fbd53556dc
most cases, use a proper constructor. For proplib, give a local equivalent of POOL_INIT for the kernel object implementation. This way the code structure can be preserved, and a local link set is not hazardous anyway (unless proplib is split to several modules, but that'll be the day). tested by booting a kernel in qemu and compile-testing i386/ALL
1021 lines
26 KiB
C
1021 lines
26 KiB
C
/* $NetBSD: kern_malloc.c,v 1.127 2009/09/13 18:45:11 pooka Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1987, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.127 2009/09/13 18:45:11 pooka Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/debug.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/lockdebug.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
static struct vm_map_kernel kmem_map_store;
|
|
struct vm_map *kmem_map = NULL;
|
|
|
|
#include "opt_kmempages.h"
|
|
|
|
#ifdef NKMEMCLUSTERS
|
|
#error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
|
|
#endif
|
|
|
|
/*
|
|
* Default number of pages in kmem_map. We attempt to calculate this
|
|
* at run-time, but allow it to be either patched or set in the kernel
|
|
* config file.
|
|
*/
|
|
#ifndef NKMEMPAGES
|
|
#define NKMEMPAGES 0
|
|
#endif
|
|
int nkmempages = NKMEMPAGES;
|
|
|
|
/*
|
|
* Defaults for lower- and upper-bounds for the kmem_map page count.
|
|
* Can be overridden by kernel config options.
|
|
*/
|
|
#ifndef NKMEMPAGES_MIN
|
|
#define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
|
|
#endif
|
|
|
|
#ifndef NKMEMPAGES_MAX
|
|
#define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
|
|
#endif
|
|
|
|
#include "opt_kmemstats.h"
|
|
#include "opt_malloclog.h"
|
|
#include "opt_malloc_debug.h"
|
|
|
|
#define MINALLOCSIZE (1 << MINBUCKET)
|
|
#define BUCKETINDX(size) \
|
|
((size) <= (MINALLOCSIZE * 128) \
|
|
? (size) <= (MINALLOCSIZE * 8) \
|
|
? (size) <= (MINALLOCSIZE * 2) \
|
|
? (size) <= (MINALLOCSIZE * 1) \
|
|
? (MINBUCKET + 0) \
|
|
: (MINBUCKET + 1) \
|
|
: (size) <= (MINALLOCSIZE * 4) \
|
|
? (MINBUCKET + 2) \
|
|
: (MINBUCKET + 3) \
|
|
: (size) <= (MINALLOCSIZE* 32) \
|
|
? (size) <= (MINALLOCSIZE * 16) \
|
|
? (MINBUCKET + 4) \
|
|
: (MINBUCKET + 5) \
|
|
: (size) <= (MINALLOCSIZE * 64) \
|
|
? (MINBUCKET + 6) \
|
|
: (MINBUCKET + 7) \
|
|
: (size) <= (MINALLOCSIZE * 2048) \
|
|
? (size) <= (MINALLOCSIZE * 512) \
|
|
? (size) <= (MINALLOCSIZE * 256) \
|
|
? (MINBUCKET + 8) \
|
|
: (MINBUCKET + 9) \
|
|
: (size) <= (MINALLOCSIZE * 1024) \
|
|
? (MINBUCKET + 10) \
|
|
: (MINBUCKET + 11) \
|
|
: (size) <= (MINALLOCSIZE * 8192) \
|
|
? (size) <= (MINALLOCSIZE * 4096) \
|
|
? (MINBUCKET + 12) \
|
|
: (MINBUCKET + 13) \
|
|
: (size) <= (MINALLOCSIZE * 16384) \
|
|
? (MINBUCKET + 14) \
|
|
: (MINBUCKET + 15))
|
|
|
|
/*
|
|
* Array of descriptors that describe the contents of each page
|
|
*/
|
|
struct kmemusage {
|
|
short ku_indx; /* bucket index */
|
|
union {
|
|
u_short freecnt;/* for small allocations, free pieces in page */
|
|
u_short pagecnt;/* for large allocations, pages alloced */
|
|
} ku_un;
|
|
};
|
|
#define ku_freecnt ku_un.freecnt
|
|
#define ku_pagecnt ku_un.pagecnt
|
|
|
|
struct kmembuckets kmembuckets[MINBUCKET + 16];
|
|
struct kmemusage *kmemusage;
|
|
char *kmembase, *kmemlimit;
|
|
|
|
#ifdef DEBUG
|
|
static void *malloc_freecheck;
|
|
#endif
|
|
|
|
/*
|
|
* Turn virtual addresses into kmem map indicies
|
|
*/
|
|
