NetBSD/gnu/dist/gcc/config/gmicro/gmicro.c

983 lines
20 KiB
C

/* Subroutines for insn-output.c for the Gmicro.
Ported by Masanobu Yuhara, Fujitsu Laboratories LTD.
(yuhara@flab.fujitsu.co.jp)
Copyright (C) 1990, 1991, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Among other things, the copyright
notice and this notice must be preserved on all copies.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdio.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
extern char *rtx_name[];
mypr (s, a1, a2, a3, a4, a5)
char *s;
int a1, a2, a3, a4, a5;
{
fprintf (stderr, s, a1, a2, a3, a4, a5);
}
myprcode (i)
int i;
{
if (i < 0 || i > 90)
fprintf (stderr, "code = %d\n", i);
else
fprintf (stderr, "code = %s\n", rtx_name[i]);
}
myabort (i)
int i;
{
fprintf (stderr, "myabort");
myprcode (i);
}
/* This is how to output an ascii string. */
/* See ASM_OUTPUT_ASCII in gmicro.h. */
output_ascii (file, p, size)
FILE *file;
char *p;
int size;
{
int i;
int in_quote = 0;
register int c;
fprintf (file, "\t.sdata ");
for (i = 0; i < size; i++)
{
c = p[i];
if (c >= ' ' && c < 0x7f)
{
if (!in_quote)
{
putc ('"', file);
in_quote = 1;
}
putc (c, file);
}
else
{
if (in_quote)
{
putc ('"', file);
in_quote = 0;
}
fprintf (file, "<%d>", c);
}
}
if (in_quote)
putc ('"', file);
putc ('\n', file);
}
/* call this when GET_CODE (index) is MULT. */
print_scaled_index (file, index)
FILE *file;
register rtx index;
{
register rtx ireg;
int scale;
if (GET_CODE (XEXP (index, 0)) == REG)
{
ireg = XEXP (index, 0);
scale = INTVAL (XEXP (index, 1));
}
else
{
ireg = XEXP (index, 1);
scale = INTVAL (XEXP (index, 0));
}
if (scale == 1)
fprintf (file, "%s", reg_names[REGNO (ireg)]);
else
fprintf (file, "%s*%d", reg_names[REGNO (ireg)], scale);
}
print_operand_address (file, addr)
FILE *file;
register rtx addr;
{
register rtx xtmp0, xtmp1, breg, ixreg;
int scale;
int needcomma = 0;
rtx offset;
fprintf (file, "@");
retry:
switch (GET_CODE (addr))
{
case MEM:
fprintf (file, "@");
addr = XEXP (addr, 0);
goto retry;
case REG:
fprintf (file, "%s", reg_names[REGNO (addr)]);
break;
case MULT:
print_scaled_index (file, addr);
break;
case PRE_DEC:
fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_INC:
fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
break;
case PLUS:
xtmp0 = XEXP (addr, 0);
xtmp1 = XEXP (addr, 1);
ixreg = 0; breg = 0;
offset = 0;
if (CONSTANT_ADDRESS_P (xtmp0))
{
offset = xtmp0;
breg = xtmp1;
}
else if (CONSTANT_ADDRESS_P (xtmp1))
{
offset = xtmp1;
breg = xtmp0;
}
else
{
goto NOT_DISP;
}
if (REG_CODE_BASE_P (breg))
goto PRINT_MEM;
if (GET_CODE (breg) == MULT)
{
if (REG_CODE_INDEX_P (XEXP (breg, 0)))
{
ixreg = XEXP (breg, 0);
scale = INTVAL (XEXP (breg, 1));
breg = 0;
}
else
{
ixreg = XEXP (breg, 1);
scale = INTVAL (XEXP (breg, 0));
breg = 0;
}
goto PRINT_MEM;
}
/* GET_CODE (breg) must be PLUS here. */
xtmp0 = XEXP (breg, 0);
xtmp1 = XEXP (breg, 1);
if (REG_CODE_BASE_P (xtmp0))
{
breg = xtmp0;
xtmp0 = xtmp1;
}
else
{
breg = xtmp1;
/* xtmp0 = xtmp0; */
}
if (GET_CODE (xtmp0) == MULT)
{
if (REG_CODE_INDEX_P (XEXP (xtmp0, 0)))
{
ixreg = XEXP (xtmp0, 0);
scale = INTVAL (XEXP (xtmp0, 1));
}
else
{
ixreg = XEXP (xtmp0, 1);
scale = INTVAL (XEXP (xtmp0, 0));
}
}
else
{
ixreg = xtmp0;
scale = 1;
}
goto PRINT_MEM;
NOT_DISP:
if (REG_CODE_BASE_P (xtmp0))
{
breg = xtmp0;
xtmp0 = xtmp1;
