NetBSD/sys/arch/arm/nvidia/tegra_xusb.c
jakllsch 85627b239f Add xhci(4) attachment glue and firmware handler for Tegra K1 "XUSB"
xHCI controller.  Adjustments to tegraxusbpad(4) will be needed
to connect the controller to actual USB ports.
2016-09-26 20:05:03 +00:00

801 lines
25 KiB
C

/* $NetBSD: tegra_xusb.c,v 1.1 2016/09/26 20:05:03 jakllsch Exp $ */
/*
* Copyright (c) 2016 Jonathan A. Kollasch
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "locators.h"
#include "opt_tegra.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: tegra_xusb.c,v 1.1 2016/09/26 20:05:03 jakllsch Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <arm/nvidia/tegra_reg.h>
#include <arm/nvidia/tegra_var.h>
#include <arm/nvidia/tegra_xusbreg.h>
#include <dev/pci/pcireg.h>
#include <dev/fdt/fdtvar.h>
#include <dev/firmload.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/xhcireg.h>
#include <dev/usb/xhcivar.h>
static int tegra_xusb_match(device_t, cfdata_t, void *);
static void tegra_xusb_attach(device_t, device_t, void *);
static void tegra_xusb_mountroot(device_t);
static int tegra_xusb_intr_mbox(void *);
#ifdef TEGRA124_XUSB_BIN_STATIC
extern const char _binary_tegra124_xusb_bin_size[];
extern const char _binary_tegra124_xusb_bin_start[];
#endif
struct fw_dma {
bus_dmamap_t map;
void * addr;
bus_dma_segment_t segs[1];
int nsegs;
size_t size;
};
struct tegra_xusb_softc {
struct xhci_softc sc_xhci;
int sc_phandle;
bus_space_handle_t sc_bsh_xhci;
bus_space_handle_t sc_bsh_fpci;
bus_space_handle_t sc_bsh_ipfs;
void *sc_ih;
void *sc_ih_mbox;
struct fw_dma sc_fw_dma;
struct clk *sc_clk_ss_src;
};
static uint32_t csb_read_4(struct tegra_xusb_softc * const, bus_size_t);
static void csb_write_4(struct tegra_xusb_softc * const, bus_size_t,
uint32_t);
static void tegra_xusb_init(struct tegra_xusb_softc * const);
static void tegra_xusb_load_fw(struct tegra_xusb_softc * const);
static int xusb_mailbox_send(struct tegra_xusb_softc * const, uint32_t);
CFATTACH_DECL_NEW(tegra_xusb, sizeof(struct tegra_xusb_softc),
tegra_xusb_match, tegra_xusb_attach, NULL, NULL);
static int
tegra_xusb_match(device_t parent, cfdata_t cf, void *aux)
{
const char * const compatible[] = { "nvidia,tegra124-xusb", NULL };
struct fdt_attach_args * const faa = aux;
return of_match_compatible(faa->faa_phandle, compatible);
}
static void
tegra_xusb_attach(device_t parent, device_t self, void *aux)
{
struct tegra_xusb_softc * const psc = device_private(self);
struct xhci_softc * const sc = &psc->sc_xhci;
struct fdt_attach_args * const faa = aux;
char intrstr[128];
bus_addr_t addr;
bus_size_t size;
int error;
struct clk *clk;
uint32_t rate;
struct fdtbus_reset *rst;
aprint_naive("\n");
aprint_normal(": XUSB\n");
sc->sc_dev = self;
sc->sc_iot = faa->faa_bst;
sc->sc_bus.ub_hcpriv = sc;
sc->sc_bus.ub_dmatag = faa->faa_dmat;
psc->sc_phandle = faa->faa_phandle;
if (fdtbus_get_reg(faa->faa_phandle, 0, &addr, &size) != 0) {
aprint_error(": couldn't get registers\n");