#define btokup(addr) (&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
|
|
|
|
struct malloc_type *kmemstatistics;
|
|
|
|
#ifdef MALLOCLOG
|
|
#ifndef MALLOCLOGSIZE
|
|
#define MALLOCLOGSIZE 100000
|
|
#endif
|
|
|
|
struct malloclog {
|
|
void *addr;
|
|
long size;
|
|
struct malloc_type *type;
|
|
int action;
|
|
const char *file;
|
|
long line;
|
|
} malloclog[MALLOCLOGSIZE];
|
|
|
|
long malloclogptr;
|
|
|
|
/*
|
|
* Fuzz factor for neighbour address match this must be a mask of the lower
|
|
* bits we wish to ignore when comparing addresses
|
|
*/
|
|
__uintptr_t malloclog_fuzz = 0x7FL;
|
|
|
|
|
|
static void
|
|
domlog(void *a, long size, struct malloc_type *type, int action,
|
|
const char *file, long line)
|
|
{
|
|
|
|
malloclog[malloclogptr].addr = a;
|
|
malloclog[malloclogptr].size = size;
|
|
malloclog[malloclogptr].type = type;
|
|
malloclog[malloclogptr].action = action;
|
|
malloclog[malloclogptr].file = file;
|
|
malloclog[malloclogptr].line = line;
|
|
malloclogptr++;
|
|
if (malloclogptr >= MALLOCLOGSIZE)
|
|
malloclogptr = 0;
|
|
}
|
|
|
|
static void
|
|
hitmlog(void *a)
|
|
{
|
|
struct malloclog *lp;
|
|
long l;
|
|
|
|
#define PRT do { \
|
|
lp = &malloclog[l]; \
|
|
if (lp->addr == a && lp->action) { \
|
|
printf("malloc log entry %ld:\n", l); \
|
|
printf("\taddr = %p\n", lp->addr); \
|
|
printf("\tsize = %ld\n", lp->size); \
|
|
printf("\ttype = %s\n", lp->type->ks_shortdesc); \
|
|
printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
|
|
printf("\tfile = %s\n", lp->file); \
|
|
printf("\tline = %ld\n", lp->line); \
|
|
} \
|
|
} while (/* CONSTCOND */0)
|
|
|
|
/*
|
|
* Print fuzzy matched "neighbour" - look for the memory block that has
|
|
* been allocated below the address we are interested in. We look for a
|
|
* base address + size that is within malloclog_fuzz of our target
|
|
* address. If the base address and target address are the same then it is
|
|
* likely we have found a free (size is 0 in this case) so we won't report
|
|
* those, they will get reported by PRT anyway.
|
|
*/
|
|
#define NPRT do { \
|
|
__uintptr_t fuzz_mask = ~(malloclog_fuzz); \
|
|
lp = &malloclog[l]; \
|
|
if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
|
|
(((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
|
|
== ((__uintptr_t)a & fuzz_mask) && lp->action) { \
|
|
printf("neighbour malloc log entry %ld:\n", l); \
|
|
printf("\taddr = %p\n", lp->addr); \
|
|
printf("\tsize = %ld\n", lp->size); \
|
|
printf("\ttype = %s\n", lp->type->ks_shortdesc); \
|
|
printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
|
|
printf("\tfile = %s\n", lp->file); \
|
|
printf("\tline = %ld\n", lp->line); \
|
|
} \
|
|
} while (/* CONSTCOND */0)
|
|
|
|
for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
|
|
PRT;
|
|
NPRT;
|
|
}
|
|
|
|
|
|
for (l = 0; l < malloclogptr; l++) {
|
|
PRT;
|
|
NPRT;
|
|
}
|
|
|
|
#undef PRT
|
|
}
|
|
#endif /* MALLOCLOG */
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* This structure provides a set of masks to catch unaligned frees.
|
|
*/
|
|
const long addrmask[] = { 0,
|
|
0x00000001, 0x00000003, 0x00000007, 0x0000000f,
|
|
0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
|
|
0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
|
|
0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
|
|
};
|
|
|
|
/*
|
|
* The WEIRD_ADDR is used as known text to copy into free objects so
|
|
* that modifications after frees can be detected.