}
else if (REG_CODE_BASE_P (xtmp1))
{
breg = xtmp1;
/* xtmp0 = xtmp0; */
}
else
goto NOT_BASE;
if (REG_CODE_INDEX_P (xtmp0))
{
ixreg = xtmp0;
scale = 1;
goto PRINT_MEM;
}
else if (CONSTANT_ADDRESS_P (xtmp0))
{
offset = xtmp0;
goto PRINT_MEM;
}
else if (GET_CODE (xtmp0) == MULT)
{
if (REG_CODE_INDEX_P (XEXP (xtmp0, 0)))
{
ixreg = XEXP (xtmp0, 0);
scale = INTVAL (XEXP (xtmp0, 1));
}
else
{
ixreg = XEXP (xtmp0, 1);
scale = INTVAL (XEXP (xtmp0, 0));
}
goto PRINT_MEM;
}
/* GET_CODE (xtmp0) must be PLUS. */
xtmp1 = XEXP (xtmp0, 1);
xtmp0 = XEXP (xtmp0, 0);
if (CONSTANT_ADDRESS_P (xtmp0))
{
offset = xtmp0;
xtmp0 = xtmp1;
}
else
{
offset = xtmp1;
/* xtmp0 = xtmp0; */
}
if (REG_CODE_INDEX_P (xtmp0))
{
ixreg = xtmp0;
}
else
{ /* GET_CODE (xtmp0) must be MULT. */
if (REG_CODE_INDEX_P (XEXP (xtmp0, 0)))
{
ixreg = XEXP (xtmp0, 0);
scale = INTVAL (XEXP (xtmp0, 1));
}
else
{
ixreg = XEXP (xtmp0, 1);
scale = INTVAL (XEXP (xtmp0, 0));
}
}
goto PRINT_MEM;
NOT_BASE:
if (GET_CODE (xtmp0) == PLUS)
{
ixreg = xtmp1;
/* xtmp0 = xtmp0; */
}
else
{
ixreg = xtmp0;
xtmp0 = xtmp1;
}
if (REG_CODE_INDEX_P (ixreg))
{
scale = 1;
}
else if (REG_CODE_INDEX_P (XEXP (ixreg, 0)))
{
scale = INTVAL (XEXP (ixreg, 1));
ixreg = XEXP (ixreg, 0);
}
else
{ /* was else if with no condition. OK ??? */
scale = INTVAL (XEXP (ixreg, 0));
ixreg = XEXP (ixreg, 1);
}
if (REG_CODE_BASE_P (XEXP (xtmp0, 0)))
{
breg = XEXP (xtmp0, 0);
offset = XEXP (xtmp0, 1);
}
else
{
breg = XEXP (xtmp0, 1);
offset = XEXP (xtmp0, 0);
}
PRINT_MEM:
if (breg == 0 && ixreg == 0)
{
output_address (offset);
break;
}
else if (ixreg == 0 && offset == 0)
{
fprintf (file, "%s", reg_names[REGNO (breg)]);
break;
}
else
{
fprintf (file, "(");
if (offset != 0)
{
output_addr_const (file, offset);
needcomma = 1;
}
if (breg != 0)
{
if (needcomma)
fprintf (file, ",");
fprintf (file, "%s", reg_names[REGNO (breg)]);
needcomma = 1;
}
if (ixreg != 0)
{
if (needcomma)
fprintf (file, ",");
fprintf (file, "%s", reg_names[REGNO (ixreg)]);
if (scale != 1)
fprintf (file,"*%d", scale);
}
fprintf (file, ")");
break;
}
default:
output_addr_const (file, addr);
}
}
/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */
static rtx
find_addr_reg (addr)
rtx addr;
{
while (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == REG)
addr = XEXP (addr, 1);
else if (GET_CODE (XEXP (addr, 0)) == PLUS)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == PLUS)
addr = XEXP (addr, 1);
}
if (GET_CODE (addr) == REG)
return addr;
return 0;
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
static char *
singlemove_string (operands)
rtx *operands;
{
if (FPU_REG_P (operands[0]) || FPU_REG_P (operands[1]))
{
if (GREG_P (operands[0]) || GREG_P (operands[1]))
{
myabort (101); /* Not Supported yet !! */
}
else
{
return "fmov.s %1,%0";
}
}
return "mov.w %1,%0";
}
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
char *
output_move_double (operands)
rtx *operands;
{
enum
{ REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP }
optype0, optype1;
rtx latehalf[2];
rtx addreg0 = 0, addreg1 = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
optype0 = POPOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
optype1 = POPOP;
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
optype1 = PUSHOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP)
myabort (102);