return;
}
error = bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh);
if (error) {
aprint_error(": couldn't map %#llx: %d", (uint64_t)addr, error);
return;
}
printf("mapped %#llx\n", (uint64_t)addr);
if (fdtbus_get_reg(faa->faa_phandle, 1, &addr, &size) != 0) {
aprint_error(": couldn't get registers\n");
return;
}
error = bus_space_map(sc->sc_iot, addr, size, 0, &psc->sc_bsh_fpci);
if (error) {
aprint_error(": couldn't map %#llx: %d", (uint64_t)addr, error);
return;
}
printf("mapped %#llx\n", (uint64_t)addr);
if (fdtbus_get_reg(faa->faa_phandle, 2, &addr, &size) != 0) {
aprint_error(": couldn't get registers\n");
return;
}
error = bus_space_map(sc->sc_iot, addr, size, 0, &psc->sc_bsh_ipfs);
if (error) {
aprint_error(": couldn't map %#llx: %d", (uint64_t)addr, error);
return;
}
printf("mapped %#llx\n", (uint64_t)addr);
if (!fdtbus_intr_str(faa->faa_phandle, 0, intrstr, sizeof(intrstr))) {
aprint_error_dev(self, "failed to decode interrupt\n");
return;
}
psc->sc_ih = fdtbus_intr_establish(faa->faa_phandle, 0, IPL_USB,
0, xhci_intr, sc);
if (psc->sc_ih == NULL) {
aprint_error_dev(self, "failed to establish interrupt on %s\n",
intrstr);
return;
}
aprint_normal_dev(self, "interrupting on %s\n", intrstr);
if (!fdtbus_intr_str(faa->faa_phandle, 1, intrstr, sizeof(intrstr))) {
aprint_error_dev(self, "failed to decode interrupt\n");
return;
}
psc->sc_ih_mbox = fdtbus_intr_establish(faa->faa_phandle, 1, IPL_VM,
0, tegra_xusb_intr_mbox, psc);
if (psc->sc_ih_mbox == NULL) {
aprint_error_dev(self, "failed to establish interrupt on %s\n",
intrstr);
return;
}
aprint_normal_dev(self, "interrupting on %s\n", intrstr);
struct clk * const pll_p_out0 = clk_get("pll_p_out0");
KASSERT(pll_p_out0 != NULL);
struct clk * const pll_u_48 = clk_get("pll_u_48");
KASSERT(pll_u_48 != NULL);
struct clk * const pll_u_480 = clk_get("pll_u_480");
KASSERT(pll_u_480 != NULL);
clk = fdtbus_clock_get(faa->faa_phandle, "pll_e");
rate = clk_get_rate(clk);
error = clk_enable(clk); /* XXX set frequency */
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
clk = fdtbus_clock_get(faa->faa_phandle, "xusb_host_src");
error = clk_set_parent(clk, pll_p_out0);
rate = clk_get_rate(clk);
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
error = clk_set_rate(clk, 102000000);
rate = clk_get_rate(clk);
error = clk_enable(clk); /* XXX set frequency */
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
clk = fdtbus_clock_get(faa->faa_phandle, "xusb_falcon_src");
error = clk_set_parent(clk, pll_p_out0);
rate = clk_get_rate(clk);
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
error = clk_set_rate(clk, 204000000);
rate = clk_get_rate(clk);
error = clk_enable(clk);
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
clk = fdtbus_clock_get(faa->faa_phandle, "xusb_host");
rate = clk_get_rate(clk);
error = clk_enable(clk); /* XXX set frequency */
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
clk = fdtbus_clock_get(faa->faa_phandle, "xusb_ss");
