */
urtwn_lc_calib(sc);
/* Fix USB interference issue. */
urtwn_write_1(sc, 0xfe40, 0xe0);
urtwn_write_1(sc, 0xfe41, 0x8d);
urtwn_write_1(sc, 0xfe42, 0x80);
urtwn_write_4(sc, 0x20c, 0xfd0320);
urtwn_pa_bias_init(sc);
if (!(sc->chip & (URTWN_CHIP_92C | URTWN_CHIP_92C_1T2R))) {
/* 1T1R */
urtwn_bb_write(sc, R92C_FPGA0_RFPARAM(0),
urtwn_bb_read(sc, R92C_FPGA0_RFPARAM(0)) | __BIT(13));
}
/* Initialize GPIO setting. */
urtwn_write_1(sc, R92C_GPIO_MUXCFG,
urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
/* Fix for lower temperature. */
urtwn_write_1(sc, 0x15, 0xe9);
/* Set default channel. */
urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE);
/* Queue Rx xfers. */
for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
data = &sc->rx_data[i];
usbd_setup_xfer(data->xfer, sc->rx_pipe, data, data->buf,
URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
USBD_NO_TIMEOUT, urtwn_rxeof);
error = usbd_transfer(data->xfer);
if (__predict_false(error != USBD_NORMAL_COMPLETION &&
error != USBD_IN_PROGRESS))
goto fail;
}
/* We're ready to go. */
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
mutex_exit(&sc->sc_write_mtx);
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
urtwn_wait_async(sc);
return (0);
fail:
mutex_exit(&sc->sc_write_mtx);
urtwn_stop(ifp, 1);
return (error);
}
static void
urtwn_stop(struct ifnet *ifp, int disable)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
size_t i;
int s;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
s = splusb();
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
urtwn_wait_async(sc);
splx(s);
sc->tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
callout_stop(&sc->sc_scan_to);
callout_stop(&sc->sc_calib_to);
/* Abort Tx. */
for (i = 0; i < R92C_MAX_EPOUT; i++) {
if (sc->tx_pipe[i] != NULL)
usbd_abort_pipe(sc->tx_pipe[i]);
}
/* Stop Rx pipe. */
usbd_abort_pipe(sc->rx_pipe);
/* Free Tx/Rx buffers. */
urtwn_free_tx_list(sc);
urtwn_free_rx_list(sc);
if (disable)
urtwn_chip_stop(sc);
}
static int
urtwn_reset(struct ifnet *ifp)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
return ENETRESET;
urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE);
return 0;
}
static void
urtwn_chip_stop(struct urtwn_softc *sc)
{
uint32_t reg;
bool disabled = true;
DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
mutex_enter(&sc->sc_write_mtx);
/*
* RF Off Sequence
*/
/* Pause MAC TX queue */
urtwn_write_1(sc, R92C_TXPAUSE, 0xFF);
/* Disable RF */
urtwn_rf_write(sc, 0, 0, 0);
urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF);
/* Reset BB state machine */
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBD |
R92C_SYS_FUNC_EN_USBA |
R92C_SYS_FUNC_EN_BB_GLB_RST);
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA);
/*
* Reset digital sequence
*/
if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) {
/* Reset MCU ready status */
urtwn_write_1(sc, R92C_MCUFWDL, 0);
/* If firmware in ram code, do reset */
if (ISSET(sc->sc_flags, URTWN_FLAG_FWREADY)) {
urtwn_fw_reset(sc);
CLR(sc->sc_flags, URTWN_FLAG_FWREADY);
}
}
/* Reset MAC and Enable 8051 */
urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, 0x54);
/* Reset MCU ready status */
urtwn_write_1(sc, R92C_MCUFWDL, 0);
if (disabled) {
/* Disable MAC clock */
urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
/* Disable AFE PLL */
urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80);
/* Gated AFE DIG_CLOCK */
urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F);
/* Isolated digital to PON */
urtwn_write_1(sc, R92C_SYS_ISO_CTRL, 0xF9);
}
/*
* Pull GPIO PIN to balance level and LED control
*/
/* 1. Disable GPIO[7:0] */
urtwn_write_2(sc, R92C_GPIO_PIN_CTRL + 2, 0x0000);
reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00;
reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000;
urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg);
/* Disable GPIO[10:8] */
urtwn_write_1(sc, R92C_GPIO_MUXCFG + 3, 0x00);
reg = urtwn_read_2(sc, R92C_GPIO_MUXCFG + 2) & ~0x00f0;
reg |= (((reg & 0x000f) << 4) | 0x0780);
urtwn_write_2(sc, R92C_GPIO_PIN_CTRL+2, reg);
/* Disable LED0 & 1 */
urtwn_write_2(sc, R92C_LEDCFG0, 0x8080);
/*
* Reset digital sequence
*/
if (disabled) {
/* Disable ELDR clock */
urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
/* Isolated ELDR to PON */
urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1, 0x82);
}
/*
* Disable analog sequence
*/
if (disabled) {
/* Disable A15 power */
urtwn_write_1(sc, R92C_LDOA15_CTRL, 0x04);
/* Disable digital core power */
urtwn_write_1(sc, R92C_LDOV12D_CTRL,
urtwn_read_1(sc, R92C_LDOV12D_CTRL) &
~R92C_LDOV12D_CTRL_LDV12_EN);
}
/* Enter PFM mode */
urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23);
/* Set USB suspend */
urtwn_write_2(sc, R92C_APS_FSMCO,
R92C_APS_FSMCO_APDM_HOST |
R92C_APS_FSMCO_AFSM_HSUS |
R92C_APS_FSMCO_PFM_ALDN);
urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E);
mutex_exit(&sc->sc_write_mtx);
}
MODULE(MODULE_CLASS_DRIVER, if_urtwn, "bpf");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
if_urtwn_modcmd(modcmd_t cmd, void *aux)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_urtwn,
cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
#endif
return (error);
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_urtwn,
cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
#endif
return (error);
default:
return (ENOTTY);
}
}