/* If one operand is decrementing and one is incrementing
decrement the former register explicitly
and change that operand into ordinary indexing. */
if (optype0 == PUSHOP && optype1 == POPOP)
{
operands[0] = XEXP (XEXP (operands[0], 0), 0);
output_asm_insn ("sub.w %#8,%0", operands);
operands[0] = gen_rtx (MEM, DImode, operands[0]);
optype0 = OFFSOP;
}
if (optype0 == POPOP && optype1 == PUSHOP)
{
operands[1] = XEXP (XEXP (operands[1], 0), 0);
output_asm_insn ("sub.w %#8,%1", operands);
operands[1] = gen_rtx (MEM, DImode, operands[1]);
optype1 = OFFSOP;
}
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (operands[0]);
if (optype1 == MEMOP)
addreg1 = find_addr_reg (operands[1]);
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.
In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], 4);
else if (optype1 == CNSTOP)
{
if (GET_CODE (operands[1]) == CONST_DOUBLE)
split_double (operands[1], &operands[1], &latehalf[1]);
else if (CONSTANT_P (operands[1]))
latehalf[1] = const0_rtx;
}
else
latehalf[1] = operands[1];
/* If insn is effectively movd N(sp),-(sp) then we will do the
high word first. We should use the adjusted operand 1 (which is N+4(sp))
for the low word as well, to compensate for the first decrement of sp. */
if (optype0 == PUSHOP
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
operands[1] = latehalf[1];
/* If one or both operands autodecrementing,
do the two words, high-numbered first. */
/* Likewise, the first move would clobber the source of the second one,
do them in the other order. This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1])))
{
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add.w %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add.w %#4,%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("sub.w %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("sub.w %#4,%0", &addreg1);
/* Do low-numbered word. */
return singlemove_string (operands);
}
/* Normal case: do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add.w %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add.w %#4,%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("sub.w %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("sub.w %#4,%0", &addreg1);
return "";
}
/* Move const_double to floating point register (DF) */
char *
output_move_const_double (operands)
rtx *operands;
{
int code = standard_fpu_constant_p (operands[1]);
if (FPU_REG_P (operands[0]))
{
if (code != 0)
{
static char buf[40];
sprintf (buf, "fmvr from%d,%%0.d", code);
return buf;
}
else
{
return "fmov %1,%0.d";
}
}
else if (GREG_P (operands[0]))
{
rtx xoperands[2];
xoperands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
xoperands[1] = GEN_INT (CONST_DOUBLE_HIGH (operands[1]));
output_asm_insn ("mov.w %1,%0", xoperands);
operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));
return "mov.w %1,%0";
}
else
{
return output_move_double (operands); /* ?????? */
}
}
char *
output_move_const_single (operands)
rtx *operands;
{
int code = standard_fpu_constant_p (operands[1]);
static char buf[40];
if (FPU_REG_P (operands[0]))
{
if (code != 0)
{
sprintf (buf, "fmvr from%d,%%0.s", code);
return buf;
}
return "fmov.s %f1,%0";
}
else
return "mov.w %f1,%0";
}
/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
from the "fmvr" instruction of the Gmicro FPU.