rate = clk_get_rate(clk);
error = clk_enable(clk); /* XXX set frequency */
device_printf(sc->sc_dev, "xusb_ss rate %u error %d\n", rate, error);
psc->sc_clk_ss_src = fdtbus_clock_get(faa->faa_phandle, "xusb_ss_src");
if (psc->sc_clk_ss_src == NULL) {
printf("psc->sc_clk_ss_src %p\n", psc->sc_clk_ss_src);
Debugger();
}
error = 0;
rate = clk_get_rate(psc->sc_clk_ss_src);
device_printf(sc->sc_dev, "xusb_ss_src rate %u error %d\n", rate,
error);
error = clk_set_rate(psc->sc_clk_ss_src, 2000000);
rate = clk_get_rate(psc->sc_clk_ss_src);
device_printf(sc->sc_dev, "xusb_ss_src rate %u error %d\n", rate,
error);
error = clk_set_parent(psc->sc_clk_ss_src, pll_u_480);
rate = clk_get_rate(psc->sc_clk_ss_src);
device_printf(sc->sc_dev, "ss_src rate %u error %d\n", rate, error);
error = clk_set_rate(psc->sc_clk_ss_src, 120000000);
rate = clk_get_rate(psc->sc_clk_ss_src);
device_printf(sc->sc_dev, "ss_src rate %u error %d\n", rate, error);
error = clk_enable(psc->sc_clk_ss_src);
device_printf(sc->sc_dev, "ss_src rate %u error %d\n", rate, error);
#if 0
clk = fdtbus_clock_get(faa->faa_phandle, "xusb_hs_src");
error = 0;
rate = clk_get_rate(clk);
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
#endif
clk = fdtbus_clock_get(faa->faa_phandle, "xusb_fs_src");
error = clk_set_parent(clk, pll_u_48);
rate = clk_get_rate(clk);
error = clk_enable(clk); /* XXX set frequency */
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
rst = fdtbus_reset_get(faa->faa_phandle, "xusb_host");
fdtbus_reset_deassert(rst);
rst = fdtbus_reset_get(faa->faa_phandle, "xusb_src");
fdtbus_reset_deassert(rst);
rst = fdtbus_reset_get(faa->faa_phandle, "xusb_ss");
fdtbus_reset_deassert(rst);
DELAY(1);
tegra_xusb_init(psc);
#if defined(TEGRA124_XUSB_BIN_STATIC)
tegra_xusb_mountroot(sc->sc_dev);
#else
config_mountroot(sc->sc_dev, tegra_xusb_mountroot);
#endif
}
static void
tegra_xusb_mountroot(device_t self)
{
struct tegra_xusb_softc * const psc = device_private(self);
struct xhci_softc * const sc = &psc->sc_xhci;
const bus_space_tag_t bst = sc->sc_iot;
const bus_space_handle_t ipfsh = psc->sc_bsh_ipfs;
struct clk *clk;
struct fdtbus_reset *rst;
uint32_t rate;
uint32_t val;
int error;
device_printf(sc->sc_dev, "%s()\n", __func__);
val = bus_space_read_4(bst, ipfsh, 0x0);
device_printf(sc->sc_dev, "%s ipfs 0x0 = 0x%x\n", __func__, val);
tegra_xusb_load_fw(psc);
device_printf(sc->sc_dev, "post fw\n");
clk = fdtbus_clock_get(psc->sc_phandle, "xusb_falcon_src");
rate = clk_get_rate(clk);
error = clk_enable(clk);
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
clk = fdtbus_clock_get(psc->sc_phandle, "xusb_host_src");
rate = clk_get_rate(clk);
error = clk_enable(clk);
device_printf(sc->sc_dev, "rate %u error %d\n", rate, error);
val = bus_space_read_4(bst, ipfsh, 0x0);
device_printf(sc->sc_dev, "%s ipfs 0x0 = 0x%x\n", __func__, val);
rst = fdtbus_reset_get(psc->sc_phandle, "xusb_host");
fdtbus_reset_deassert(rst);
