NetBSD/sys/arch/arm/nvidia/tegra_soctherm.c

428 lines
14 KiB
C

/* $NetBSD: tegra_soctherm.c,v 1.3 2015/12/22 22:10:36 jmcneill Exp $ */
/*-
* Copyright (c) 2015 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: tegra_soctherm.c,v 1.3 2015/12/22 22:10:36 jmcneill Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <dev/sysmon/sysmonvar.h>
#include <arm/nvidia/tegra_reg.h>
#include <arm/nvidia/tegra_socthermreg.h>
#include <arm/nvidia/tegra_var.h>
#include <dev/fdt/fdtvar.h>
#define FUSE_TSENSOR_CALIB_CP_TS_BASE __BITS(12,0)
#define FUSE_TSENSOR_CALIB_FT_TS_BASE __BITS(25,13)
#define FUSE_TSENSOR8_CALIB_REG 0x180
#define FUSE_TSENSOR8_CALIB_CP_TS_BASE __BITS(9,0)
#define FUSE_TSENSOR8_CALIB_FT_TS_BASE __BITS(20,10)
#define FUSE_SPARE_REALIGNMENT_REG 0x1fc
#define FUSE_SPARE_REALIGNMENT_CP __BITS(5,0)
#define FUSE_SPARE_REALIGNMENT_FT __BITS(25,21)
static int tegra_soctherm_match(device_t, cfdata_t, void *);
static void tegra_soctherm_attach(device_t, device_t, void *);
struct tegra_soctherm_config {
uint32_t init_pdiv;
uint32_t init_hotspot_off;
uint32_t nominal_calib_ft;
uint32_t nominal_calib_cp;
uint32_t tall;
uint32_t tsample;
uint32_t tiddq_en;
uint32_t ten_count;
uint32_t pdiv;
uint32_t tsample_ate;
uint32_t pdiv_ate;
};
static const struct tegra_soctherm_config tegra124_soctherm_config = {
.init_pdiv = 0x8888,
.init_hotspot_off = 0x60600,
.nominal_calib_ft = 105,
.nominal_calib_cp = 25,
.tall = 16300,
.tsample = 120,
.tiddq_en = 1,
.ten_count = 1,
.pdiv = 8,
.tsample_ate = 480,
.pdiv_ate = 8
};
struct tegra_soctherm_sensor {
envsys_data_t s_data;
u_int s_base;
u_int s_fuse;
int s_fuse_corr_alpha;
int s_fuse_corr_beta;
int16_t s_therm_a;
int16_t s_therm_b;
};
static const struct tegra_soctherm_sensor tegra_soctherm_sensors[] = {
{ .s_data = { .desc = "CPU0" }, .s_base = 0x0c0, .s_fuse = 0x098,
.s_fuse_corr_alpha = 1135400, .s_fuse_corr_beta = -6266900 },
{ .s_data = { .desc = "CPU1" }, .s_base = 0x0e0, .s_fuse = 0x084,
.s_fuse_corr_alpha = 1122220, .s_fuse_corr_beta = -5700700 },
{ .s_data = { .desc = "CPU2" }, .s_base = 0x100, .s_fuse = 0x088,
.s_fuse_corr_alpha = 1127000, .s_fuse_corr_beta = -6768200 },
{ .s_data = { .desc = "CPU3" }, .s_base = 0x120, .s_fuse = 0x12c,
.s_fuse_corr_alpha = 1110900, .s_fuse_corr_beta = -6232000 },
{ .s_data = { .desc = "MEM0" }, .s_base = 0x140, .s_fuse = 0x158,
.s_fuse_corr_alpha = 1122300, .s_fuse_corr_beta = -5936400 },
{ .s_data = { .desc = "MEM1" }, .s_base = 0x160, .s_fuse = 0x15c,
.s_fuse_corr_alpha = 1145700, .s_fuse_corr_beta = -7124600 },
{ .s_data = { .desc = "GPU" }, .s_base = 0x180, .s_fuse = 0x154,
.s_fuse_corr_alpha = 1120100, .s_fuse_corr_beta = -6000500 },
{ .s_data = { .desc = "PLLX" }, .s_base = 0x1a0, .s_fuse = 0x160,
.s_fuse_corr_alpha = 1106500, .s_fuse_corr_beta = -6729300 },
};
struct tegra_soctherm_softc {
device_t sc_dev;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
struct clk *sc_clk_tsensor;
struct clk *sc_clk_soctherm;
