NetBSD/sys/kern/init_sysctl.c
christos dfabd062ab PR/32809: Pavel Cahyna: Conflicting flags in l_flag and p_flag are causing
ps(1) to print incorrect information. Annotate the flags in the header files
to make sure that flags are not being re-used and move flags so that there
are no conflicts.
2006-04-01 00:57:34 +00:00

3134 lines
83 KiB
C

/* $NetBSD: init_sysctl.c,v 1.65 2006/04/01 00:57:34 christos Exp $ */
/*-
* Copyright (c) 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Brown.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.65 2006/04/01 00:57:34 christos Exp $");
#include "opt_sysv.h"
#include "opt_multiprocessor.h"
#include "opt_posix.h"
#include "opt_verified_exec.h"
#include "pty.h"
#include "rnd.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/unistd.h>
#include <sys/disklabel.h>
#include <sys/rnd.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/msgbuf.h>
#include <dev/cons.h>
#include <sys/socketvar.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/tty.h>
#include <sys/malloc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/exec.h>
#include <sys/conf.h>
#include <sys/device.h>
#ifdef VERIFIED_EXEC
#define VERIEXEC_NEED_NODE
#include <sys/verified_exec.h>
#endif /* VERIFIED_EXEC */
#include <sys/stat.h>
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
#include <sys/ipc.h>
#endif
#ifdef SYSVMSG
#include <sys/msg.h>
#endif
#ifdef SYSVSEM
#include <sys/sem.h>
#endif
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#include <machine/cpu.h>
/* XXX this should not be here */
int security_curtain = 0;
int security_setidcore_dump;
char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core";
uid_t security_setidcore_owner = 0;
gid_t security_setidcore_group = 0;
mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR);
/*
* try over estimating by 5 procs/lwps
*/
#define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
#define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
#ifndef MULTIPROCESSOR
#define sysctl_ncpus() (1)
#else /* MULTIPROCESSOR */
#ifndef CPU_INFO_FOREACH
#define CPU_INFO_ITERATOR int
#define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
#endif
static int
sysctl_ncpus(void)
{
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
int ncpus = 0;
for (CPU_INFO_FOREACH(cii, ci))
ncpus++;
return (ncpus);
}
#endif /* MULTIPROCESSOR */
#ifdef DIAGNOSTIC
static int sysctl_kern_trigger_panic(SYSCTLFN_PROTO);
#endif
static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
static int sysctl_kern_hostid(SYSCTLFN_PROTO);
static int sysctl_setlen(SYSCTLFN_PROTO);
static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
static int sysctl_kern_file(SYSCTLFN_PROTO);
static int sysctl_kern_autonice(SYSCTLFN_PROTO);
static int sysctl_msgbuf(SYSCTLFN_PROTO);
static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
static int sysctl_kern_cptime(SYSCTLFN_PROTO);
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
#endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
#if NPTY > 0
static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
#endif /* NPTY > 0 */
static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
static int sysctl_kern_urnd(SYSCTLFN_PROTO);
static int sysctl_kern_lwp(SYSCTLFN_PROTO);
static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
static int sysctl_kern_drivers(SYSCTLFN_PROTO);
static int sysctl_kern_file2(SYSCTLFN_PROTO);
#ifdef VERIFIED_EXEC
static int sysctl_kern_veriexec(SYSCTLFN_PROTO);
#endif
static int sysctl_security_setidcore(SYSCTLFN_PROTO);
static int sysctl_security_setidcorename(SYSCTLFN_PROTO);
static int sysctl_kern_cpid(SYSCTLFN_PROTO);
static int sysctl_doeproc(SYSCTLFN_PROTO);
static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
static int sysctl_hw_usermem(SYSCTLFN_PROTO);
static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
static void fill_file(struct kinfo_file *, const struct file *, struct proc *,
int);
/*
* ********************************************************************
* section 1: setup routines
* ********************************************************************
* these functions are stuffed into a link set for sysctl setup
* functions. they're never called or referenced from anywhere else.
* ********************************************************************
*/
/*
* sets up the base nodes...