rst = fdtbus_reset_get(psc->sc_phandle, "xusb_src");
fdtbus_reset_deassert(rst);
rst = fdtbus_reset_get(psc->sc_phandle, "xusb_ss");
fdtbus_reset_deassert(rst);
val = csb_read_4(psc, XUSB_CSB_FALCON_CPUCTL_REG);
device_printf(sc->sc_dev, "XUSB_FALC_CPUCTL 0x%x\n", val);
error = xhci_init(sc);
if (error) {
aprint_error_dev(self, "init failed, error=%d\n", error);
return;
}
sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint);
error = xusb_mailbox_send(psc, 0x01000000);
if (error) {
aprint_error_dev(self, "send failed, error=%d\n", error);
}
}
static int
tegra_xusb_intr_mbox(void *v)
{
struct tegra_xusb_softc * const psc = v;
struct xhci_softc * const sc = &psc->sc_xhci;
const bus_space_tag_t bst = sc->sc_iot;
const bus_space_handle_t fpcih = psc->sc_bsh_fpci;
uint32_t val;
uint32_t irv;
uint32_t msg;
int error;
device_printf(sc->sc_dev, "%s()\n", __func__);
irv = bus_space_read_4(bst, fpcih, T_XUSB_CFG_ARU_SMI_INTR_REG);
device_printf(sc->sc_dev, "XUSB_CFG_ARU_SMI_INTR 0x%x\n", irv);
bus_space_write_4(bst, fpcih, T_XUSB_CFG_ARU_SMI_INTR_REG, irv);
if (irv & T_XUSB_CFG_ARU_SMI_INTR_FW_HANG)
device_printf(sc->sc_dev, "firmware hang\n");
msg = bus_space_read_4(bst, fpcih, T_XUSB_CFG_ARU_MAILBOX_DATA_OUT_REG);
device_printf(sc->sc_dev, "XUSB_CFG_ARU_MBOX_DATA_OUT 0x%x\n", msg);
val = bus_space_read_4(bst, fpcih, T_XUSB_CFG_ARU_MAILBOX_CMD_REG);
device_printf(sc->sc_dev, "XUSB_CFG_ARU_MBOX_CMD 0x%x\n", val);
val &= ~T_XUSB_CFG_ARU_MAILBOX_CMD_DEST_SMI;
bus_space_write_4(bst, fpcih, T_XUSB_CFG_ARU_MAILBOX_CMD_REG, val);
bool sendresp = true;
u_int rate;
const uint32_t data = __SHIFTOUT(msg, MAILBOX_DATA_DATA);
const uint8_t type = __SHIFTOUT(msg, MAILBOX_DATA_TYPE);
switch (type) {
case 2:
case 3:
device_printf(sc->sc_dev, "FALC_CLOCK %u\n", data * 1000);
break;
case 4:
case 5:
device_printf(sc->sc_dev, "SSPI_CLOCK %u\n", data * 1000);
rate = clk_get_rate(psc->sc_clk_ss_src);
device_printf(sc->sc_dev, "rate of psc->sc_clk_ss_src %u\n",
rate);
error = clk_set_rate(psc->sc_clk_ss_src, data * 1000);
if (error != 0)
goto clk_fail;
rate = clk_get_rate(psc->sc_clk_ss_src);
device_printf(sc->sc_dev,
"rate of psc->sc_clk_ss_src %u after\n", rate);
if (data == (rate / 1000)) {
msg = __SHIFTIN(128, MAILBOX_DATA_TYPE) |
__SHIFTIN(rate / 1000, MAILBOX_DATA_DATA);
} else
clk_fail:
msg = __SHIFTIN(129, MAILBOX_DATA_TYPE) |
__SHIFTIN(rate / 1000, MAILBOX_DATA_DATA);
xusb_mailbox_send(psc, msg);
break;
case 9:
msg = __SHIFTIN(data, MAILBOX_DATA_DATA) |
__SHIFTIN(128, MAILBOX_DATA_TYPE);
xusb_mailbox_send(psc, msg);
break;
case 6:
case 128:
case 129:
sendresp = false;
break;
default:
sendresp = false;
break;
}
if (sendresp == false)
bus_space_write_4(bst, fpcih, T_XUSB_CFG_ARU_MAILBOX_OWNER_REG,
MAILBOX_OWNER_NONE);
return irv;
}
static void
tegra_xusb_init(struct tegra_xusb_softc * const psc)
{
struct xhci_softc * const sc = &psc->sc_xhci;
const bus_space_tag_t bst = sc->sc_iot;
const bus_space_handle_t ipfsh = psc->sc_bsh_ipfs;