struct fdtbus_reset *sc_rst_soctherm;
struct sysmon_envsys *sc_sme;
struct tegra_soctherm_sensor *sc_sensors;
const struct tegra_soctherm_config *sc_config;
uint32_t sc_base_cp;
uint32_t sc_base_ft;
int32_t sc_actual_temp_cp;
int32_t sc_actual_temp_ft;
};
static int tegra_soctherm_init_clocks(struct tegra_soctherm_softc *);
static void tegra_soctherm_init_sensors(struct tegra_soctherm_softc *);
static void tegra_soctherm_init_sensor(struct tegra_soctherm_softc *,
struct tegra_soctherm_sensor *);
static void tegra_soctherm_refresh(struct sysmon_envsys *, envsys_data_t *);
static int tegra_soctherm_decodeint(uint32_t, uint32_t);
static int64_t tegra_soctherm_divide(int64_t, int64_t);
CFATTACH_DECL_NEW(tegra_soctherm, sizeof(struct tegra_soctherm_softc),
tegra_soctherm_match, tegra_soctherm_attach, NULL, NULL);
#define SOCTHERM_READ(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define SOCTHERM_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define SOCTHERM_SET_CLEAR(sc, reg, set, clr) \
tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (reg), (set), (clr))
#define SENSOR_READ(sc, s, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg))
#define SENSOR_WRITE(sc, s, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (val))
#define SENSOR_SET_CLEAR(sc, s, reg, set, clr) \
tegra_reg_set_clear((sc)->sc_bst, (sc)->sc_bsh, (s)->s_base + (reg), (set), (clr))
static int
tegra_soctherm_match(device_t parent, cfdata_t cf, void *aux)
{
const char * const compatible[] = { "nvidia,tegra124-soctherm", NULL };
struct fdt_attach_args * const faa = aux;
return of_match_compatible(faa->faa_phandle, compatible);
}
static void
tegra_soctherm_attach(device_t parent, device_t self, void *aux)
{
struct tegra_soctherm_softc * const sc = device_private(self);
struct fdt_attach_args * const faa = aux;
bus_addr_t addr;
bus_size_t size;
int error;
if (fdtbus_get_reg(faa->faa_phandle, 0, &addr, &size) != 0) {
aprint_error(": couldn't get registers\n");
return;
}
sc->sc_clk_tsensor = fdtbus_clock_get(faa->faa_phandle, "tsensor");
if (sc->sc_clk_tsensor == NULL) {
aprint_error(": couldn't get clock tsensor\n");
return;
}
sc->sc_clk_soctherm = fdtbus_clock_get(faa->faa_phandle, "soctherm");
if (sc->sc_clk_soctherm == NULL) {
aprint_error(": couldn't get clock soctherm\n");
return;
}
sc->sc_rst_soctherm = fdtbus_reset_get(faa->faa_phandle, "soctherm");
if (sc->sc_rst_soctherm == NULL) {
aprint_error(": couldn't get reset soctherm\n");
return;
}
sc->sc_dev = self;
sc->sc_bst = faa->faa_bst;
error = bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh);
if (error) {
aprint_error(": couldn't map %#llx: %d", (uint64_t)addr, error);
return;
}
aprint_naive("\n");
aprint_normal(": SOC_THERM\n");
if (tegra_chip_id() == CHIP_ID_TEGRA124) {
sc->sc_config = &tegra124_soctherm_config;
}
if (sc->sc_config == NULL) {
aprint_error_dev(self, "unsupported chip ID\n");
return;
}
if (tegra_soctherm_init_clocks(sc) != 0)
return;
tegra_soctherm_init_sensors(sc);