The value, anded with 0xff, gives the code to use in fmovecr
to get the desired constant. */
u.i[0] = CONST_DOUBLE_LOW (x);
u.i[1] = CONST_DOUBLE_HIGH (x);
d = u.d;
if (d == 0.0) /* +0.0 */
return 0x0;
/* Note: there are various other constants available
but it is a nuisance to put in their values here. */
if (d == 1.0) /* +1.0 */
return 0x1;
/*
* Stuff that looks different if it's single or double
*/
if (GET_MODE (x) == SFmode)
{
if (d == S_PI)
return 0x2;
if (d == (S_PI / 2.0))
return 0x3;
if (d == S_E)
return 0x4;
if (d == S_LOGEof2)
return 0x5;
if (d == S_LOGEof10)
return 0x6;
if (d == S_LOG10of2)
return 0x7;
if (d == S_LOG10ofE)
return 0x8;
if (d == S_LOG2ofE)
return 0x9;
}
else
{
if (d == D_PI)
return 0x2;
if (d == (D_PI / 2.0))
return 0x3;
if (d == D_E)
return 0x4;
if (d == D_LOGEof2)
return 0x5;
if (d == D_LOGEof10)
return 0x6;
if (d == D_LOG10of2)
return 0x7;
if (d == D_LOG10ofE)
return 0x8;
if (d == D_LOG2ofE)
return 0x9;
}
return 0;
}
#undef S_PI
#undef D_PI
#undef S_E
#undef D_E
#undef S_LOGEof2
#undef D_LOGEof2
#undef S_LOGEof10
#undef D_LOGEof10
#undef S_LOG10of2
#undef D_LOG10of2
#undef S_LOG10ofE
#undef D_LOG10ofE
#undef S_LOG2ofE
#undef D_LOG2ofE
/* dest should be operand 0 */
/* imm should be operand 1 */
extern char *sub_imm_word ();
char *
add_imm_word (imm, dest, immp)
int imm;
rtx dest, *immp;
{
int is_reg, short_ok;
if (imm < 0)
{
*immp = GEN_INT (-imm);
return sub_imm_word (-imm, dest);
}
if (imm == 0)
return "mov:l.w #0,%0";
short_ok = short_format_ok (dest);
if (short_ok && imm <= 8)
return "add:q %1,%0.w";
if (imm < 128)
return "add:e %1,%0.w";
is_reg = (GET_CODE (dest) == REG);
if (is_reg)
return "add:l %1,%0.w";
if (short_ok)
return "add:i %1,%0.w";
return "add %1,%0.w";
}
char *
sub_imm_word (imm, dest, immp)
int imm;
rtx dest, *immp;
{
int is_reg, short_ok;
if (imm < 0 && imm != 0x80000000)
{
*immp = GEN_INT (-imm);
return add_imm_word (-imm, dest);
}
if (imm == 0)
return "mov:z.w #0,%0";
short_ok = short_format_ok (dest);
if (short_ok && imm <= 8)
return "sub:q %1,%0.w";
if (imm < 128)
return "sub:e %1,%0.w";
is_reg = (GET_CODE (dest) == REG);
if (is_reg)
return "sub:l %1,%0.w";
if (short_ok)
return "sub:i %1,%0.w";
return "sub %1,%0.w";
}
int
short_format_ok (x)
rtx x;
{
rtx x0, x1;
if (GET_CODE (x) == REG)
return 1;
if (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == PLUS)
{