*/
SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern",
SYSCTL_DESCR("High kernel"),
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "vm",
SYSCTL_DESCR("Virtual memory"),
NULL, 0, NULL, 0,
CTL_VM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "vfs",
SYSCTL_DESCR("Filesystem"),
NULL, 0, NULL, 0,
CTL_VFS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "net",
SYSCTL_DESCR("Networking"),
NULL, 0, NULL, 0,
CTL_NET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "debug",
SYSCTL_DESCR("Debugging"),
NULL, 0, NULL, 0,
CTL_DEBUG, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "hw",
SYSCTL_DESCR("Generic CPU, I/O"),
NULL, 0, NULL, 0,
CTL_HW, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "machdep",
SYSCTL_DESCR("Machine dependent"),
NULL, 0, NULL, 0,
CTL_MACHDEP, CTL_EOL);
/*
* this node is inserted so that the sysctl nodes in libc can
* operate.
*/
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "user",
SYSCTL_DESCR("User-level"),
NULL, 0, NULL, 0,
CTL_USER, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ddb",
SYSCTL_DESCR("In-kernel debugger"),
NULL, 0, NULL, 0,
CTL_DDB, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc",
SYSCTL_DESCR("Per-process"),
NULL, 0, NULL, 0,
CTL_PROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_NODE, "vendor",
SYSCTL_DESCR("Vendor specific"),
NULL, 0, NULL, 0,
CTL_VENDOR, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "emul",
SYSCTL_DESCR("Emulation settings"),
NULL, 0, NULL, 0,
CTL_EMUL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "security",
SYSCTL_DESCR("Security"),
NULL, 0, NULL, 0,
CTL_SECURITY, CTL_EOL);
}
/*
* this setup routine is a replacement for kern_sysctl()
*/
SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
{
extern int kern_logsigexit; /* defined in kern/kern_sig.c */
extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
extern int dumponpanic; /* defined in kern/subr_prf.c */
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "ostype",
SYSCTL_DESCR("Operating system type"),
NULL, 0, &ostype, 0,
CTL_KERN, KERN_OSTYPE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "osrelease",
SYSCTL_DESCR("Operating system release"),
NULL, 0, &osrelease, 0,
CTL_KERN, KERN_OSRELEASE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "osrevision",
SYSCTL_DESCR("Operating system revision"),
NULL, __NetBSD_Version__, NULL, 0,
CTL_KERN, KERN_OSREV, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "version",
SYSCTL_DESCR("Kernel version"),
NULL, 0, &version, 0,
CTL_KERN, KERN_VERSION, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxvnodes",
SYSCTL_DESCR("Maximum number of vnodes"),
sysctl_kern_maxvnodes, 0, NULL, 0,
CTL_KERN, KERN_MAXVNODES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxproc",
SYSCTL_DESCR("Maximum number of simultaneous processes"),
sysctl_kern_maxproc, 0, NULL, 0,
CTL_KERN, KERN_MAXPROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxfiles",
SYSCTL_DESCR("Maximum number of open files"),
NULL, 0, &maxfiles, 0,
CTL_KERN, KERN_MAXFILES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "argmax",
SYSCTL_DESCR("Maximum number of bytes of arguments to "
"execve(2)"),
NULL, ARG_MAX, NULL, 0,
CTL_KERN, KERN_ARGMAX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "securelevel",
SYSCTL_DESCR("System security level"),
sysctl_kern_securelevel, 0, &securelevel, 0,
CTL_KERN, KERN_SECURELVL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRING, "hostname",
SYSCTL_DESCR("System hostname"),
sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
CTL_KERN, KERN_HOSTNAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
CTLTYPE_INT, "hostid",
SYSCTL_DESCR("System host ID number"),
sysctl_kern_hostid, 0, NULL, 0,
CTL_KERN, KERN_HOSTID, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "clockrate",
SYSCTL_DESCR("Kernel clock rates"),
sysctl_kern_clockrate, 0, NULL,
sizeof(struct clockinfo),
CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "hardclock_ticks",
SYSCTL_DESCR("Number of hardclock ticks"),
NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "vnode",
SYSCTL_DESCR("System vnode table"),
sysctl_kern_vnode, 0, NULL, 0,
CTL_KERN, KERN_VNODE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "file",
SYSCTL_DESCR("System open file table"),
sysctl_kern_file, 0, NULL, 0,
CTL_KERN, KERN_FILE, CTL_EOL);
#ifndef GPROF
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "profiling",