}
static int
tegra_soctherm_init_clocks(struct tegra_soctherm_softc *sc)
{
struct clk *pll_p_out0;
struct clk *clk_m;
int error;
pll_p_out0 = clk_get("pll_p_out0");
if (pll_p_out0 == NULL) {
aprint_error_dev(sc->sc_dev, "couldn't find pll_p_out0\n");
return ENOENT;
}
clk_m = clk_get("clk_m");
if (clk_m == NULL) {
aprint_error_dev(sc->sc_dev, "couldn't find clk_m\n");
return ENOENT;
}
fdtbus_reset_assert(sc->sc_rst_soctherm);
error = clk_set_parent(sc->sc_clk_soctherm, pll_p_out0);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't set soctherm parent: %d\n", error);
return error;
}
error = clk_set_rate(sc->sc_clk_soctherm, 51000000);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't set soctherm rate: %d\n", error);
return error;
}
error = clk_set_parent(sc->sc_clk_tsensor, clk_m);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't set tsensor parent: %d\n", error);
return error;
}
error = clk_set_rate(sc->sc_clk_tsensor, 400000);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't set tsensor rate: %d\n", error);
return error;
}
error = clk_enable(sc->sc_clk_tsensor);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't enable tsensor: %d\n",
error);
return error;
}
error = clk_enable(sc->sc_clk_soctherm);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't enable soctherm: %d\n",
error);
return error;
}
fdtbus_reset_deassert(sc->sc_rst_soctherm);
return 0;
}
static void
tegra_soctherm_init_sensors(struct tegra_soctherm_softc *sc)
{
const struct tegra_soctherm_config *config = sc->sc_config;
const u_int nsensors = __arraycount(tegra_soctherm_sensors);
const size_t len = sizeof(*sc->sc_sensors) * nsensors;
uint32_t val;
u_int n;
val = tegra_fuse_read(FUSE_TSENSOR8_CALIB_REG);
sc->sc_base_cp = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_CP_TS_BASE);
sc->sc_base_ft = __SHIFTOUT(val, FUSE_TSENSOR8_CALIB_FT_TS_BASE);
val = tegra_fuse_read(FUSE_SPARE_REALIGNMENT_REG);
const int calib_cp = tegra_soctherm_decodeint(val,
FUSE_SPARE_REALIGNMENT_CP);
const int calib_ft = tegra_soctherm_decodeint(val,
FUSE_SPARE_REALIGNMENT_FT);
sc->sc_actual_temp_cp = 2 * config->nominal_calib_cp + calib_cp;
sc->sc_actual_temp_ft = 2 * config->nominal_calib_ft + calib_ft;
sc->sc_sme = sysmon_envsys_create();
sc->sc_sme->sme_name = device_xname(sc->sc_dev);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = tegra_soctherm_refresh;
sc->sc_sensors = kmem_zalloc(len, KM_SLEEP);
for (n = 0; n < nsensors; n++) {
sc->sc_sensors[n] = tegra_soctherm_sensors[n];
tegra_soctherm_init_sensor(sc, &sc->sc_sensors[n]);
}
SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_PDIV_REG, config->init_pdiv);
SOCTHERM_WRITE(sc, SOC_THERM_TSENSOR_HOTSPOT_OFF_REG,
config->init_hotspot_off);
sysmon_envsys_register(sc->sc_sme);
}
static void
tegra_soctherm_init_sensor(struct tegra_soctherm_softc *sc,
struct tegra_soctherm_sensor *s)
{
const struct tegra_soctherm_config *config = sc->sc_config;
int64_t temp_a, temp_b, tmp;