const bus_space_handle_t fpcih = psc->sc_bsh_fpci;
device_printf(sc->sc_dev, "%s()\n", __func__);
device_printf(sc->sc_dev, "%s ipfs 0x0 = 0x%x\n", __func__,
bus_space_read_4(bst, ipfsh, 0x0));
device_printf(sc->sc_dev, "%s ipfs 0x40 = 0x%x\n", __func__,
bus_space_read_4(bst, ipfsh, 0x40));
device_printf(sc->sc_dev, "%s ipfs 0x80 = 0x%x\n", __func__,
bus_space_read_4(bst, ipfsh, 0x80));
/* FPCI_BAR0_START and FPCI_BAR0_ACCESS_TYPE */
bus_space_write_4(bst, ipfsh, 0x80, 0x00100000);
device_printf(sc->sc_dev, "%s ipfs 0x80 = 0x%x\n", __func__,
bus_space_read_4(bst, ipfsh, 0x80));
device_printf(sc->sc_dev, "%s ipfs 0x180 = 0x%x\n", __func__,
bus_space_read_4(bst, ipfsh, 0x180));
/* EN_FPCI */
tegra_reg_set_clear(bst, ipfsh, 0x180, 1, 0);
device_printf(sc->sc_dev, "%s ipfs 0x180 = 0x%x\n", __func__,
bus_space_read_4(bst, ipfsh, 0x180));
device_printf(sc->sc_dev, "%s fpci PCI_COMMAND_STATUS_REG = 0x%x\n",
__func__, bus_space_read_4(bst, fpcih, PCI_COMMAND_STATUS_REG));
tegra_reg_set_clear(bst, fpcih, PCI_COMMAND_STATUS_REG,
PCI_COMMAND_MASTER_ENABLE|PCI_COMMAND_MEM_ENABLE, 0x0);
device_printf(sc->sc_dev, "%s fpci PCI_COMMAND_STATUS_REG = 0x%x\n",
__func__, bus_space_read_4(bst, fpcih, PCI_COMMAND_STATUS_REG));
device_printf(sc->sc_dev, "%s fpci PCI_BAR0 = 0x%x\n", __func__,
bus_space_read_4(bst, fpcih, PCI_BAR0));
/* match FPCI BAR0 to above */
bus_space_write_4(bst, fpcih, PCI_BAR0, 0x10000000);
device_printf(sc->sc_dev, "%s fpci PCI_BAR0 = 0x%x\n", __func__,
bus_space_read_4(bst, fpcih, PCI_BAR0));
device_printf(sc->sc_dev, "%s ipfs 0x188 = 0x%x\n", __func__,
bus_space_read_4(bst, ipfsh, 0x188));
tegra_reg_set_clear(bst, ipfsh, 0x188, __BIT(16), 0);
device_printf(sc->sc_dev, "%s ipfs 0x188 = 0x%x\n", __func__,
bus_space_read_4(bst, ipfsh, 0x188));
device_printf(sc->sc_dev, "%s fpci 0x1bc = 0x%x\n", __func__,
bus_space_read_4(bst, fpcih, 0x1bc));
bus_space_write_4(bst, fpcih, 0x1bc, 0x80);
device_printf(sc->sc_dev, "%s fpci 0x1bc = 0x%x\n", __func__,
bus_space_read_4(bst, fpcih, 0x1bc));
}
static int
fw_dma_alloc(struct tegra_xusb_softc * const psc, size_t size, size_t align,
struct fw_dma * const p)
{
struct xhci_softc * const sc = &psc->sc_xhci;
const bus_dma_tag_t dmat = sc->sc_bus.ub_dmatag;
int err;
p->size = size;
err = bus_dmamem_alloc(dmat, p->size, align, 0, p->segs,
sizeof(p->segs) / sizeof(p->segs[0]), &p->nsegs, BUS_DMA_NOWAIT);
if (err)
return err;
err = bus_dmamem_map(dmat, p->segs, p->nsegs, p->size, &p->addr,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
if (err)
goto free;
err = bus_dmamap_create(dmat, p->size, 1, p->size, 0, BUS_DMA_NOWAIT,
&p->map);
if (err)
goto unmap;
err = bus_dmamap_load(dmat, p->map, p->addr, p->size, NULL,
BUS_DMA_NOWAIT);
if (err)
goto destroy;
return 0;
destroy:
bus_dmamap_destroy(dmat, p->map);
unmap:
bus_dmamem_unmap(dmat, p->addr, p->size);
free:
bus_dmamem_free(dmat, p->segs, p->nsegs);
return err;
}
#if !defined(TEGRA124_XUSB_BIN_STATIC)
static void
