NetBSD/sys/dev/pci/if_tl.c

1686 lines
44 KiB
C

/* $NetBSD: if_tl.c,v 1.75 2006/09/07 02:40:33 dogcow Exp $ */
/*
* Copyright (c) 1997 Manuel Bouyer. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Manuel Bouyer.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Texas Instruments ThunderLAN ethernet controller
* ThunderLAN Programmer's Guide (TI Literature Number SPWU013A)
* available from www.ti.com
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_tl.c,v 1.75 2006/09/07 02:40:33 dogcow Exp $");
#undef TLDEBUG
#define TL_PRIV_STATS
#undef TLDEBUG_RX
#undef TLDEBUG_TX
#undef TLDEBUG_ADDR
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/proc.h> /* only for declaration of wakeup() used by vm.h */
#include <sys/device.h>
#include <net/if.h>
#if defined(SIOCSIFMEDIA)
#include <net/if_media.h>
#endif
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <net/netisr.h>
#include "bpfilter.h"
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include "rnd.h"
#if NRND > 0
#include <sys/rnd.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#if defined(__NetBSD__)
#include <net/if_ether.h>
#include <uvm/uvm_extern.h>
#if defined(INET)
#include <netinet/if_inarp.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/i2c/i2cvar.h>
#include <dev/i2c/i2c_bitbang.h>
#include <dev/i2c/at24cxxvar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/tlphyvar.h>
#include <dev/pci/if_tlregs.h>
#include <dev/pci/if_tlvar.h>
#endif /* __NetBSD__ */
/* number of transmit/receive buffers */
#ifndef TL_NBUF
#define TL_NBUF 32
#endif
static int tl_pci_match(struct device *, struct cfdata *, void *);
static void tl_pci_attach(struct device *, struct device *, void *);
static int tl_intr(void *);
static int tl_ifioctl(struct ifnet *, ioctl_cmd_t, caddr_t);
static int tl_mediachange(struct ifnet *);
static void tl_mediastatus(struct ifnet *, struct ifmediareq *);
static void tl_ifwatchdog(struct ifnet *);
static void tl_shutdown(void*);
static void tl_ifstart(struct ifnet *);
static void tl_reset(tl_softc_t*);
static int tl_init(struct ifnet *);
static void tl_stop(struct ifnet *, int);
static void tl_restart(void *);
static int tl_add_RxBuff(tl_softc_t*, struct Rx_list*, struct mbuf*);
static void tl_read_stats(tl_softc_t*);
static void tl_ticks(void*);
static int tl_multicast_hash(u_int8_t*);
static void tl_addr_filter(tl_softc_t*);
static u_int32_t tl_intreg_read(tl_softc_t*, u_int32_t);
static void tl_intreg_write(tl_softc_t*, u_int32_t, u_int32_t);
static u_int8_t tl_intreg_read_byte(tl_softc_t*, u_int32_t);
static void tl_intreg_write_byte(tl_softc_t*, u_int32_t, u_int8_t);
void tl_mii_sync(struct tl_softc *);
void tl_mii_sendbits(struct tl_softc *, u_int32_t, int);
#if defined(TLDEBUG_RX)
static void ether_printheader(struct ether_header*);
#endif
int tl_mii_read(struct device *, int, int);
void tl_mii_write(struct device *, int, int, int);
void tl_statchg(struct device *);
/* I2C glue */
static int tl_i2c_acquire_bus(void *, int);
static void tl_i2c_release_bus(void *, int);
static int tl_i2c_send_start(void *, int);
static int tl_i2c_send_stop(void *, int);
static int tl_i2c_initiate_xfer(void *, i2c_addr_t, int);
static int tl_i2c_read_byte(void *, uint8_t *, int);
static int tl_i2c_write_byte(void *, uint8_t, int);
/* I2C bit-bang glue */
static void tl_i2cbb_set_bits(void *, uint32_t);
static void tl_i2cbb_set_dir(void *, uint32_t);
static uint32_t tl_i2cbb_read(void *);
static const struct i2c_bitbang_ops tl_i2cbb_ops = {
tl_i2cbb_set_bits,
tl_i2cbb_set_dir,
tl_i2cbb_read,
{
TL_NETSIO_EDATA, /* SDA */
TL_NETSIO_ECLOCK, /* SCL */
TL_NETSIO_ETXEN, /* SDA is output */
0, /* SDA is input */
}
};
static inline void netsio_clr(tl_softc_t*, u_int8_t);
static inline void netsio_set(tl_softc_t*, u_int8_t);
static inline u_int8_t netsio_read(tl_softc_t*, u_int8_t);
static inline void netsio_clr(sc, bits)
tl_softc_t* sc;
u_int8_t bits;
{
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio,
tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) & (~bits));
}
static inline void netsio_set(sc, bits)
tl_softc_t* sc;
u_int8_t bits;
{
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio,
tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) | bits);
}
static inline u_int8_t netsio_read(sc, bits)
tl_softc_t* sc;
u_int8_t bits;
{
return (tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio) & bits);
}
CFATTACH_DECL(tl, sizeof(tl_softc_t),
tl_pci_match, tl_pci_attach, NULL, NULL);
const struct tl_product_desc tl_compaq_products[] = {
{ PCI_PRODUCT_COMPAQ_N100TX, TLPHY_MEDIA_NO_10_T,
"Compaq Netelligent 10/100 TX" },
{ PCI_PRODUCT_COMPAQ_INT100TX, TLPHY_MEDIA_NO_10_T,
"Integrated Compaq Netelligent 10/100 TX" },
{ PCI_PRODUCT_COMPAQ_N10T, TLPHY_MEDIA_10_5,
"Compaq Netelligent 10 T" },
{ PCI_PRODUCT_COMPAQ_N10T2, TLPHY_MEDIA_10_2,
"Compaq Netelligent 10 T/2 UTP/Coax" },
{ PCI_PRODUCT_COMPAQ_IntNF3P, TLPHY_MEDIA_10_2,
"Compaq Integrated NetFlex 3/P" },
{ PCI_PRODUCT_COMPAQ_IntPL100TX, TLPHY_MEDIA_10_2|TLPHY_MEDIA_NO_10_T,
"Compaq ProLiant Integrated Netelligent 10/100 TX" },
{ PCI_PRODUCT_COMPAQ_DPNet100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T,
"Compaq Dual Port Netelligent 10/100 TX" },
{ PCI_PRODUCT_COMPAQ_DP4000, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T,
"Compaq Deskpro 4000 5233MMX" },
{ PCI_PRODUCT_COMPAQ_NF3P_BNC, TLPHY_MEDIA_10_2,
"Compaq NetFlex 3/P w/ BNC" },
{ PCI_PRODUCT_COMPAQ_NF3P, TLPHY_MEDIA_10_5,
"Compaq NetFlex 3/P" },
{ 0, 0, NULL },
};
const struct tl_product_desc tl_ti_products[] = {
/*
* Built-in Ethernet on the TI TravelMate 5000
* docking station; better product description?