|
|
*/
|
|
#define WEIRD_ADDR ((uint32_t) 0xdeadbeef)
|
|
#ifdef DEBUG
|
|
#define MAX_COPY PAGE_SIZE
|
|
#else
|
|
#define MAX_COPY 32
|
|
#endif
|
|
|
|
/*
|
|
* Normally the freelist structure is used only to hold the list pointer
|
|
* for free objects. However, when running with diagnostics, the first
|
|
* 8/16 bytes of the structure is unused except for diagnostic information,
|
|
* and the free list pointer is at offset 8/16 in the structure. Since the
|
|
* first 8 bytes is the portion of the structure most often modified, this
|
|
* helps to detect memory reuse problems and avoid free list corruption.
|
|
*/
|
|
struct freelist {
|
|
uint32_t spare0;
|
|
#ifdef _LP64
|
|
uint32_t spare1; /* explicit padding */
|
|
#endif
|
|
struct malloc_type *type;
|
|
void * next;
|
|
};
|
|
#else /* !DIAGNOSTIC */
|
|
struct freelist {
|
|
void * next;
|
|
};
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
kmutex_t malloc_lock;
|
|
|
|
/*
|
|
* Allocate a block of memory
|
|
*/
|
|
#ifdef MALLOCLOG
|
|
void *
|
|
_kern_malloc(unsigned long size, struct malloc_type *ksp, int flags,
|
|
const char *file, long line)
|
|
#else
|
|
void *
|
|
kern_malloc(unsigned long size, struct malloc_type *ksp, int flags)
|
|
#endif /* MALLOCLOG */
|
|
{
|
|
struct kmembuckets *kbp;
|
|
struct kmemusage *kup;
|
|
struct freelist *freep;
|
|
long indx, npg, allocsize;
|
|
char *va, *cp, *savedlist;
|
|
#ifdef DIAGNOSTIC
|
|
uint32_t *end, *lp;
|
|
int copysize;
|
|
#endif
|
|
|
|
#ifdef LOCKDEBUG
|
|
if ((flags & M_NOWAIT) == 0) {
|
|
ASSERT_SLEEPABLE();
|
|
}
|
|
#endif
|
|
#ifdef MALLOC_DEBUG
|
|
if (debug_malloc(size, ksp, flags, (void *) &va)) {
|
|
if (va != 0) {
|
|
FREECHECK_OUT(&malloc_freecheck, (void *)va);
|
|
}
|
|
return ((void *) va);
|
|
}
|
|
#endif
|
|
indx = BUCKETINDX(size);
|
|
kbp = &kmembuckets[indx];
|
|
mutex_spin_enter(&malloc_lock);
|
|
#ifdef KMEMSTATS
|
|
while (ksp->ks_memuse >= ksp->ks_limit) {
|
|
if (flags & M_NOWAIT) {
|
|
mutex_spin_exit(&malloc_lock);
|
|
return ((void *) NULL);
|
|
}
|
|
if (ksp->ks_limblocks < 65535)
|
|
ksp->ks_limblocks++;
|
|
mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
|
|
&malloc_lock);
|
|
}
|
|
ksp->ks_size |= 1 << indx;
|
|
#endif
|
|
#ifdef DIAGNOSTIC
|
|
copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
|
|
#endif
|
|
if (kbp->kb_next == NULL) {
|
|
int s;
|
|
kbp->kb_last = NULL;
|
|
if (size > MAXALLOCSAVE)
|
|
allocsize = round_page(size);
|
|
else
|
|
allocsize = 1 << indx;
|
|
npg = btoc(allocsize);
|
|
mutex_spin_exit(&malloc_lock);
|
|
s = splvm();
|
|
va = (void *) uvm_km_alloc(kmem_map,
|
|
(vsize_t)ctob(npg), 0,
|
|
((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
|
|
((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
|
|
UVM_KMF_WIRED);
|
|
splx(s);
|
|
if (__predict_false(va == NULL)) {
|
|
/*
|
|
* Kmem_malloc() can return NULL, even if it can
|
|
* wait, if there is no map space available, because
|
|
* it can't fix that problem. Neither can we,
|
|
* right now. (We should release pages which
|
|
* are completely free and which are in kmembuckets
|
|
* with too many free elements.)