fw_dma_free(struct tegra_xusb_softc * const psc, struct fw_dma * const p)
{
const struct xhci_softc * const sc = &psc->sc_xhci;
const bus_dma_tag_t dmat = sc->sc_bus.ub_dmatag;
bus_dmamap_unload(dmat, p->map);
bus_dmamap_destroy(dmat, p->map);
bus_dmamem_unmap(dmat, p->addr, p->size);
bus_dmamem_free(dmat, p->segs, p->nsegs);
}
#endif
#define FWHEADER_BOOT_CODETAG 8
#define FWHEADER_BOOT_CODESIZE 12
#define FWHEADER_FWIMG_LEN 100
#define FWHEADER__LEN 256
static void
tegra_xusb_load_fw(struct tegra_xusb_softc * const psc)
{
struct xhci_softc * const sc = &psc->sc_xhci;
#if !defined(TEGRA124_XUSB_BIN_STATIC)
firmware_handle_t fw;
#endif
int error;
size_t firmware_size;
void * firmware_image;
const uint8_t *header;
#if defined(TEGRA124_XUSB_BIN_STATIC)
firmware_size = (uintptr_t)&_binary_tegra124_xusb_bin_size;
#else
if ((error = firmware_open("nvidia/tegra124", "xusb.bin", &fw)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not open firmware file %s: %d\n", "xusb.bin", error);
return;
}
firmware_size = firmware_get_size(fw);
#endif
error = fw_dma_alloc(psc, firmware_size, PAGE_SIZE, &psc->sc_fw_dma);
if (error != 0) {
#if !defined(TEGRA124_XUSB_BIN_STATIC)
firmware_close(fw);
#endif
return;
}
firmware_image = psc->sc_fw_dma.addr;
device_printf(sc->sc_dev, "blob %p len %zu\n", firmware_image,
firmware_size);
#if defined(TEGRA124_XUSB_BIN_STATIC)
memcpy(firmware_image, _binary_tegra124_xusb_bin_start, firmware_size);
#else
error = firmware_read(fw, 0, firmware_image, firmware_size);
if (error != 0) {
fw_dma_free(psc, &psc->sc_fw_dma);
firmware_close(fw);
return;
}
firmware_close(fw);
#endif
header = firmware_image;
const uint32_t fwimg_len = le32dec(&header[FWHEADER_FWIMG_LEN]);
const uint32_t boot_codetag = le32dec(&header[FWHEADER_BOOT_CODETAG]);
const uint32_t boot_codesize = le32dec(&header[FWHEADER_BOOT_CODESIZE]);
if (fwimg_len != firmware_size)
device_printf(sc->sc_dev, "fwimg_len mismatch %u != %zu\n",
fwimg_len, firmware_size);
bus_dmamap_sync(sc->sc_bus.ub_dmatag, psc->sc_fw_dma.map, 0,
firmware_size, BUS_DMASYNC_PREWRITE);
device_printf(sc->sc_dev, "XUSB_FALC_CPUCTL 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_CPUCTL_REG));
device_printf(sc->sc_dev, "XUSB_CSB_MP_ILOAD_BASE_LO 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_ILOAD_BASE_LO_REG));
device_printf(sc->sc_dev, "XUSB_CSB_MP_ILOAD_ATTR 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_ILOAD_ATTR_REG));
csb_write_4(psc, XUSB_CSB_MEMPOOL_ILOAD_ATTR_REG,
fwimg_len);
device_printf(sc->sc_dev, "XUSB_CSB_MP_ILOAD_ATTR 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_ILOAD_ATTR_REG));
const uint64_t fwbase = psc->sc_fw_dma.map->dm_segs[0].ds_addr +
FWHEADER__LEN;
csb_write_4(psc, XUSB_CSB_MEMPOOL_ILOAD_BASE_HI_REG, fwbase >> 32);
csb_write_4(psc, XUSB_CSB_MEMPOOL_ILOAD_BASE_LO_REG, fwbase);
device_printf(sc->sc_dev, "XUSB_CSB_MP_ILOAD_BASE_LO 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_ILOAD_BASE_LO_REG));