x0 = XEXP (XEXP (x, 0), 0);
x1 = XEXP (XEXP (x, 0), 1);
return ((GET_CODE (x0) == REG
&& CONSTANT_P (x1)
&& ((unsigned) (INTVAL (x1) + 0x8000) < 0x10000))
||
(GET_CODE (x1) == REG
&& CONSTANT_P (x0)
&& ((unsigned) (INTVAL (x0) + 0x8000) < 0x10000)));
}
return 0;
}
myoutput_sp_adjust (file, op, fsize)
FILE *file;
char *op;
int fsize;
{
if (fsize == 0)
;
else if (fsize < 8)
fprintf (file, "\t%s:q #%d,sp.w\n", op, fsize);
else if (fsize < 128)
fprintf (file, "\t%s:e #%d,sp.w\n", op, fsize);
else
fprintf (file, "\t%s:l #%d,sp.w\n", op, fsize);
}
char *
mov_imm_word (imm, dest)
int imm;
rtx dest;
{
int is_reg, short_ok;
if (imm == 0)
return "mov:z.w #0,%0";
short_ok = short_format_ok (dest);
if (short_ok && imm > 0 && imm <= 8)
return "mov:q %1,%0.w";
if (-128 <= imm && imm < 128)
return "mov:e %1,%0.w";
is_reg = (GET_CODE (dest) == REG);
if (is_reg)
return "mov:l %1,%0.w";
if (short_ok)
return "mov:i %1,%0.w";
return "mov %1,%0.w";
}
char *
cmp_imm_word (imm, dest)
int imm;
rtx dest;
{
int is_reg, short_ok;
if (imm == 0)
return "cmp:z.w #0,%0";
short_ok = short_format_ok (dest);
if (short_ok && imm >0 && imm <= 8)
return "cmp:q %1,%0.w";
if (-128 <= imm && imm < 128)
return "cmp:e %1,%0.w";
is_reg = (GET_CODE (dest) == REG);
if (is_reg)
return "cmp:l %1,%0.w";
if (short_ok)
return "cmp:i %1,%0.w";
return "cmp %1,%0.w";
}
char *
push_imm_word (imm)
int imm;
{
if (imm == 0)
return "mov:z.w #0,%-";
if (imm > 0 && imm <= 8)
return "mov:q %1,%-.w";
if (-128 <= imm && imm < 128)
return "mov:e %1,%-.w";
return "mov:g %1,%-.w";
/* In some cases, g-format may be better than I format.??
return "mov %1,%0.w";
*/
}
my_signed_comp (insn)
rtx insn;
{
rtx my_insn;
my_insn = NEXT_INSN (insn);
if (GET_CODE (my_insn) != JUMP_INSN)
{
fprintf (stderr, "my_signed_comp: Not Jump_insn ");
myabort (GET_CODE (my_insn));
}
my_insn = PATTERN (my_insn);
if (GET_CODE (my_insn) != SET)
{
fprintf (stderr, "my_signed_comp: Not Set ");
myabort (GET_CODE (my_insn));
}
my_insn = SET_SRC (my_insn);
if (GET_CODE (my_insn) != IF_THEN_ELSE)
{
fprintf (stderr, "my_signed_comp: Not if_then_else ");
myabort (GET_CODE (my_insn));
}
switch (GET_CODE (XEXP (my_insn, 0)))
{
case NE:
case EQ:
case GE:
case GT:
case LE:
case LT:
return 1;
case GEU:
case GTU:
case LEU:
case LTU:
return 0;
}
fprintf (stderr, "my_signed_comp: Not cccc ");
myabort (GET_CODE (XEXP (my_insn, 0)));
}