uint32_t val;
val = tegra_fuse_read(s->s_fuse);
const int calib_cp = tegra_soctherm_decodeint(val,
FUSE_TSENSOR_CALIB_CP_TS_BASE);
const int calib_ft = tegra_soctherm_decodeint(val,
FUSE_TSENSOR_CALIB_FT_TS_BASE);
const int actual_cp = sc->sc_base_cp * 64 + calib_cp;
const int actual_ft = sc->sc_base_ft * 32 + calib_ft;
const int64_t d_sensor = actual_ft - actual_cp;
const int64_t d_temp = sc->sc_actual_temp_ft - sc->sc_actual_temp_cp;
const int mult = config->pdiv * config->tsample_ate;
const int div = config->tsample * config->pdiv_ate;
temp_a = tegra_soctherm_divide(d_temp * 0x2000 * mult,
d_sensor * div);
tmp = (int64_t)actual_ft * sc->sc_actual_temp_cp -
(int64_t)actual_cp * sc->sc_actual_temp_ft;
temp_b = tegra_soctherm_divide(tmp, d_sensor);
temp_a = tegra_soctherm_divide(
temp_a * s->s_fuse_corr_alpha, 1000000);
temp_b = (uint16_t)tegra_soctherm_divide(
temp_b * s->s_fuse_corr_alpha + s->s_fuse_corr_beta, 1000000);
s->s_therm_a = (int16_t)temp_a;
s->s_therm_b = (int16_t)temp_b;
SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
SOC_THERM_TSENSOR_CONFIG0_STATUS_CLR |
SOC_THERM_TSENSOR_CONFIG0_STOP, 0);
SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
__SHIFTIN(config->tall, SOC_THERM_TSENSOR_CONFIG0_TALL) |
SOC_THERM_TSENSOR_CONFIG0_STOP);
SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG1_OFFSET,
__SHIFTIN(config->tsample - 1, SOC_THERM_TSENSOR_CONFIG1_TSAMPLE) |
__SHIFTIN(config->tiddq_en, SOC_THERM_TSENSOR_CONFIG1_TIDDQ_EN) |
__SHIFTIN(config->ten_count, SOC_THERM_TSENSOR_CONFIG1_TEN_COUNT) |
SOC_THERM_TSENSOR_CONFIG1_TEMP_ENABLE);
SENSOR_WRITE(sc, s, SOC_THERM_TSENSOR_CONFIG2_OFFSET,
__SHIFTIN((uint16_t)s->s_therm_a,
SOC_THERM_TSENSOR_CONFIG2_THERM_A) |
__SHIFTIN((uint16_t)s->s_therm_b,
SOC_THERM_TSENSOR_CONFIG2_THERM_B));
SENSOR_SET_CLEAR(sc, s, SOC_THERM_TSENSOR_CONFIG0_OFFSET,
0, SOC_THERM_TSENSOR_CONFIG0_STOP);
s->s_data.units = ENVSYS_STEMP;
s->s_data.state = ENVSYS_SINVALID;
sysmon_envsys_sensor_attach(sc->sc_sme, &s->s_data);
}
static void
tegra_soctherm_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct tegra_soctherm_softc * const sc = sme->sme_cookie;
struct tegra_soctherm_sensor *s = (struct tegra_soctherm_sensor *)edata;
uint32_t status;
status = SENSOR_READ(sc, s, SOC_THERM_TSENSOR_STATUS1_OFFSET);
if (status & SOC_THERM_TSENSOR_STATUS1_TEMP_VALID) {
const u_int temp = __SHIFTOUT(status,
SOC_THERM_TSENSOR_STATUS1_TEMP);
int64_t val = ((temp >> 8) & 0xff) * 1000000;
if (temp & 0x80)
val += 500000;
if (temp & 0x02)
val = -val;
edata->value_cur = val + 273150000;
edata->state = ENVSYS_SVALID;
} else {
edata->state = ENVSYS_SINVALID;
}
}
static int
tegra_soctherm_decodeint(uint32_t val, uint32_t bitmask)
{
const uint32_t v = __SHIFTOUT(val, bitmask);
const int bits = popcount32(bitmask);
int ret = v << (32 - bits);
return ret >> (32 - bits);
}
static int64_t
tegra_soctherm_divide(int64_t num, int64_t denom)
{
int64_t ret = ((num << 16) * 2 + 1) / (2 * denom);
return ret >> 16;
}