|
|
*/
|
|
if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
|
|
panic("malloc: out of space in kmem_map");
|
|
return (NULL);
|
|
}
|
|
mutex_spin_enter(&malloc_lock);
|
|
#ifdef KMEMSTATS
|
|
kbp->kb_total += kbp->kb_elmpercl;
|
|
#endif
|
|
kup = btokup(va);
|
|
kup->ku_indx = indx;
|
|
if (allocsize > MAXALLOCSAVE) {
|
|
if (npg > 65535)
|
|
panic("malloc: allocation too large");
|
|
kup->ku_pagecnt = npg;
|
|
#ifdef KMEMSTATS
|
|
ksp->ks_memuse += allocsize;
|
|
#endif
|
|
goto out;
|
|
}
|
|
#ifdef KMEMSTATS
|
|
kup->ku_freecnt = kbp->kb_elmpercl;
|
|
kbp->kb_totalfree += kbp->kb_elmpercl;
|
|
#endif
|
|
/*
|
|
* Just in case we blocked while allocating memory,
|
|
* and someone else also allocated memory for this
|
|
* kmembucket, don't assume the list is still empty.
|
|
*/
|
|
savedlist = kbp->kb_next;
|
|
kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
|
|
for (;;) {
|
|
freep = (struct freelist *)cp;
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Copy in known text to detect modification
|
|
* after freeing.
|
|
*/
|
|
end = (uint32_t *)&cp[copysize];
|
|
for (lp = (uint32_t *)cp; lp < end; lp++)
|
|
*lp = WEIRD_ADDR;
|
|
freep->type = M_FREE;
|
|
#endif /* DIAGNOSTIC */
|
|
if (cp <= va)
|
|
break;
|
|
cp -= allocsize;
|
|
freep->next = cp;
|
|
}
|
|
freep->next = savedlist;
|
|
if (savedlist == NULL)
|
|
kbp->kb_last = (void *)freep;
|
|
}
|
|
va = kbp->kb_next;
|
|
kbp->kb_next = ((struct freelist *)va)->next;
|
|
#ifdef DIAGNOSTIC
|
|
freep = (struct freelist *)va;
|
|
/* XXX potential to get garbage pointer here. */
|
|
if (kbp->kb_next) {
|
|
int rv;
|
|
vaddr_t addr = (vaddr_t)kbp->kb_next;
|
|
|
|
vm_map_lock(kmem_map);
|
|
rv = uvm_map_checkprot(kmem_map, addr,
|
|
addr + sizeof(struct freelist), VM_PROT_WRITE);
|
|
vm_map_unlock(kmem_map);
|
|
|
|
if (__predict_false(rv == 0)) {
|
|
printf("Data modified on freelist: "
|
|
"word %ld of object %p size %ld previous type %s "
|
|
"(invalid addr %p)\n",
|
|
(long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
|
|
va, size, "foo", kbp->kb_next);
|
|
#ifdef MALLOCLOG
|
|
hitmlog(va);
|
|
#endif
|
|
kbp->kb_next = NULL;
|
|
}
|
|
}
|
|
|
|
/* Fill the fields that we've used with WEIRD_ADDR */
|
|
#ifdef _LP64
|
|
freep->type = (struct malloc_type *)
|
|
(WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
|
|
#else
|
|
freep->type = (struct malloc_type *) WEIRD_ADDR;
|
|
#endif
|
|
end = (uint32_t *)&freep->next +
|
|
(sizeof(freep->next) / sizeof(int32_t));
|
|
for (lp = (uint32_t *)&freep->next; lp < end; lp++)
|
|
*lp = WEIRD_ADDR;
|
|
|
|
/* and check that the data hasn't been modified. */
|
|
end = (uint32_t *)&va[copysize];
|
|
for (lp = (uint32_t *)va; lp < end; lp++) {
|
|
if (__predict_true(*lp == WEIRD_ADDR))
|
|
continue;
|
|
printf("Data modified on freelist: "
|
|
"word %ld of object %p size %ld previous type %s "
|
|
"(0x%x != 0x%x)\n",
|
|
(long)(lp - (uint32_t *)va), va, size,
|
|
"bar", *lp, WEIRD_ADDR);
|
|
#ifdef MALLOCLOG
|
|
hitmlog(va);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
freep->spare0 = 0;
|
|
#endif /* DIAGNOSTIC */
|
|
#ifdef KMEMSTATS
|
|
kup = btokup(va);
|
|