device_printf(sc->sc_dev, "XUSB_CSB_MP_ILOAD_BASE_HI 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_ILOAD_BASE_HI_REG));
device_printf(sc->sc_dev, "XUSB_CSB_MP_APMAP 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_APMAP_REG));
csb_write_4(psc, XUSB_CSB_MEMPOOL_APMAP_REG,
XUSB_CSB_MEMPOOL_APMAP_BOOTPATH);
device_printf(sc->sc_dev, "XUSB_CSB_MP_APMAP 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_APMAP_REG));
device_printf(sc->sc_dev, "XUSB_CSB_MP_L2IMEMOP_TRIG 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_L2IMEMOP_TRIG_REG));
csb_write_4(psc, XUSB_CSB_MEMPOOL_L2IMEMOP_TRIG_REG,
__SHIFTIN(ACTION_L2IMEM_INVALIDATE_ALL,
XUSB_CSB_MEMPOOL_L2IMEMOP_TRIG_ACTION));
device_printf(sc->sc_dev, "XUSB_CSB_MP_L2IMEMOP_TRIG 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_L2IMEMOP_TRIG_REG));
const u_int code_tag_blocks =
howmany(boot_codetag, IMEM_BLOCK_SIZE);
const u_int code_size_blocks =
howmany(boot_codesize, IMEM_BLOCK_SIZE);
const u_int code_blocks = code_tag_blocks + code_size_blocks;
device_printf(sc->sc_dev, "XUSB_CSB_MP_L2IMEMOP_SIZE 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_L2IMEMOP_SIZE_REG));
csb_write_4(psc, XUSB_CSB_MEMPOOL_L2IMEMOP_SIZE_REG,
__SHIFTIN(code_tag_blocks,
XUSB_CSB_MEMPOOL_L2IMEMOP_SIZE_SRC_OFFSET) |
__SHIFTIN(code_size_blocks,
XUSB_CSB_MEMPOOL_L2IMEMOP_SIZE_SRC_COUNT));
device_printf(sc->sc_dev, "XUSB_CSB_MP_L2IMEMOP_SIZE 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_L2IMEMOP_SIZE_REG));
device_printf(sc->sc_dev, "XUSB_CSB_MP_L2IMEMOP_TRIG 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_L2IMEMOP_TRIG_REG));
csb_write_4(psc, XUSB_CSB_MEMPOOL_L2IMEMOP_TRIG_REG,
__SHIFTIN(ACTION_L2IMEM_LOAD_LOCKED_RESULT,
XUSB_CSB_MEMPOOL_L2IMEMOP_TRIG_ACTION));
device_printf(sc->sc_dev, "XUSB_CSB_MP_L2IMEMOP_TRIG 0x%x\n",
csb_read_4(psc, XUSB_CSB_MEMPOOL_L2IMEMOP_TRIG_REG));
device_printf(sc->sc_dev, "XUSB_FALC_IMFILLCTL 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_IMFILLCTL_REG));
csb_write_4(psc, XUSB_CSB_FALCON_IMFILLCTL_REG, code_size_blocks);
device_printf(sc->sc_dev, "XUSB_FALC_IMFILLCTL 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_IMFILLCTL_REG));
device_printf(sc->sc_dev, "XUSB_FALC_IMFILLRNG1 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_IMFILLRNG1_REG));
csb_write_4(psc, XUSB_CSB_FALCON_IMFILLRNG1_REG,
__SHIFTIN(code_tag_blocks, XUSB_CSB_FALCON_IMFILLRNG1_TAG_LO) |
__SHIFTIN(code_blocks, XUSB_CSB_FALCON_IMFILLRNG1_TAG_HI));
device_printf(sc->sc_dev, "XUSB_FALC_IMFILLRNG1 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_IMFILLRNG1_REG));
device_printf(sc->sc_dev, "XUSB_FALC_DMACTL 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_DMACTL_REG));
csb_write_4(psc, XUSB_CSB_FALCON_DMACTL_REG, 0);
device_printf(sc->sc_dev, "XUSB_FALC_DMACTL 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_DMACTL_REG));
device_printf(sc->sc_dev, "XUSB_FALC_BOOTVEC 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_BOOTVEC_REG));