*/
{ PCI_PRODUCT_TI_TLAN, 0,
"Texas Instruments ThunderLAN" },
{ 0, 0, NULL },
};
struct tl_vendor_desc {
u_int32_t tv_vendor;
const struct tl_product_desc *tv_products;
};
const struct tl_vendor_desc tl_vendors[] = {
{ PCI_VENDOR_COMPAQ, tl_compaq_products },
{ PCI_VENDOR_TI, tl_ti_products },
{ 0, NULL },
};
const struct tl_product_desc *tl_lookup_product(u_int32_t);
const struct tl_product_desc *
tl_lookup_product(id)
u_int32_t id;
{
const struct tl_product_desc *tp;
const struct tl_vendor_desc *tv;
for (tv = tl_vendors; tv->tv_products != NULL; tv++)
if (PCI_VENDOR(id) == tv->tv_vendor)
break;
if ((tp = tv->tv_products) == NULL)
return (NULL);
for (; tp->tp_desc != NULL; tp++)
if (PCI_PRODUCT(id) == tp->tp_product)
break;
if (tp->tp_desc == NULL)
return (NULL);
return (tp);
}
static int
tl_pci_match(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = (struct pci_attach_args *) aux;
if (tl_lookup_product(pa->pa_id) != NULL)
return (1);
return (0);
}
static void
tl_pci_attach(parent, self, aux)
struct device * parent;
struct device * self;
void * aux;
{
tl_softc_t *sc = (tl_softc_t *)self;
struct pci_attach_args * const pa = (struct pci_attach_args *) aux;
const struct tl_product_desc *tp;
struct ifnet * const ifp = &sc->tl_if;
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
pci_intr_handle_t intrhandle;
const char *intrstr;
int ioh_valid, memh_valid;
int reg_io, reg_mem;
pcireg_t reg10, reg14;
pcireg_t csr;
printf("\n");
callout_init(&sc->tl_tick_ch);
callout_init(&sc->tl_restart_ch);
tp = tl_lookup_product(pa->pa_id);
if (tp == NULL)
panic("tl_pci_attach: impossible");
sc->tl_product = tp;
/*
* Map the card space. First we have to find the I/O and MEM
* registers. I/O is supposed to be at 0x10, MEM at 0x14,
* but some boards (Compaq Netflex 3/P PCI) seem to have it reversed.
* The ThunderLAN manual is not consistent about this either (there
* are both cases in code examples).
*/
reg10 = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x10);
reg14 = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x14);
if (PCI_MAPREG_TYPE(reg10) == PCI_MAPREG_TYPE_IO)
reg_io = 0x10;
else if (PCI_MAPREG_TYPE(reg14) == PCI_MAPREG_TYPE_IO)
reg_io = 0x14;
else
reg_io = 0;
if (PCI_MAPREG_TYPE(reg10) == PCI_MAPREG_TYPE_MEM)
reg_mem = 0x10;
else if (PCI_MAPREG_TYPE(reg14) == PCI_MAPREG_TYPE_MEM)
reg_mem = 0x14;
else
reg_mem = 0;
if (reg_io != 0)
ioh_valid = (pci_mapreg_map(pa, reg_io, PCI_MAPREG_TYPE_IO,
0, &iot, &ioh, NULL, NULL) == 0);
else
ioh_valid = 0;
if (reg_mem != 0)
memh_valid = (pci_mapreg_map(pa, PCI_CBMA,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
0, &memt, &memh, NULL, NULL) == 0);
else
memh_valid = 0;
if (ioh_valid) {
sc->tl_bustag = iot;
sc->tl_bushandle = ioh;
} else if (memh_valid) {
sc->tl_bustag = memt;
sc->tl_bushandle = memh;
} else {
printf("%s: unable to map device registers\n",
sc->sc_dev.dv_xname);
return;
}
sc->tl_dmatag = pa->pa_dmat;
/* Enable the device. */
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
printf("%s: %s\n", sc->sc_dev.dv_xname, tp->tp_desc);
tl_reset(sc);
/* fill in the i2c tag */
sc->sc_i2c.ic_cookie = sc;
sc->sc_i2c.ic_acquire_bus = tl_i2c_acquire_bus;
sc->sc_i2c.ic_release_bus = tl_i2c_release_bus;
sc->sc_i2c.ic_send_start = tl_i2c_send_start;
sc->sc_i2c.ic_send_stop = tl_i2c_send_stop;
sc->sc_i2c.ic_initiate_xfer = tl_i2c_initiate_xfer;
sc->sc_i2c.ic_read_byte = tl_i2c_read_byte;
sc->sc_i2c.ic_write_byte = tl_i2c_write_byte;
#ifdef TLDEBUG
printf("default values of INTreg: 0x%x\n",
tl_intreg_read(sc, TL_INT_Defaults));
#endif
/* read mac addr */
if (seeprom_bootstrap_read(&sc->sc_i2c, 0x50, 0x83, 512/*?*/,
sc->tl_enaddr, ETHER_ADDR_LEN)) {
printf("%s: error reading Ethernet address\n",
sc->sc_dev.dv_xname);
return;
}
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(sc->tl_enaddr));
/* Map and establish interrupts */
if (pci_intr_map(pa, &intrhandle)) {
printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pa->pa_pc, intrhandle);
sc->tl_if.if_softc = sc;
sc->tl_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
tl_intr, sc);
if (sc->tl_ih == NULL) {
printf("%s: couldn't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
/* init these pointers, so that tl_shutdown won't try to read them */
sc->Rx_list = NULL;
sc->Tx_list = NULL;
/* allocate DMA-safe memory for control structs */
if (bus_dmamem_alloc(sc->tl_dmatag,
PAGE_SIZE, 0, PAGE_SIZE,
&sc->ctrl_segs, 1, &sc->ctrl_nsegs, BUS_DMA_NOWAIT) != 0 ||
bus_dmamem_map(sc->tl_dmatag, &sc->ctrl_segs,
sc->ctrl_nsegs, PAGE_SIZE, (caddr_t*)&sc->ctrl,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0) {
printf("%s: can't allocate DMA memory for lists\n",
sc->sc_dev.dv_xname);
return;
}
/*
* Add shutdown hook so that DMA is disabled prior to reboot. Not
* doing
* reboot before the driver initializes.
*/
(void) shutdownhook_establish(tl_shutdown, ifp);
/*
* Initialize our media structures and probe the MII.
*
* Note that we don't care about the media instance. We
* are expecting to have multiple PHYs on the 10/100 cards,
* and on those cards we exclude the internal PHY from providing
* 10baseT. By ignoring the instance, it allows us to not have
* to specify it on the command line when switching media.