if (kup->ku_indx != indx)
|
|
panic("malloc: wrong bucket");
|
|
if (kup->ku_freecnt == 0)
|
|
panic("malloc: lost data");
|
|
kup->ku_freecnt--;
|
|
kbp->kb_totalfree--;
|
|
ksp->ks_memuse += 1 << indx;
|
|
out:
|
|
kbp->kb_calls++;
|
|
ksp->ks_inuse++;
|
|
ksp->ks_calls++;
|
|
if (ksp->ks_memuse > ksp->ks_maxused)
|
|
ksp->ks_maxused = ksp->ks_memuse;
|
|
#else
|
|
out:
|
|
#endif
|
|
#ifdef MALLOCLOG
|
|
domlog(va, size, ksp, 1, file, line);
|
|
#endif
|
|
mutex_spin_exit(&malloc_lock);
|
|
if ((flags & M_ZERO) != 0)
|
|
memset(va, 0, size);
|
|
FREECHECK_OUT(&malloc_freecheck, (void *)va);
|
|
return ((void *) va);
|
|
}
|
|
|
|
/*
|
|
* Free a block of memory allocated by malloc.
|
|
*/
|
|
#ifdef MALLOCLOG
|
|
void
|
|
_kern_free(void *addr, struct malloc_type *ksp, const char *file, long line)
|
|
#else
|
|
void
|
|
kern_free(void *addr, struct malloc_type *ksp)
|
|
#endif /* MALLOCLOG */
|
|
{
|
|
struct kmembuckets *kbp;
|
|
struct kmemusage *kup;
|
|
struct freelist *freep;
|
|
long size;
|
|
#ifdef DIAGNOSTIC
|
|
void *cp;
|
|
int32_t *end, *lp;
|
|
long alloc, copysize;
|
|
#endif
|
|
|
|
FREECHECK_IN(&malloc_freecheck, addr);
|
|
#ifdef MALLOC_DEBUG
|
|
if (debug_free(addr, ksp))
|
|
return;
|
|
#endif
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Ensure that we're free'ing something that we could
|
|
* have allocated in the first place. That is, check
|
|
* to see that the address is within kmem_map.
|
|
*/
|
|
if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
|
|
(vaddr_t)addr >= vm_map_max(kmem_map)))
|
|
panic("free: addr %p not within kmem_map", addr);
|
|
#endif
|
|
|
|
kup = btokup(addr);
|
|
size = 1 << kup->ku_indx;
|
|
kbp = &kmembuckets[kup->ku_indx];
|
|
|
|
LOCKDEBUG_MEM_CHECK(addr,
|
|
size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
|
|
|
|
mutex_spin_enter(&malloc_lock);
|
|
#ifdef MALLOCLOG
|
|
domlog(addr, 0, ksp, 2, file, line);
|
|
#endif
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Check for returns of data that do not point to the
|
|
* beginning of the allocation.
|
|
*/
|
|
if (size > PAGE_SIZE)
|
|
alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
|
|
else
|
|
alloc = addrmask[kup->ku_indx];
|
|
if (((u_long)addr & alloc) != 0)
|
|
panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
|
|
addr, size, ksp->ks_shortdesc, alloc);
|
|
#endif /* DIAGNOSTIC */
|
|
if (size > MAXALLOCSAVE) {
|
|
uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
|
|
UVM_KMF_WIRED);
|
|
#ifdef KMEMSTATS
|
|
size = kup->ku_pagecnt << PGSHIFT;
|
|
ksp->ks_memuse -= size;
|
|
kup->ku_indx = 0;
|
|
kup->ku_pagecnt = 0;
|
|
if (ksp->ks_memuse + size >= ksp->ks_limit &&
|
|
ksp->ks_memuse < ksp->ks_limit)
|
|
wakeup((void *)ksp);
|
|
#ifdef DIAGNOSTIC
|
|
if (ksp->ks_inuse == 0)
|
|
panic("free 1: inuse 0, probable double free");
|
|
#endif
|
|
ksp->ks_inuse--;
|
|
kbp->kb_total -= 1;
|
|
#endif
|
|
mutex_spin_exit(&malloc_lock);
|
|
return;
|
|
}
|
|
freep = (struct freelist *)addr;
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Check for multiple frees. Use a quick check to see if
|
|
* it looks free before laboriously searching the freelist.