SYSCTL_DESCR("Profiling information (not available)"),
sysctl_notavail, 0, NULL, 0,
CTL_KERN, KERN_PROF, CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix1version",
SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
"with which the operating system attempts "
"to comply"),
NULL, _POSIX_VERSION, NULL, 0,
CTL_KERN, KERN_POSIX1, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "ngroups",
SYSCTL_DESCR("Maximum number of supplemental groups"),
NULL, NGROUPS_MAX, NULL, 0,
CTL_KERN, KERN_NGROUPS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "job_control",
SYSCTL_DESCR("Whether job control is available"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "saved_ids",
SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
"available"), NULL,
#ifdef _POSIX_SAVED_IDS
1,
#else /* _POSIX_SAVED_IDS */
0,
#endif /* _POSIX_SAVED_IDS */
NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "boottime",
SYSCTL_DESCR("System boot time"),
NULL, 0, &boottime, sizeof(boottime),
CTL_KERN, KERN_BOOTTIME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRING, "domainname",
SYSCTL_DESCR("YP domain name"),
sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "maxpartitions",
SYSCTL_DESCR("Maximum number of partitions allowed per "
"disk"),
NULL, MAXPARTITIONS, NULL, 0,
CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "rawpartition",
SYSCTL_DESCR("Raw partition of a disk"),
NULL, RAW_PART, NULL, 0,
CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "timex", NULL,
sysctl_notavail, 0, NULL, 0,
CTL_KERN, KERN_TIMEX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "autonicetime",
SYSCTL_DESCR("CPU clock seconds before non-root "
"process priority is lowered"),
sysctl_kern_autonice, 0, &autonicetime, 0,
CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "autoniceval",
SYSCTL_DESCR("Automatic reniced non-root process "
"priority"),
sysctl_kern_autonice, 0, &autoniceval, 0,
CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "rtc_offset",
SYSCTL_DESCR("Offset of real time clock from UTC in "
"minutes"),
sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "root_device",
SYSCTL_DESCR("Name of the root device"),
sysctl_root_device, 0, NULL, 0,
CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "msgbufsize",
SYSCTL_DESCR("Size of the kernel message buffer"),
sysctl_msgbuf, 0, NULL, 0,
CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "fsync",
SYSCTL_DESCR("Whether the POSIX 1003.1b File "
"Synchronization Option is available on "
"this system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_FSYNC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "sysvmsg",
SYSCTL_DESCR("System V style message support available"),
NULL,
#ifdef SYSVMSG
1,
#else /* SYSVMSG */
0,
#endif /* SYSVMSG */
NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "sysvsem",
SYSCTL_DESCR("System V style semaphore support "
"available"), NULL,
#ifdef SYSVSEM
1,
#else /* SYSVSEM */
0,
#endif /* SYSVSEM */
NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "sysvshm",
SYSCTL_DESCR("System V style shared memory support "
"available"), NULL,
#ifdef SYSVSHM
1,
#else /* SYSVSHM */
0,
#endif /* SYSVSHM */
NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "synchronized_io",
SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
"I/O Option is available on this system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "iov_max",
SYSCTL_DESCR("Maximum number of iovec structures per "
"process"),
NULL, IOV_MAX, NULL, 0,
CTL_KERN, KERN_IOV_MAX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "mapped_files",
SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
"Files Option is available on this system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "memlock",
SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
"Locking Option is available on this "
"system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_MEMLOCK, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "memlock_range",
SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
"Locking Option is available on this "
"system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "memory_protection",
SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
"Protection Option is available on this "
"system"),
NULL, 1, NULL, 0,
CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "login_name_max",
SYSCTL_DESCR("Maximum login name length"),