*/
sc->tl_mii.mii_ifp = ifp;
sc->tl_mii.mii_readreg = tl_mii_read;
sc->tl_mii.mii_writereg = tl_mii_write;
sc->tl_mii.mii_statchg = tl_statchg;
ifmedia_init(&sc->tl_mii.mii_media, IFM_IMASK, tl_mediachange,
tl_mediastatus);
mii_attach(self, &sc->tl_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->tl_mii.mii_phys) == NULL) {
ifmedia_add(&sc->tl_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->tl_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->tl_mii.mii_media, IFM_ETHER|IFM_AUTO);
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->tl_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
ifp->if_ioctl = tl_ifioctl;
ifp->if_start = tl_ifstart;
ifp->if_watchdog = tl_ifwatchdog;
ifp->if_init = tl_init;
ifp->if_stop = tl_stop;
ifp->if_timer = 0;
IFQ_SET_READY(&ifp->if_snd);
if_attach(ifp);
ether_ifattach(&(sc)->tl_if, (sc)->tl_enaddr);
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
}
static void
tl_reset(sc)
tl_softc_t *sc;
{
int i;
/* read stats */
if (sc->tl_if.if_flags & IFF_RUNNING) {
callout_stop(&sc->tl_tick_ch);
tl_read_stats(sc);
}
/* Reset adapter */
TL_HR_WRITE(sc, TL_HOST_CMD,
TL_HR_READ(sc, TL_HOST_CMD) | HOST_CMD_Ad_Rst);
DELAY(100000);
/* Disable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff);
/* setup aregs & hash */
for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4)
tl_intreg_write(sc, i, 0);
#ifdef TLDEBUG_ADDR
printf("Areg & hash registers: \n");
for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4)
printf(" reg %x: %x\n", i, tl_intreg_read(sc, i));
#endif
/* Setup NetConfig */
tl_intreg_write(sc, TL_INT_NetConfig,
TL_NETCONFIG_1F | TL_NETCONFIG_1chn | TL_NETCONFIG_PHY_EN);
/* Bsize: accept default */
/* TX commit in Acommit: accept default */
/* Load Ld_tmr and Ld_thr */
/* Ld_tmr = 3 */
TL_HR_WRITE(sc, TL_HOST_CMD, 0x3 | HOST_CMD_LdTmr);
/* Ld_thr = 0 */
TL_HR_WRITE(sc, TL_HOST_CMD, 0x0 | HOST_CMD_LdThr);
/* Unreset MII */
netsio_set(sc, TL_NETSIO_NMRST);
DELAY(100000);
sc->tl_mii.mii_media_status &= ~IFM_ACTIVE;
}
static void tl_shutdown(v)
void *v;
{
tl_stop(v, 1);
}
static void tl_stop(ifp, disable)
struct ifnet *ifp;
int disable;
{
tl_softc_t *sc = ifp->if_softc;
struct Tx_list *Tx;
int i;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
/* disable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff);
/* stop TX and RX channels */
TL_HR_WRITE(sc, TL_HOST_CMD,
HOST_CMD_STOP | HOST_CMD_RT | HOST_CMD_Nes);
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_STOP);
DELAY(100000);
/* stop statistics reading loop, read stats */
callout_stop(&sc->tl_tick_ch);
tl_read_stats(sc);
/* Down the MII. */
mii_down(&sc->tl_mii);
/* deallocate memory allocations */
if (sc->Rx_list) {
for (i=0; i< TL_NBUF; i++) {
if (sc->Rx_list[i].m) {
bus_dmamap_unload(sc->tl_dmatag,
sc->Rx_list[i].m_dmamap);
m_freem(sc->Rx_list[i].m);
}
bus_dmamap_destroy(sc->tl_dmatag,
sc->Rx_list[i].m_dmamap);
sc->Rx_list[i].m = NULL;
}
free(sc->Rx_list, M_DEVBUF);
sc->Rx_list = NULL;
bus_dmamap_unload(sc->tl_dmatag, sc->Rx_dmamap);
bus_dmamap_destroy(sc->tl_dmatag, sc->Rx_dmamap);
sc->hw_Rx_list = NULL;
while ((Tx = sc->active_Tx) != NULL) {
Tx->hw_list->stat = 0;
bus_dmamap_unload(sc->tl_dmatag, Tx->m_dmamap);
bus_dmamap_destroy(sc->tl_dmatag, Tx->m_dmamap);
m_freem(Tx->m);
sc->active_Tx = Tx->next;
Tx->next = sc->Free_Tx;
sc->Free_Tx = Tx;
}
sc->last_Tx = NULL;
free(sc->Tx_list, M_DEVBUF);
sc->Tx_list = NULL;
bus_dmamap_unload(sc->tl_dmatag, sc->Tx_dmamap);
bus_dmamap_destroy(sc->tl_dmatag, sc->Tx_dmamap);
sc->hw_Tx_list = NULL;
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
sc->tl_mii.mii_media_status &= ~IFM_ACTIVE;
}
static void tl_restart(v)
void *v;
{
tl_init(v);
}
static int tl_init(ifp)
struct ifnet *ifp;
{
tl_softc_t *sc = ifp->if_softc;
int i, s, error;
const char *errstring;
char *nullbuf;
s = splnet();
/* cancel any pending IO */
tl_stop(ifp, 1);
tl_reset(sc);
if ((sc->tl_if.if_flags & IFF_UP) == 0) {
splx(s);
return 0;
}
/* Set various register to reasonable value */
/* setup NetCmd in promisc mode if needed */
i = (ifp->if_flags & IFF_PROMISC) ? TL_NETCOMMAND_CAF : 0;
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd,
TL_NETCOMMAND_NRESET | TL_NETCOMMAND_NWRAP | i);
/* Max receive size : MCLBYTES */
tl_intreg_write_byte(sc, TL_INT_MISC + TL_MISC_MaxRxL, MCLBYTES & 0xff);
tl_intreg_write_byte(sc, TL_INT_MISC + TL_MISC_MaxRxH,
(MCLBYTES >> 8) & 0xff);
/* init MAC addr */
for (i = 0; i < ETHER_ADDR_LEN; i++)
tl_intreg_write_byte(sc, TL_INT_Areg0 + i , sc->tl_enaddr[i]);
/* add multicast filters */
tl_addr_filter(sc);
#ifdef TLDEBUG_ADDR
printf("Wrote Mac addr, Areg & hash registers are now: \n");
for (i = TL_INT_Areg0; i <= TL_INT_HASH2; i = i + 4)
printf(" reg %x: %x\n", i, tl_intreg_read(sc, i));
#endif
/* Pre-allocate receivers mbuf, make the lists */
sc->Rx_list = malloc(sizeof(struct Rx_list) * TL_NBUF, M_DEVBUF,
M_NOWAIT|M_ZERO);
sc->Tx_list = malloc(sizeof(struct Tx_list) * TL_NBUF, M_DEVBUF,
M_NOWAIT|M_ZERO);
if (sc->Rx_list == NULL || sc->Tx_list == NULL) {