csb_write_4(psc, XUSB_CSB_FALCON_BOOTVEC_REG,
boot_codetag);
device_printf(sc->sc_dev, "XUSB_FALC_BOOTVEC 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_BOOTVEC_REG));
device_printf(sc->sc_dev, "XUSB_FALC_CPUCTL 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_CPUCTL_REG));
csb_write_4(psc, XUSB_CSB_FALCON_CPUCTL_REG,
XUSB_CSB_FALCON_CPUCTL_STARTCPU);
device_printf(sc->sc_dev, "XUSB_FALC_CPUCTL 0x%x\n",
csb_read_4(psc, XUSB_CSB_FALCON_CPUCTL_REG));
}
static uint32_t
csb_read_4(struct tegra_xusb_softc * const psc, bus_size_t csb_offset)
{
const uint32_t range = __SHIFTOUT(csb_offset, XUSB_CSB_RANGE);
const bus_size_t offset = __SHIFTOUT(csb_offset, XUSB_CSB_OFFSET);
const bus_space_tag_t bst = psc->sc_xhci.sc_iot;
const bus_space_handle_t fpcih = psc->sc_bsh_fpci;
bus_space_write_4(bst, fpcih, T_XUSB_CFG_ARU_C11_CSBRANGE_REG, range);
return bus_space_read_4(bst, fpcih, T_XUSB_CFG_CSB_BASE_ADDR + offset);
}
static void
csb_write_4(struct tegra_xusb_softc * const psc, bus_size_t csb_offset,
uint32_t value)
{
const uint32_t range = __SHIFTOUT(csb_offset, XUSB_CSB_RANGE);
const bus_size_t offset = __SHIFTOUT(csb_offset, XUSB_CSB_OFFSET);
const bus_space_tag_t bst = psc->sc_xhci.sc_iot;
const bus_space_handle_t fpcih = psc->sc_bsh_fpci;
bus_space_write_4(bst, fpcih, T_XUSB_CFG_ARU_C11_CSBRANGE_REG, range);
bus_space_write_4(bst, fpcih, T_XUSB_CFG_CSB_BASE_ADDR + offset, value);
}
static int
xusb_mailbox_send(struct tegra_xusb_softc * const psc, uint32_t msg)
{
struct xhci_softc * const sc = &psc->sc_xhci;
const bus_space_tag_t bst = psc->sc_xhci.sc_iot;
const bus_space_handle_t fpcih = psc->sc_bsh_fpci;
uint32_t val;
bool wait = false;
const uint8_t type = __SHIFTOUT(msg, MAILBOX_DATA_TYPE);
if (!(type == 128 || type == 129)) {
val = bus_space_read_4(bst, fpcih,
T_XUSB_CFG_ARU_MAILBOX_OWNER_REG);
device_printf(sc->sc_dev, "XUSB_CFG_ARU_MBOX_OWNER 0x%x\n",
val);
if (val != MAILBOX_OWNER_NONE) {
return EBUSY;
}
bus_space_write_4(bst, fpcih, T_XUSB_CFG_ARU_MAILBOX_OWNER_REG,
MAILBOX_OWNER_SW);
val = bus_space_read_4(bst, fpcih,
T_XUSB_CFG_ARU_MAILBOX_OWNER_REG);
device_printf(sc->sc_dev, "XUSB_CFG_ARU_MBOX_OWNER 0x%x\n",
val);
if (val != MAILBOX_OWNER_SW) {
return EBUSY;
}
wait = true;
}
bus_space_write_4(bst, fpcih, T_XUSB_CFG_ARU_MAILBOX_DATA_IN_REG, msg);
tegra_reg_set_clear(bst, fpcih, T_XUSB_CFG_ARU_MAILBOX_CMD_REG,
T_XUSB_CFG_ARU_MAILBOX_CMD_INT_EN |
T_XUSB_CFG_ARU_MAILBOX_CMD_DEST_FALCON, 0);
if (wait) {
for (u_int i = 0; i < 2500; i++) {
val = bus_space_read_4(bst, fpcih,
T_XUSB_CFG_ARU_MAILBOX_OWNER_REG);
device_printf(sc->sc_dev,
"XUSB_CFG_ARU_MBOX_OWNER 0x%x\n", val);
if (val == MAILBOX_OWNER_NONE) {
break;
}
DELAY(10);
}
val = bus_space_read_4(bst, fpcih,
T_XUSB_CFG_ARU_MAILBOX_OWNER_REG);
device_printf(sc->sc_dev,
"XUSB_CFG_ARU_MBOX_OWNER 0x%x\n", val);
if (val != MAILBOX_OWNER_NONE) {
device_printf(sc->sc_dev,
"timeout, XUSB_CFG_ARU_MBOX_OWNER 0x%x\n", val);
}
}
return 0;
}