|
|
*/
|
|
if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
|
|
for (cp = kbp->kb_next; cp;
|
|
cp = ((struct freelist *)cp)->next) {
|
|
if (addr != cp)
|
|
continue;
|
|
printf("multiply freed item %p\n", addr);
|
|
#ifdef MALLOCLOG
|
|
hitmlog(addr);
|
|
#endif
|
|
panic("free: duplicated free");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy in known text to detect modification after freeing
|
|
* and to make it look free. Also, save the type being freed
|
|
* so we can list likely culprit if modification is detected
|
|
* when the object is reallocated.
|
|
*/
|
|
copysize = size < MAX_COPY ? size : MAX_COPY;
|
|
end = (int32_t *)&((char *)addr)[copysize];
|
|
for (lp = (int32_t *)addr; lp < end; lp++)
|
|
*lp = WEIRD_ADDR;
|
|
freep->type = ksp;
|
|
#endif /* DIAGNOSTIC */
|
|
#ifdef KMEMSTATS
|
|
kup->ku_freecnt++;
|
|
if (kup->ku_freecnt >= kbp->kb_elmpercl) {
|
|
if (kup->ku_freecnt > kbp->kb_elmpercl)
|
|
panic("free: multiple frees");
|
|
else if (kbp->kb_totalfree > kbp->kb_highwat)
|
|
kbp->kb_couldfree++;
|
|
}
|
|
kbp->kb_totalfree++;
|
|
ksp->ks_memuse -= size;
|
|
if (ksp->ks_memuse + size >= ksp->ks_limit &&
|
|
ksp->ks_memuse < ksp->ks_limit)
|
|
wakeup((void *)ksp);
|
|
#ifdef DIAGNOSTIC
|
|
if (ksp->ks_inuse == 0)
|
|
panic("free 2: inuse 0, probable double free");
|
|
#endif
|
|
ksp->ks_inuse--;
|
|
#endif
|
|
if (kbp->kb_next == NULL)
|
|
kbp->kb_next = addr;
|
|
else
|
|
((struct freelist *)kbp->kb_last)->next = addr;
|
|
freep->next = NULL;
|
|
kbp->kb_last = addr;
|
|
mutex_spin_exit(&malloc_lock);
|
|
}
|
|
|
|
/*
|
|
* Change the size of a block of memory.
|
|
*/
|
|
void *
|
|
kern_realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
|
|
int flags)
|
|
{
|
|
struct kmemusage *kup;
|
|
unsigned long cursize;
|
|
void *newaddr;
|
|
#ifdef DIAGNOSTIC
|
|
long alloc;
|
|
#endif
|
|
|
|
/*
|
|
* realloc() with a NULL pointer is the same as malloc().
|
|
*/
|
|
if (curaddr == NULL)
|
|
return (malloc(newsize, ksp, flags));
|
|
|
|
/*
|
|
* realloc() with zero size is the same as free().
|
|
*/
|
|
if (newsize == 0) {
|
|
free(curaddr, ksp);
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef LOCKDEBUG
|
|
if ((flags & M_NOWAIT) == 0) {
|
|
ASSERT_SLEEPABLE();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Find out how large the old allocation was (and do some
|
|
* sanity checking).
|
|
*/
|
|
kup = btokup(curaddr);
|
|
cursize = 1 << kup->ku_indx;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Check for returns of data that do not point to the
|
|
* beginning of the allocation.
|
|
*/
|
|
if (cursize > PAGE_SIZE)
|
|
alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
|
|
else
|
|
alloc = addrmask[kup->ku_indx];
|
|
if (((u_long)curaddr & alloc) != 0)
|
|
panic("realloc: "
|
|
"unaligned addr %p, size %ld, type %s, mask %ld\n",
|
|
curaddr, cursize, ksp->ks_shortdesc, alloc);
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
if (cursize > MAXALLOCSAVE)
|
|
cursize = ctob(kup->ku_pagecnt);
|
|
|
|
/*
|
|
* If we already actually have as much as they want, we're done.