errstring = "out of memory for lists";
error = ENOMEM;
goto bad;
}
error = bus_dmamap_create(sc->tl_dmatag,
sizeof(struct tl_Rx_list) * TL_NBUF, 1,
sizeof(struct tl_Rx_list) * TL_NBUF, 0, BUS_DMA_WAITOK,
&sc->Rx_dmamap);
if (error == 0)
error = bus_dmamap_create(sc->tl_dmatag,
sizeof(struct tl_Tx_list) * TL_NBUF, 1,
sizeof(struct tl_Tx_list) * TL_NBUF, 0, BUS_DMA_WAITOK,
&sc->Tx_dmamap);
if (error == 0)
error = bus_dmamap_create(sc->tl_dmatag, ETHER_MIN_TX, 1,
ETHER_MIN_TX, 0, BUS_DMA_WAITOK,
&sc->null_dmamap);
if (error) {
errstring = "can't allocate DMA maps for lists";
goto bad;
}
memset(sc->ctrl, 0, PAGE_SIZE);
sc->hw_Rx_list = (void *)sc->ctrl;
sc->hw_Tx_list =
(void *)(sc->ctrl + sizeof(struct tl_Rx_list) * TL_NBUF);
nullbuf = sc->ctrl + sizeof(struct tl_Rx_list) * TL_NBUF +
sizeof(struct tl_Tx_list) * TL_NBUF;
error = bus_dmamap_load(sc->tl_dmatag, sc->Rx_dmamap,
sc->hw_Rx_list, sizeof(struct tl_Rx_list) * TL_NBUF, NULL,
BUS_DMA_WAITOK);
if (error == 0)
error = bus_dmamap_load(sc->tl_dmatag, sc->Tx_dmamap,
sc->hw_Tx_list, sizeof(struct tl_Tx_list) * TL_NBUF, NULL,
BUS_DMA_WAITOK);
if (error == 0)
error = bus_dmamap_load(sc->tl_dmatag, sc->null_dmamap,
nullbuf, ETHER_MIN_TX, NULL, BUS_DMA_WAITOK);
if (error) {
errstring = "can't DMA map DMA memory for lists";
goto bad;
}
for (i=0; i< TL_NBUF; i++) {
error = bus_dmamap_create(sc->tl_dmatag, MCLBYTES,
1, MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
&sc->Rx_list[i].m_dmamap);
if (error == 0) {
error = bus_dmamap_create(sc->tl_dmatag, MCLBYTES,
TL_NSEG, MCLBYTES, 0,
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
&sc->Tx_list[i].m_dmamap);
}
if (error) {
errstring = "can't allocate DMA maps for mbufs";
goto bad;
}
sc->Rx_list[i].hw_list = &sc->hw_Rx_list[i];
sc->Rx_list[i].hw_listaddr = sc->Rx_dmamap->dm_segs[0].ds_addr
+ sizeof(struct tl_Rx_list) * i;
sc->Tx_list[i].hw_list = &sc->hw_Tx_list[i];
sc->Tx_list[i].hw_listaddr = sc->Tx_dmamap->dm_segs[0].ds_addr
+ sizeof(struct tl_Tx_list) * i;
if (tl_add_RxBuff(sc, &sc->Rx_list[i], NULL) == 0) {
errstring = "out of mbuf for receive list";
error = ENOMEM;
goto bad;
}
if (i > 0) { /* chain the list */
sc->Rx_list[i - 1].next = &sc->Rx_list[i];
sc->hw_Rx_list[i - 1].fwd =
htole32(sc->Rx_list[i].hw_listaddr);
sc->Tx_list[i - 1].next = &sc->Tx_list[i];
}
}
sc->hw_Rx_list[TL_NBUF - 1].fwd = 0;
sc->Rx_list[TL_NBUF - 1].next = NULL;
sc->hw_Tx_list[TL_NBUF - 1].fwd = 0;
sc->Tx_list[TL_NBUF - 1].next = NULL;
sc->active_Rx = &sc->Rx_list[0];
sc->last_Rx = &sc->Rx_list[TL_NBUF - 1];
sc->active_Tx = sc->last_Tx = NULL;
sc->Free_Tx = &sc->Tx_list[0];
bus_dmamap_sync(sc->tl_dmatag, sc->Rx_dmamap, 0,
sizeof(struct tl_Rx_list) * TL_NBUF,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0,
sizeof(struct tl_Tx_list) * TL_NBUF,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->tl_dmatag, sc->null_dmamap, 0, ETHER_MIN_TX,
BUS_DMASYNC_PREWRITE);
/* set media */
mii_mediachg(&sc->tl_mii);
/* start ticks calls */
callout_reset(&sc->tl_tick_ch, hz, tl_ticks, sc);
/* write address of Rx list and enable interrupts */
TL_HR_WRITE(sc, TL_HOST_CH_PARM, sc->Rx_list[0].hw_listaddr);
TL_HR_WRITE(sc, TL_HOST_CMD,
HOST_CMD_GO | HOST_CMD_RT | HOST_CMD_Nes | HOST_CMD_IntOn);
sc->tl_if.if_flags |= IFF_RUNNING;
sc->tl_if.if_flags &= ~IFF_OACTIVE;
return 0;
bad:
printf("%s: %s\n", sc->sc_dev.dv_xname, errstring);
splx(s);
return error;
}
static u_int32_t
tl_intreg_read(sc, reg)
tl_softc_t *sc;
u_int32_t reg;
{
TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, reg & TL_HOST_DIOADR_MASK);
return TL_HR_READ(sc, TL_HOST_DIO_DATA);
}
static u_int8_t
tl_intreg_read_byte(sc, reg)
tl_softc_t *sc;
u_int32_t reg;
{
TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR,
(reg & (~0x07)) & TL_HOST_DIOADR_MASK);
return TL_HR_READ_BYTE(sc, TL_HOST_DIO_DATA + (reg & 0x07));
}
static void
tl_intreg_write(sc, reg, val)
tl_softc_t *sc;
u_int32_t reg;
u_int32_t val;
{
TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR, reg & TL_HOST_DIOADR_MASK);
TL_HR_WRITE(sc, TL_HOST_DIO_DATA, val);
}
static void
tl_intreg_write_byte(sc, reg, val)
tl_softc_t *sc;
u_int32_t reg;
u_int8_t val;
{
TL_HR_WRITE(sc, TL_HOST_INTR_DIOADR,
(reg & (~0x03)) & TL_HOST_DIOADR_MASK);
TL_HR_WRITE_BYTE(sc, TL_HOST_DIO_DATA + (reg & 0x03), val);
}
void
tl_mii_sync(sc)
struct tl_softc *sc;
{
int i;
netsio_clr(sc, TL_NETSIO_MTXEN);
for (i = 0; i < 32; i++) {
netsio_clr(sc, TL_NETSIO_MCLK);
netsio_set(sc, TL_NETSIO_MCLK);
}
}
void
tl_mii_sendbits(sc, data, nbits)
struct tl_softc *sc;
u_int32_t data;
int nbits;
{
int i;
netsio_set(sc, TL_NETSIO_MTXEN);
for (i = 1 << (nbits - 1); i; i = i >> 1) {
netsio_clr(sc, TL_NETSIO_MCLK);
netsio_read(sc, TL_NETSIO_MCLK);
if (data & i)
netsio_set(sc, TL_NETSIO_MDATA);
else
netsio_clr(sc, TL_NETSIO_MDATA);
netsio_set(sc, TL_NETSIO_MCLK);
netsio_read(sc, TL_NETSIO_MCLK);
}
}
int
tl_mii_read(self, phy, reg)
struct device *self;
int phy, reg;
{
struct tl_softc *sc = (struct tl_softc *)self;
int val = 0, i, err;
/*
* Read the PHY register by manually driving the MII control lines.