NULL, LOGIN_NAME_MAX, NULL, 0,
CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRING, "defcorename",
SYSCTL_DESCR("Default core file name"),
sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "logsigexit",
SYSCTL_DESCR("Log process exit when caused by signals"),
NULL, 0, &kern_logsigexit, 0,
CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "fscale",
SYSCTL_DESCR("Kernel fixed-point scale factor"),
NULL, FSCALE, NULL, 0,
CTL_KERN, KERN_FSCALE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "ccpu",
SYSCTL_DESCR("Scheduler exponential decay value"),
NULL, 0, &ccpu, 0,
CTL_KERN, KERN_CCPU, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "cp_time",
SYSCTL_DESCR("Clock ticks spent in different CPU states"),
sysctl_kern_cptime, 0, NULL, 0,
CTL_KERN, KERN_CP_TIME, CTL_EOL);
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "sysvipc_info",
SYSCTL_DESCR("System V style IPC information"),
sysctl_kern_sysvipc, 0, NULL, 0,
CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
#endif /* SYSVMSG || SYSVSEM || SYSVSHM */
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "msgbuf",
SYSCTL_DESCR("Kernel message buffer"),
sysctl_msgbuf, 0, NULL, 0,
CTL_KERN, KERN_MSGBUF, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "consdev",
SYSCTL_DESCR("Console device"),
sysctl_consdev, 0, NULL, sizeof(dev_t),
CTL_KERN, KERN_CONSDEV, CTL_EOL);
#if NPTY > 0
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "maxptys",
SYSCTL_DESCR("Maximum number of pseudo-ttys"),
sysctl_kern_maxptys, 0, NULL, 0,
CTL_KERN, KERN_MAXPTYS, CTL_EOL);
#endif /* NPTY > 0 */
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "maxphys",
SYSCTL_DESCR("Maximum raw I/O transfer size"),
NULL, MAXPHYS, NULL, 0,
CTL_KERN, KERN_MAXPHYS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "sbmax",
SYSCTL_DESCR("Maximum socket buffer size"),
sysctl_kern_sbmax, 0, NULL, 0,
CTL_KERN, KERN_SBMAX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "monotonic_clock",
SYSCTL_DESCR("Implementation version of the POSIX "
"1003.1b Monotonic Clock Option"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "urandom",
SYSCTL_DESCR("Random integer value"),
sysctl_kern_urnd, 0, NULL, 0,
CTL_KERN, KERN_URND, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "labelsector",
SYSCTL_DESCR("Sector number containing the disklabel"),
NULL, LABELSECTOR, NULL, 0,
CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "labeloffset",
SYSCTL_DESCR("Offset of the disklabel within the "
"sector"),
NULL, LABELOFFSET, NULL, 0,
CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "lwp",
SYSCTL_DESCR("System-wide LWP information"),
sysctl_kern_lwp, 0, NULL, 0,
CTL_KERN, KERN_LWP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "forkfsleep",
SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
"to process limits"),
sysctl_kern_forkfsleep, 0, NULL, 0,
CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_threads",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Threads option to which the system "
"attempts to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_THREADS, NULL, 0,
CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_semaphores",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Semaphores option to which the system "
"attempts to conform"), NULL,
#ifdef P1003_1B_SEMAPHORE
200112,
#else /* P1003_1B_SEMAPHORE */
0,
#endif /* P1003_1B_SEMAPHORE */
NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_barriers",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Barriers option to which the system "
"attempts to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_BARRIERS, NULL, 0,
CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_timers",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Timers option to which the system "
"attempts to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_TIMERS, NULL, 0,
CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_spin_locks",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
"Locks option to which the system attempts "
"to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_SPIN_LOCKS, NULL, 0,
CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "posix_reader_writer_locks",
SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
"Read-Write Locks option to which the "
"system attempts to conform"),
/* XXX _POSIX_VERSION */
NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "dump_on_panic",
SYSCTL_DESCR("Perform a crash dump on system panic"),
NULL, 0, &dumponpanic, 0,
CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
#ifdef DIAGNOSTIC
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "panic_now",
SYSCTL_DESCR("Trigger a panic"),
sysctl_kern_trigger_panic, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "root_partition",
SYSCTL_DESCR("Root partition on the root device"),
sysctl_kern_root_partition, 0, NULL, 0,
CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "drivers",
SYSCTL_DESCR("List of all drivers with block and "
"character device numbers"),
sysctl_kern_drivers, 0, NULL, 0,
CTL_KERN, KERN_DRIVERS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "file2",
SYSCTL_DESCR("System open file table"),
sysctl_kern_file2, 0, NULL, 0,
CTL_KERN, KERN_FILE2, CTL_EOL);
#ifdef VERIFIED_EXEC
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "veriexec",
SYSCTL_DESCR("Verified Exec"),
NULL, 0, NULL, 0,
CTL_KERN, KERN_VERIEXEC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "verbose",
SYSCTL_DESCR("Verified Exec verbose level"),
NULL, 0, &veriexec_verbose, 0,
CTL_KERN, KERN_VERIEXEC, VERIEXEC_VERBOSE,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "strict",
SYSCTL_DESCR("Verified Exec strict level"),
sysctl_kern_veriexec, 0, NULL, 0,
CTL_KERN, KERN_VERIEXEC, VERIEXEC_STRICT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "algorithms",
SYSCTL_DESCR("Verified Exec supported hashing "
"algorithms"),
sysctl_kern_veriexec, 0, NULL, 0,
CTL_KERN, KERN_VERIEXEC, VERIEXEC_ALGORITHMS, CTL_EOL);
sysctl_createv(clog, 0, NULL, &veriexec_count_node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "count",
SYSCTL_DESCR("Number of fingerprints on device(s)"),
NULL, 0, NULL, 0,
CTL_KERN, KERN_VERIEXEC, VERIEXEC_COUNT, CTL_EOL);
#endif /* VERIFIED_EXEC */
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "cp_id",
SYSCTL_DESCR("Mapping of CPU number to CPU id"),
sysctl_kern_cpid, 0, NULL, 0,
CTL_KERN, KERN_CP_ID, CTL_EOL);
}
SYSCTL_SETUP(sysctl_kern_proc_setup,
"sysctl kern.proc/proc2/proc_args subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc",
SYSCTL_DESCR("System-wide process information"),
sysctl_doeproc, 0, NULL, 0,
CTL_KERN, KERN_PROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc2",
SYSCTL_DESCR("Machine-independent process information"),
sysctl_doeproc, 0, NULL, 0,
CTL_KERN, KERN_PROC2, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc_args",
SYSCTL_DESCR("Process argument information"),
sysctl_kern_proc_args, 0, NULL, 0,
CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
/*
"nodes" under these:
KERN_PROC_ALL
KERN_PROC_PID pid
KERN_PROC_PGRP pgrp
KERN_PROC_SESSION sess
KERN_PROC_TTY tty
KERN_PROC_UID uid
KERN_PROC_RUID uid
KERN_PROC_GID gid
KERN_PROC_RGID gid
all in all, probably not worth the effort...
*/
}
SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
{
u_int u;
u_quad_t q;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0,
CTL_HW, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "machine",
SYSCTL_DESCR("Machine class"),
NULL, 0, machine, 0,
CTL_HW, HW_MACHINE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "model",
SYSCTL_DESCR("Machine model"),
NULL, 0, cpu_model, 0,
CTL_HW, HW_MODEL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "ncpu",
SYSCTL_DESCR("Number of active CPUs"),
sysctl_hw_ncpu, 0, NULL, 0,
CTL_HW, HW_NCPU, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "byteorder",
SYSCTL_DESCR("System byte order"),
NULL, BYTE_ORDER, NULL, 0,
CTL_HW, HW_BYTEORDER, CTL_EOL);
u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
UINT_MAX : physmem * PAGE_SIZE;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "physmem",
SYSCTL_DESCR("Bytes of physical memory"),
NULL, u, NULL, 0,
CTL_HW, HW_PHYSMEM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "usermem",
SYSCTL_DESCR("Bytes of non-kernel memory"),
sysctl_hw_usermem, 0, NULL, 0,
CTL_HW, HW_USERMEM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "pagesize",
SYSCTL_DESCR("Software page size"),
NULL, PAGE_SIZE, NULL, 0,
CTL_HW, HW_PAGESIZE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "disknames",
SYSCTL_DESCR("List of disk devices present"),
sysctl_hw_disknames, 0, NULL, 0,
CTL_HW, HW_DISKNAMES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "diskstats",
SYSCTL_DESCR("Statistics on disk operation"),