|
|
*/
|
|
if (newsize <= cursize)
|
|
return (curaddr);
|
|
|
|
/*
|
|
* Can't satisfy the allocation with the existing block.
|
|
* Allocate a new one and copy the data.
|
|
*/
|
|
newaddr = malloc(newsize, ksp, flags);
|
|
if (__predict_false(newaddr == NULL)) {
|
|
/*
|
|
* malloc() failed, because flags included M_NOWAIT.
|
|
* Return NULL to indicate that failure. The old
|
|
* pointer is still valid.
|
|
*/
|
|
return (NULL);
|
|
}
|
|
memcpy(newaddr, curaddr, cursize);
|
|
|
|
/*
|
|
* We were successful: free the old allocation and return
|
|
* the new one.
|
|
*/
|
|
free(curaddr, ksp);
|
|
return (newaddr);
|
|
}
|
|
|
|
/*
|
|
* Roundup size to the actual allocation size.
|
|
*/
|
|
unsigned long
|
|
malloc_roundup(unsigned long size)
|
|
{
|
|
|
|
if (size > MAXALLOCSAVE)
|
|
return (roundup(size, PAGE_SIZE));
|
|
else
|
|
return (1 << BUCKETINDX(size));
|
|
}
|
|
|
|
/*
|
|
* Add a malloc type to the system.
|
|
*/
|
|
void
|
|
malloc_type_attach(struct malloc_type *type)
|
|
{
|
|
|
|
if (nkmempages == 0)
|
|
panic("malloc_type_attach: nkmempages == 0");
|
|
|
|
if (type->ks_magic != M_MAGIC)
|
|
panic("malloc_type_attach: bad magic");
|
|
|
|
#ifdef DIAGNOSTIC
|
|
{
|
|
struct malloc_type *ksp;
|
|
for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
|
|
if (ksp == type)
|
|
panic("malloc_type_attach: already on list");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef KMEMSTATS
|
|
if (type->ks_limit == 0)
|
|
type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
|
|
#else
|
|
type->ks_limit = 0;
|
|
#endif
|
|
|
|
type->ks_next = kmemstatistics;
|
|
kmemstatistics = type;
|
|
}
|
|
|
|
/*
|
|
* Remove a malloc type from the system..
|
|
*/
|
|
void
|
|
malloc_type_detach(struct malloc_type *type)
|
|
{
|
|
struct malloc_type *ksp;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (type->ks_magic != M_MAGIC)
|
|
panic("malloc_type_detach: bad magic");
|
|
#endif
|
|
|
|
if (type == kmemstatistics)
|
|
kmemstatistics = type->ks_next;
|
|
else {
|
|
for (ksp = kmemstatistics; ksp->ks_next != NULL;
|
|
ksp = ksp->ks_next) {
|
|
if (ksp->ks_next == type) {
|
|
ksp->ks_next = type->ks_next;
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (ksp->ks_next == NULL)
|
|
panic("malloc_type_detach: not on list");
|
|
#endif
|
|
}
|
|
type->ks_next = NULL;
|
|
}
|
|
|
|
/*
|
|
* Set the limit on a malloc type.
|
|
*/
|
|
void
|
|
malloc_type_setlimit(struct malloc_type *type, u_long limit)
|
|
{
|
|
#ifdef KMEMSTATS
|
|
mutex_spin_enter(&malloc_lock);
|
|
type->ks_limit = limit;
|
|
mutex_spin_exit(&malloc_lock);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Compute the number of pages that kmem_map will map, that is,
|
|
* the size of the kernel malloc arena.