*/
tl_mii_sync(sc);
tl_mii_sendbits(sc, MII_COMMAND_START, 2);
tl_mii_sendbits(sc, MII_COMMAND_READ, 2);
tl_mii_sendbits(sc, phy, 5);
tl_mii_sendbits(sc, reg, 5);
netsio_clr(sc, TL_NETSIO_MTXEN);
netsio_clr(sc, TL_NETSIO_MCLK);
netsio_set(sc, TL_NETSIO_MCLK);
netsio_clr(sc, TL_NETSIO_MCLK);
err = netsio_read(sc, TL_NETSIO_MDATA);
netsio_set(sc, TL_NETSIO_MCLK);
/* Even if an error occurs, must still clock out the cycle. */
for (i = 0; i < 16; i++) {
val <<= 1;
netsio_clr(sc, TL_NETSIO_MCLK);
if (err == 0 && netsio_read(sc, TL_NETSIO_MDATA))
val |= 1;
netsio_set(sc, TL_NETSIO_MCLK);
}
netsio_clr(sc, TL_NETSIO_MCLK);
netsio_set(sc, TL_NETSIO_MCLK);
return (err ? 0 : val);
}
void
tl_mii_write(self, phy, reg, val)
struct device *self;
int phy, reg, val;
{
struct tl_softc *sc = (struct tl_softc *)self;
/*
* Write the PHY register by manually driving the MII control lines.
*/
tl_mii_sync(sc);
tl_mii_sendbits(sc, MII_COMMAND_START, 2);
tl_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
tl_mii_sendbits(sc, phy, 5);
tl_mii_sendbits(sc, reg, 5);
tl_mii_sendbits(sc, MII_COMMAND_ACK, 2);
tl_mii_sendbits(sc, val, 16);
netsio_clr(sc, TL_NETSIO_MCLK);
netsio_set(sc, TL_NETSIO_MCLK);
}
void
tl_statchg(self)
struct device *self;
{
tl_softc_t *sc = (struct tl_softc *)self;
u_int32_t reg;
#ifdef TLDEBUG
printf("tl_statchg, media %x\n", sc->tl_mii.mii_media.ifm_media);
#endif
/*
* We must keep the ThunderLAN and the PHY in sync as
* to the status of full-duplex!
*/
reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetCmd);
if (sc->tl_mii.mii_media_active & IFM_FDX)
reg |= TL_NETCOMMAND_DUPLEX;
else
reg &= ~TL_NETCOMMAND_DUPLEX;
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetCmd, reg);
}
/********** I2C glue **********/
static int
tl_i2c_acquire_bus(void *cookie, int flags)
{
/* private bus */
return (0);
}
static void
tl_i2c_release_bus(void *cookie, int flags)
{
/* private bus */
}
static int
tl_i2c_send_start(void *cookie, int flags)
{
return (i2c_bitbang_send_start(cookie, flags, &tl_i2cbb_ops));
}
static int
tl_i2c_send_stop(void *cookie, int flags)
{
return (i2c_bitbang_send_stop(cookie, flags, &tl_i2cbb_ops));
}
static int
tl_i2c_initiate_xfer(void *cookie, i2c_addr_t addr, int flags)
{
return (i2c_bitbang_initiate_xfer(cookie, addr, flags, &tl_i2cbb_ops));
}
static int
tl_i2c_read_byte(void *cookie, uint8_t *valp, int flags)
{
return (i2c_bitbang_read_byte(cookie, valp, flags, &tl_i2cbb_ops));
}
static int
tl_i2c_write_byte(void *cookie, uint8_t val, int flags)
{
return (i2c_bitbang_write_byte(cookie, val, flags, &tl_i2cbb_ops));
}
/********** I2C bit-bang glue **********/
static void
tl_i2cbb_set_bits(void *cookie, uint32_t bits)
{
struct tl_softc *sc = cookie;
uint8_t reg;
reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio);
reg = (reg & ~(TL_NETSIO_EDATA|TL_NETSIO_ECLOCK)) | bits;
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio, reg);
}
static void
tl_i2cbb_set_dir(void *cookie, uint32_t bits)
{
struct tl_softc *sc = cookie;
uint8_t reg;
reg = tl_intreg_read_byte(sc, TL_INT_NET + TL_INT_NetSio);
reg = (reg & ~TL_NETSIO_ETXEN) | bits;
tl_intreg_write_byte(sc, TL_INT_NET + TL_INT_NetSio, reg);
}
static uint32_t
tl_i2cbb_read(void *cookie)
{
return (tl_intreg_read_byte(cookie, TL_INT_NET + TL_INT_NetSio));
}
/********** End of I2C stuff **********/
static int
tl_intr(v)
void *v;
{
tl_softc_t *sc = v;
struct ifnet *ifp = &sc->tl_if;
struct Rx_list *Rx;
struct Tx_list *Tx;
struct mbuf *m;
u_int32_t int_type, int_reg;
int ack = 0;
int size;
int_reg = TL_HR_READ(sc, TL_HOST_INTR_DIOADR);
int_type = int_reg & TL_INTR_MASK;
if (int_type == 0)
return 0;
#if defined(TLDEBUG_RX) || defined(TLDEBUG_TX)
printf("%s: interrupt type %x, intr_reg %x\n", sc->sc_dev.dv_xname,
int_type, int_reg);
#endif
/* disable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOff);
switch(int_type & TL_INTR_MASK) {
case TL_INTR_RxEOF:
bus_dmamap_sync(sc->tl_dmatag, sc->Rx_dmamap, 0,
sizeof(struct tl_Rx_list) * TL_NBUF,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while(le32toh(sc->active_Rx->hw_list->stat) &
TL_RX_CSTAT_CPLT) {
/* dequeue and requeue at end of list */
ack++;
Rx = sc->active_Rx;
sc->active_Rx = Rx->next;
bus_dmamap_sync(sc->tl_dmatag, Rx->m_dmamap, 0,
Rx->m_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->tl_dmatag, Rx->m_dmamap);
m = Rx->m;
size = le32toh(Rx->hw_list->stat) >> 16;
#ifdef TLDEBUG_RX
printf("tl_intr: RX list complete, Rx %p, size=%d\n",
Rx, size);
#endif
if (tl_add_RxBuff(sc, Rx, m ) == 0) {
/*
* No new mbuf, reuse the same. This means
* that this packet
* is lost
*/
m = NULL;
#ifdef TL_PRIV_STATS
sc->ierr_nomem++;
#endif
#ifdef TLDEBUG
printf("%s: out of mbuf, lost input packet\n",
sc->sc_dev.dv_xname);
#endif
}
Rx->next = NULL;
Rx->hw_list->fwd = 0;
sc->last_Rx->hw_list->fwd = htole32(Rx->hw_listaddr);
sc->last_Rx->next = Rx;
sc->last_Rx = Rx;
/* deliver packet */
if (m) {
if (size < sizeof(struct ether_header)) {
m_freem(m);
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = size;
#ifdef TLDEBUG_RX
{ struct ether_header *eh =
mtod(m, struct ether_header *);
printf("tl_intr: Rx packet:\n");
ether_printheader(eh); }
#endif