sysctl_hw_diskstats, 0, NULL, 0,
CTL_HW, HW_DISKSTATS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "machine_arch",
SYSCTL_DESCR("Machine CPU class"),
NULL, 0, machine_arch, 0,
CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "alignbytes",
SYSCTL_DESCR("Alignment constraint for all possible "
"data types"),
NULL, ALIGNBYTES, NULL, 0,
CTL_HW, HW_ALIGNBYTES, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
CTLTYPE_STRING, "cnmagic",
SYSCTL_DESCR("Console magic key sequence"),
sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
CTL_HW, HW_CNMAGIC, CTL_EOL);
q = (u_quad_t)physmem * PAGE_SIZE;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_QUAD, "physmem64",
SYSCTL_DESCR("Bytes of physical memory"),
NULL, q, NULL, 0,
CTL_HW, HW_PHYSMEM64, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_QUAD, "usermem64",
SYSCTL_DESCR("Bytes of non-kernel memory"),
sysctl_hw_usermem, 0, NULL, 0,
CTL_HW, HW_USERMEM64, CTL_EOL);
}
#ifdef DEBUG
/*
* Debugging related system variables.
*/
struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
struct ctldebug debug5, debug6, debug7, debug8, debug9;
struct ctldebug debug10, debug11, debug12, debug13, debug14;
struct ctldebug debug15, debug16, debug17, debug18, debug19;
static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
&debug0, &debug1, &debug2, &debug3, &debug4,
&debug5, &debug6, &debug7, &debug8, &debug9,
&debug10, &debug11, &debug12, &debug13, &debug14,
&debug15, &debug16, &debug17, &debug18, &debug19,
};
/*
* this setup routine is a replacement for debug_sysctl()
*
* note that it creates several nodes per defined debug variable
*/
SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
{
struct ctldebug *cdp;
char nodename[20];
int i;
/*
* two ways here:
*
* the "old" way (debug.name -> value) which was emulated by
* the sysctl(8) binary
*
* the new way, which the sysctl(8) binary was actually using
node debug
node debug.0
string debug.0.name
int debug.0.value
int debug.name
*/
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "debug", NULL,
NULL, 0, NULL, 0,
CTL_DEBUG, CTL_EOL);
for (i = 0; i < CTL_DEBUG_MAXID; i++) {
cdp = debugvars[i];
if (cdp->debugname == NULL || cdp->debugvar == NULL)
continue;
snprintf(nodename, sizeof(nodename), "debug%d", i);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
CTLTYPE_NODE, nodename, NULL,
NULL, 0, NULL, 0,
CTL_DEBUG, i, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
CTLTYPE_STRING, "name", NULL,
/*XXXUNCONST*/
NULL, 0, __UNCONST(cdp->debugname), 0,
CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
CTLTYPE_INT, "value", NULL,
NULL, 0, cdp->debugvar, 0,
CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, cdp->debugname, NULL,
NULL, 0, cdp->debugvar, 0,
CTL_DEBUG, CTL_CREATE, CTL_EOL);
}
}
#endif /* DEBUG */
SYSCTL_SETUP(sysctl_security_setup, "sysctl security subtree setup")
{
const struct sysctlnode *rnode = NULL;
sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "security", NULL,
NULL, 0, NULL, 0,
CTL_SECURITY, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "curtain",
SYSCTL_DESCR("Curtain information about objects"
" to users not owning them."),
NULL, 0, &security_curtain, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "setid_core",
SYSCTL_DESCR("Set-id processes' coredump settings."),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "dump",
SYSCTL_DESCR("Allow set-id processes to dump core."),
sysctl_security_setidcore, 0, &security_setidcore_dump,
sizeof(security_setidcore_dump),
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_STRING, "path",
SYSCTL_DESCR("Path pattern for set-id coredumps."),
sysctl_security_setidcorename, 0,
&security_setidcore_path,
sizeof(security_setidcore_path),
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "owner",
SYSCTL_DESCR("Owner id for set-id processes' cores."),
sysctl_security_setidcore, 0, &security_setidcore_owner,
0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "group",
SYSCTL_DESCR("Group id for set-id processes' cores."),
sysctl_security_setidcore, 0, &security_setidcore_group,
0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "mode",
SYSCTL_DESCR("Mode for set-id processes' cores."),
sysctl_security_setidcore, 0, &security_setidcore_mode,
0,
CTL_CREATE, CTL_EOL);
}
/*
* ********************************************************************
* section 2: private node-specific helper routines.