|
|
*/
|
|
void
|
|
kmeminit_nkmempages(void)
|
|
{
|
|
int npages;
|
|
|
|
if (nkmempages != 0) {
|
|
/*
|
|
* It's already been set (by us being here before, or
|
|
* by patching or kernel config options), bail out now.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
npages = physmem;
|
|
|
|
if (npages > NKMEMPAGES_MAX)
|
|
npages = NKMEMPAGES_MAX;
|
|
|
|
if (npages < NKMEMPAGES_MIN)
|
|
npages = NKMEMPAGES_MIN;
|
|
|
|
nkmempages = npages;
|
|
}
|
|
|
|
/*
|
|
* Initialize the kernel memory allocator
|
|
*/
|
|
void
|
|
kmeminit(void)
|
|
{
|
|
__link_set_decl(malloc_types, struct malloc_type);
|
|
struct malloc_type * const *ksp;
|
|
vaddr_t kmb, kml;
|
|
#ifdef KMEMSTATS
|
|
long indx;
|
|
#endif
|
|
|
|
#if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
|
|
ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
|
|
#endif
|
|
#if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
|
|
ERROR!_kmeminit:_MAXALLOCSAVE_too_big
|
|
#endif
|
|
#if (MAXALLOCSAVE < NBPG)
|
|
ERROR!_kmeminit:_MAXALLOCSAVE_too_small
|
|
#endif
|
|
|
|
if (sizeof(struct freelist) > (1 << MINBUCKET))
|
|
panic("minbucket too small/struct freelist too big");
|
|
|
|
mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
|
|
|
|
/*
|
|
* Compute the number of kmem_map pages, if we have not
|
|
* done so already.
|
|
*/
|
|
kmeminit_nkmempages();
|
|
|
|
kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
|
|
(vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
|
|
UVM_KMF_WIRED|UVM_KMF_ZERO);
|
|
kmb = 0;
|
|
kmem_map = uvm_km_suballoc(kernel_map, &kmb,
|
|
&kml, ((vsize_t)nkmempages << PAGE_SHIFT),
|
|
VM_MAP_INTRSAFE, false, &kmem_map_store);
|
|
uvm_km_vacache_init(kmem_map, "kvakmem", 0);
|
|
kmembase = (char *)kmb;
|
|
kmemlimit = (char *)kml;
|
|
#ifdef KMEMSTATS
|
|
for (indx = 0; indx < MINBUCKET + 16; indx++) {
|
|
if (1 << indx >= PAGE_SIZE)
|
|
kmembuckets[indx].kb_elmpercl = 1;
|
|
else
|
|
kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
|
|
kmembuckets[indx].kb_highwat =
|
|
5 * kmembuckets[indx].kb_elmpercl;
|
|
}
|
|
#endif
|
|
|
|
/* Attach all of the statically-linked malloc types. */
|
|
__link_set_foreach(ksp, malloc_types)
|
|
malloc_type_attach(*ksp);
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
debug_malloc_init();
|
|
#endif
|
|
}
|
|
|
|
#ifdef DDB
|
|
#include <ddb/db_output.h>
|
|
|
|
/*
|
|
* Dump kmem statistics from ddb.
|
|
*
|
|
* usage: call dump_kmemstats
|
|
*/
|
|
void dump_kmemstats(void);
|
|
|
|
void
|
|
dump_kmemstats(void)
|
|
{
|
|
#ifdef KMEMSTATS
|
|
struct malloc_type *ksp;
|
|
|
|
for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
|
|
if (ksp->ks_memuse == 0)
|
|
continue;
|
|
db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
|
|
(int)(20 - strlen(ksp->ks_shortdesc)),
|
|
" ",
|
|
ksp->ks_memuse);
|
|
}
|
|
#else
|
|
db_printf("Kmem stats are not being collected.\n");
|
|
#endif /* KMEMSTATS */
|
|
}
|
|
#endif /* DDB */
|
|
|
|
|
|
#if 0
|
|
/*
|
|
* Diagnostic messages about "Data modified on
|
|
* freelist" indicate a memory corruption, but
|
|
* they do not help tracking it down.
|
|
* This function can be called at various places
|
|
* to sanity check malloc's freelist and discover
|
|
* where does the corruption take place.
|
|
*/
|
|
int
|
|
freelist_sanitycheck(void) {
|
|
int i,j;
|
|
struct kmembuckets *kbp;
|
|
struct freelist *freep;
|
|
int rv = 0;
|
|
|
|
for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
|
|
kbp = &kmembuckets[i];
|
|
freep = (struct freelist *)kbp->kb_next;
|
|
j = 0;
|
|
while(freep) {
|
|
vm_map_lock(kmem_map);
|
|
rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
|
|
(vaddr_t)freep + sizeof(struct freelist),
|
|
VM_PROT_WRITE);
|
|
vm_map_unlock(kmem_map);
|
|
|
|
if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
|
|
printf("bucket %i, chunck %d at %p modified\n",
|
|
i, j, freep);
|
|
return 1;
|
|
}
|
|
freep = (struct freelist *)freep->next;
|
|
j++;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|