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER > 0 */
(*ifp->if_input)(ifp, m);
}
}
bus_dmamap_sync(sc->tl_dmatag, sc->Rx_dmamap, 0,
sizeof(struct tl_Rx_list) * TL_NBUF,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#ifdef TLDEBUG_RX
printf("TL_INTR_RxEOF: ack %d\n", ack);
#else
if (ack == 0) {
printf("%s: EOF intr without anything to read !\n",
sc->sc_dev.dv_xname);
tl_reset(sc);
/* shedule reinit of the board */
callout_reset(&sc->tl_restart_ch, 1, tl_restart, ifp);
return(1);
}
#endif
break;
case TL_INTR_RxEOC:
ack++;
bus_dmamap_sync(sc->tl_dmatag, sc->Rx_dmamap, 0,
sizeof(struct tl_Rx_list) * TL_NBUF,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
#ifdef TLDEBUG_RX
printf("TL_INTR_RxEOC: ack %d\n", ack);
#endif
#ifdef DIAGNOSTIC
if (le32toh(sc->active_Rx->hw_list->stat) & TL_RX_CSTAT_CPLT) {
printf("%s: Rx EOC interrupt and active Tx list not "
"cleared\n", sc->sc_dev.dv_xname);
return 0;
} else
#endif
{
/*
* write address of Rx list and send Rx GO command, ack
* interrupt and enable interrupts in one command
*/
TL_HR_WRITE(sc, TL_HOST_CH_PARM, sc->active_Rx->hw_listaddr);
TL_HR_WRITE(sc, TL_HOST_CMD,
HOST_CMD_GO | HOST_CMD_RT | HOST_CMD_Nes | ack | int_type |
HOST_CMD_ACK | HOST_CMD_IntOn);
return 1;
}
case TL_INTR_TxEOF:
case TL_INTR_TxEOC:
bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0,
sizeof(struct tl_Tx_list) * TL_NBUF,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while ((Tx = sc->active_Tx) != NULL) {
if((le32toh(Tx->hw_list->stat) & TL_TX_CSTAT_CPLT) == 0)
break;
ack++;
#ifdef TLDEBUG_TX
printf("TL_INTR_TxEOC: list 0x%x done\n",
(int)Tx->hw_listaddr);
#endif
Tx->hw_list->stat = 0;
bus_dmamap_sync(sc->tl_dmatag, Tx->m_dmamap, 0,
Tx->m_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->tl_dmatag, Tx->m_dmamap);
m_freem(Tx->m);
Tx->m = NULL;
sc->active_Tx = Tx->next;
if (sc->active_Tx == NULL)
sc->last_Tx = NULL;
Tx->next = sc->Free_Tx;
sc->Free_Tx = Tx;
}
bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0,
sizeof(struct tl_Tx_list) * TL_NBUF,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* if this was an EOC, ACK immediatly */
if (ack)
sc->tl_if.if_flags &= ~IFF_OACTIVE;
if (int_type == TL_INTR_TxEOC) {
#ifdef TLDEBUG_TX
printf("TL_INTR_TxEOC: ack %d (will be set to 1)\n",
ack);
#endif
TL_HR_WRITE(sc, TL_HOST_CMD, 1 | int_type |
HOST_CMD_ACK | HOST_CMD_IntOn);
if ( sc->active_Tx != NULL) {
/* needs a Tx go command */
TL_HR_WRITE(sc, TL_HOST_CH_PARM,
sc->active_Tx->hw_listaddr);
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO);
}
sc->tl_if.if_timer = 0;
if (IFQ_IS_EMPTY(&sc->tl_if.if_snd) == 0)
tl_ifstart(&sc->tl_if);
return 1;
}
#ifdef TLDEBUG
else {
printf("TL_INTR_TxEOF: ack %d\n", ack);
}
#endif
sc->tl_if.if_timer = 0;
if (IFQ_IS_EMPTY(&sc->tl_if.if_snd) == 0)
tl_ifstart(&sc->tl_if);
break;
case TL_INTR_Stat:
ack++;
#ifdef TLDEBUG
printf("TL_INTR_Stat: ack %d\n", ack);
#endif
tl_read_stats(sc);
break;
case TL_INTR_Adc:
if (int_reg & TL_INTVec_MASK) {
/* adapter check conditions */
printf("%s: check condition, intvect=0x%x, "
"ch_param=0x%x\n", sc->sc_dev.dv_xname,
int_reg & TL_INTVec_MASK,
TL_HR_READ(sc, TL_HOST_CH_PARM));
tl_reset(sc);
/* shedule reinit of the board */
callout_reset(&sc->tl_restart_ch, 1, tl_restart, ifp);
return(1);
} else {
u_int8_t netstat;
/* Network status */
netstat =
tl_intreg_read_byte(sc, TL_INT_NET+TL_INT_NetSts);
printf("%s: network status, NetSts=%x\n",
sc->sc_dev.dv_xname, netstat);
/* Ack interrupts */
tl_intreg_write_byte(sc, TL_INT_NET+TL_INT_NetSts,
netstat);
ack++;
}
break;
default:
printf("%s: unhandled interrupt code %x!\n",
sc->sc_dev.dv_xname, int_type);
ack++;
}
if (ack) {
/* Ack the interrupt and enable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD, ack | int_type | HOST_CMD_ACK |
HOST_CMD_IntOn);
#if NRND > 0
if (RND_ENABLED(&sc->rnd_source))
rnd_add_uint32(&sc->rnd_source, int_reg);
#endif
return 1;
}
/* ack = 0 ; interrupt was perhaps not our. Just enable interrupts */
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_IntOn);
return 0;
}
static int
tl_ifioctl(ifp, cmd, data)
struct ifnet *ifp;
ioctl_cmd_t cmd;
caddr_t data;
{
struct tl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splnet();
switch(cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->tl_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
tl_addr_filter(sc);
error = 0;
}
}
splx(s);
return error;
}
static void
tl_ifstart(ifp)
struct ifnet *ifp;
{
tl_softc_t *sc = ifp->if_softc;
struct mbuf *mb_head;
struct Tx_list *Tx;
int segment, size;
int again, error;
if ((sc->tl_if.if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
txloop:
/* If we don't have more space ... */
if (sc->Free_Tx == NULL) {
#ifdef TLDEBUG
printf("tl_ifstart: No free TX list\n");
#endif
sc->tl_if.if_flags |= IFF_OACTIVE;
return;
}
/* Grab a paquet for output */
IFQ_DEQUEUE(&ifp->if_snd, mb_head);
if (mb_head == NULL) {
#ifdef TLDEBUG_TX
printf("tl_ifstart: nothing to send\n");
#endif
return;
}
Tx = sc->Free_Tx;
sc->Free_Tx = Tx->next;
Tx->next = NULL;
again = 0;
/*
* Go through each of the mbufs in the chain and initialize
* the transmit list descriptors with the physical address
* and size of the mbuf.
*/
tbdinit:
memset(Tx->hw_list, 0, sizeof(struct tl_Tx_list));
Tx->m = mb_head;
size = mb_head->m_pkthdr.len;
if ((error = bus_dmamap_load_mbuf(sc->tl_dmatag, Tx->m_dmamap, mb_head,
BUS_DMA_NOWAIT)) || (size < ETHER_MIN_TX &&
Tx->m_dmamap->dm_nsegs == TL_NSEG)) {
struct mbuf *mn;
/*
* We ran out of segments, or we will. We have to recopy this
* mbuf chain first.
*/
if (error == 0)
bus_dmamap_unload(sc->tl_dmatag, Tx->m_dmamap);
if (again) {
/* already copyed, can't do much more */
m_freem(mb_head);
goto bad;
}
again = 1;
#ifdef TLDEBUG_TX
printf("tl_ifstart: need to copy mbuf\n");
#endif
#ifdef TL_PRIV_STATS
sc->oerr_mcopy++;
#endif
MGETHDR(mn, M_DONTWAIT, MT_DATA);
if (mn == NULL) {
m_freem(mb_head);
goto bad;
}
if (mb_head->m_pkthdr.len > MHLEN) {
MCLGET(mn, M_DONTWAIT);
if ((mn->m_flags & M_EXT) == 0) {
m_freem(mn);
m_freem(mb_head);
goto bad;
}
}
m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
mtod(mn, caddr_t));
mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
m_freem(mb_head);
mb_head = mn;
goto tbdinit;
}
for (segment = 0; segment < Tx->m_dmamap->dm_nsegs; segment++) {
Tx->hw_list->seg[segment].data_addr =
htole32(Tx->m_dmamap->dm_segs[segment].ds_addr);
Tx->hw_list->seg[segment].data_count =
htole32(Tx->m_dmamap->dm_segs[segment].ds_len);
}
bus_dmamap_sync(sc->tl_dmatag, Tx->m_dmamap, 0,
Tx->m_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* We are at end of mbuf chain. check the size and
* see if it needs to be extended
*/
if (size < ETHER_MIN_TX) {
#ifdef DIAGNOSTIC
if (segment >= TL_NSEG) {
panic("tl_ifstart: to much segmets (%d)", segment);
}
#endif
/*
* add the nullbuf in the seg
*/
Tx->hw_list->seg[segment].data_count =
htole32(ETHER_MIN_TX - size);
Tx->hw_list->seg[segment].data_addr =
htole32(sc->null_dmamap->dm_segs[0].ds_addr);
size = ETHER_MIN_TX;
segment++;
}
/* The list is done, finish the list init */
Tx->hw_list->seg[segment - 1].data_count |=
htole32(TL_LAST_SEG);
Tx->hw_list->stat = htole32((size << 16) | 0x3000);
#ifdef TLDEBUG_TX
printf("%s: sending, Tx : stat = 0x%x\n", sc->sc_dev.dv_xname,
le32toh(Tx->hw_list->stat));
#if 0
for(segment = 0; segment < TL_NSEG; segment++) {
printf(" seg %d addr 0x%x len 0x%x\n",
segment,
le32toh(Tx->hw_list->seg[segment].data_addr),
le32toh(Tx->hw_list->seg[segment].data_count));
}
#endif
#endif
if (sc->active_Tx == NULL) {
sc->active_Tx = sc->last_Tx = Tx;
#ifdef TLDEBUG_TX
printf("%s: Tx GO, addr=0x%ux\n", sc->sc_dev.dv_xname,
(int)Tx->hw_listaddr);
#endif
bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0,
sizeof(struct tl_Tx_list) * TL_NBUF,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
TL_HR_WRITE(sc, TL_HOST_CH_PARM, Tx->hw_listaddr);
TL_HR_WRITE(sc, TL_HOST_CMD, HOST_CMD_GO);
} else {
#ifdef TLDEBUG_TX
printf("%s: Tx addr=0x%ux queued\n", sc->sc_dev.dv_xname,
(int)Tx->hw_listaddr);
#endif
sc->last_Tx->hw_list->fwd = htole32(Tx->hw_listaddr);
bus_dmamap_sync(sc->tl_dmatag, sc->Tx_dmamap, 0,
sizeof(struct tl_Tx_list) * TL_NBUF,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->last_Tx->next = Tx;
sc->last_Tx = Tx;
#ifdef DIAGNOSTIC
if (sc->last_Tx->hw_list->fwd & 0x7)
printf("%s: physical addr 0x%x of list not properly "
"aligned\n",
sc->sc_dev.dv_xname, sc->last_Rx->hw_list->fwd);
#endif
}
#if NBPFILTER > 0
/* Pass packet to bpf if there is a listener */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, mb_head);
#endif
/*
* Set a 5 second timer just in case we don't hear from the card again.
*/
ifp->if_timer = 5;
goto txloop;
bad:
#ifdef TLDEBUG
printf("tl_ifstart: Out of mbuf, Tx pkt lost\n");
#endif
Tx->next = sc->Free_Tx;
sc->Free_Tx = Tx;
return;
}
static void
tl_ifwatchdog(ifp)
struct ifnet *ifp;
{
tl_softc_t *sc = ifp->if_softc;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
tl_init(ifp);
}
static int
tl_mediachange(ifp)
struct ifnet *ifp;
{
if (ifp->if_flags & IFF_UP)
tl_init(ifp);
return (0);
}
static void
tl_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
tl_softc_t *sc = ifp->if_softc;
mii_pollstat(&sc->tl_mii);
ifmr->ifm_active = sc->tl_mii.mii_media_active;
ifmr->ifm_status = sc->tl_mii.mii_media_status;
}
static int tl_add_RxBuff(sc, Rx, oldm)
tl_softc_t *sc;
struct Rx_list *Rx;
struct mbuf *oldm;
{
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
if (oldm == NULL)
return 0;
m = oldm;
m->m_data = m->m_ext.ext_buf;
}
} else {
if (oldm == NULL)
return 0;
m = oldm;
m->m_data = m->m_ext.ext_buf;
}
/* (re)init the Rx_list struct */
Rx->m = m;
if ((error = bus_dmamap_load(sc->tl_dmatag, Rx->m_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) {
printf("%s: bus_dmamap_load() failed (error %d) for "
"tl_add_RxBuff\n", sc->sc_dev.dv_xname, error);
printf("size %d (%d)\n", m->m_pkthdr.len, MCLBYTES);
m_freem(m);
Rx->m = NULL;
return 0;
}
bus_dmamap_sync(sc->tl_dmatag, Rx->m_dmamap, 0,
Rx->m_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
/*
* Move the data pointer up so that the incoming data packet
* will be 32-bit aligned.
*/
m->m_data += 2;
Rx->hw_list->stat =
htole32(((Rx->m_dmamap->dm_segs[0].ds_len - 2) << 16) | 0x3000);
Rx->hw_list->seg.data_count =
htole32(Rx->m_dmamap->dm_segs[0].ds_len - 2);
Rx->hw_list->seg.data_addr =
htole32(Rx->m_dmamap->dm_segs[0].ds_addr + 2);
return (m != oldm);
}
static void tl_ticks(v)
void *v;
{
tl_softc_t *sc = v;
tl_read_stats(sc);
/* Tick the MII. */
mii_tick(&sc->tl_mii);
/* read statistics every seconds */
callout_reset(&sc->tl_tick_ch, hz, tl_ticks, sc);
}
static void
tl_read_stats(sc)
tl_softc_t *sc;
{
u_int32_t reg;
int ierr_overr;
int ierr_code;
int ierr_crc;
int oerr_underr;
int oerr_deferred;
int oerr_coll;
int oerr_multicoll;
int oerr_exesscoll;
int oerr_latecoll;
int oerr_carrloss;
struct ifnet *ifp = &sc->tl_if;
reg = tl_intreg_read(sc, TL_INT_STATS_TX);
ifp->if_opackets += reg & 0x00ffffff;
oerr_underr = reg >> 24;
reg = tl_intreg_read(sc, TL_INT_STATS_RX);
ifp->if_ipackets += reg & 0x00ffffff;
ierr_overr = reg >> 24;
reg = tl_intreg_read(sc, TL_INT_STATS_FERR);
ierr_crc = (reg & TL_FERR_CRC) >> 16;
ierr_code = (reg & TL_FERR_CODE) >> 24;
oerr_deferred = (reg & TL_FERR_DEF);
reg = tl_intreg_read(sc, TL_INT_STATS_COLL);
oerr_multicoll = (reg & TL_COL_MULTI);
oerr_coll = (reg & TL_COL_SINGLE) >> 16;
reg = tl_intreg_read(sc, TL_INT_LERR);
oerr_exesscoll = (reg & TL_LERR_ECOLL);
oerr_latecoll = (reg & TL_LERR_LCOLL) >> 8;
oerr_carrloss = (reg & TL_LERR_CL) >> 16;
ifp->if_oerrors += oerr_underr + oerr_exesscoll + oerr_latecoll +
oerr_carrloss;
ifp->if_collisions += oerr_coll + oerr_multicoll;
ifp->if_ierrors += ierr_overr + ierr_code + ierr_crc;
if (ierr_overr)
printf("%s: receiver ring buffer overrun\n",
sc->sc_dev.dv_xname);
if (oerr_underr)
printf("%s: transmit buffer underrun\n",
sc->sc_dev.dv_xname);
#ifdef TL_PRIV_STATS
sc->ierr_overr += ierr_overr;
sc->ierr_code += ierr_code;
sc->ierr_crc += ierr_crc;
sc->oerr_underr += oerr_underr;
sc->oerr_deferred += oerr_deferred;
sc->oerr_coll += oerr_coll;
sc->oerr_multicoll += oerr_multicoll;
sc->oerr_exesscoll += oerr_exesscoll;
sc->oerr_latecoll += oerr_latecoll;
sc->oerr_carrloss += oerr_carrloss;
#endif
}
static void tl_addr_filter(sc)
tl_softc_t *sc;
{
struct ether_multistep step;
struct ether_multi *enm;
u_int32_t hash[2] = {0, 0};
int i;
sc->tl_if.if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, &sc->tl_ec, enm);
while (enm != NULL) {
#ifdef TLDEBUG
printf("tl_addr_filter: addrs %s %s\n",
ether_sprintf(enm->enm_addrlo),
ether_sprintf(enm->enm_addrhi));
#endif
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
i = tl_multicast_hash(enm->enm_addrlo);
hash[i/32] |= 1 << (i%32);
} else {
hash[0] = hash[1] = 0xffffffff;
sc->tl_if.if_flags |= IFF_ALLMULTI;
break;
}
ETHER_NEXT_MULTI(step, enm);
}
#ifdef TLDEBUG
printf("tl_addr_filer: hash1 %x has2 %x\n", hash[0], hash[1]);
#endif
tl_intreg_write(sc, TL_INT_HASH1, hash[0]);
tl_intreg_write(sc, TL_INT_HASH2, hash[1]);
}
static int tl_multicast_hash(a)
u_int8_t *a;
{
int hash;
#define DA(addr,bit) (addr[5 - (bit/8)] & (1 << bit%8))
#define xor8(a,b,c,d,e,f,g,h) (((a != 0) + (b != 0) + (c != 0) + (d != 0) + (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
hash = xor8( DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
DA(a,36), DA(a,42));
hash |= xor8( DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
DA(a,37), DA(a,43)) << 1;
hash |= xor8( DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
DA(a,38), DA(a,44)) << 2;
hash |= xor8( DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
DA(a,39), DA(a,45)) << 3;
hash |= xor8( DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
DA(a,40), DA(a,46)) << 4;
hash |= xor8( DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
DA(a,41), DA(a,47)) << 5;
return hash;
}
#if defined(TLDEBUG_RX)
void
ether_printheader(eh)
struct ether_header *eh;
{
u_char *c = (char*)eh;
int i;
for (i=0; i<sizeof(struct ether_header); i++)
printf("%x ", (u_int)c[i]);
printf("\n");
}
#endif