* ********************************************************************
*/
#ifdef DIAGNOSTIC
static int
sysctl_kern_trigger_panic(SYSCTLFN_ARGS)
{
int newtrig, error;
struct sysctlnode node;
newtrig = 0;
node = *rnode;
node.sysctl_data = &newtrig;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (newtrig != 0)
panic("Panic triggered");
return (error);
}
#endif
/*
* sysctl helper routine for kern.maxvnodes. drain vnodes if
* new value is lower than desiredvnodes and then calls reinit
* routines that needs to adjust to the new value.
*/
static int
sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
{
int error, new_vnodes, old_vnodes;
struct sysctlnode node;
new_vnodes = desiredvnodes;
node = *rnode;
node.sysctl_data = &new_vnodes;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
old_vnodes = desiredvnodes;
desiredvnodes = new_vnodes;
if (new_vnodes < old_vnodes) {
error = vfs_drainvnodes(new_vnodes, l);
if (error) {
desiredvnodes = old_vnodes;
return (error);
}
}
vfs_reinit();
nchreinit();
return (0);
}
/*
* sysctl helper routine for rtc_offset - set time after changes
*/
static int
sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
{
struct timespec ts, delta;
int error, new_rtc_offset;
struct sysctlnode node;
new_rtc_offset = rtc_offset;
node = *rnode;
node.sysctl_data = &new_rtc_offset;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (securelevel > 0)
return (EPERM);
if (rtc_offset == new_rtc_offset)
return (0);
/* if we change the offset, adjust the time */
nanotime(&ts);
delta.tv_sec = 60 * (new_rtc_offset - rtc_offset);
delta.tv_nsec = 0;
timespecadd(&ts, &delta, &ts);
rtc_offset = new_rtc_offset;
settime(l->l_proc, &ts);
return (0);
}
/*
* sysctl helper routine for kern.maxproc. ensures that the new
* values are not too low or too high.
*/
static int
sysctl_kern_maxproc(SYSCTLFN_ARGS)
{
int error, nmaxproc;
struct sysctlnode node;
nmaxproc = maxproc;
node = *rnode;
node.sysctl_data = &nmaxproc;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (nmaxproc < 0 || nmaxproc >= PID_MAX)
return (EINVAL);
#ifdef __HAVE_CPU_MAXPROC
if (nmaxproc > cpu_maxproc())
return (EINVAL);
#endif
maxproc = nmaxproc;
return (0);
}
/*
* sysctl helper routine for kern.securelevel. ensures that the value
* only rises unless the caller has pid 1 (assumed to be init).
*/
static int
sysctl_kern_securelevel(SYSCTLFN_ARGS)
{
int newsecurelevel, error;
struct sysctlnode node;
newsecurelevel = securelevel;
node = *rnode;
node.sysctl_data = &newsecurelevel;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (newsecurelevel < securelevel && l && l->l_proc->p_pid != 1)
return (EPERM);
securelevel = newsecurelevel;
return (error);
}
/*
* sysctl helper function for kern.hostid. the hostid is a long, but
* we export it as an int, so we need to give it a little help.
*/
static int
sysctl_kern_hostid(SYSCTLFN_ARGS)
{
int error, inthostid;
struct sysctlnode node;
inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
node = *rnode;
node.sysctl_data = &inthostid;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
hostid = (unsigned)inthostid;
return (0);
}
/*
* sysctl helper function for kern.hostname and kern.domainnname.
* resets the relevant recorded length when the underlying name is
* changed.
*/
static int
sysctl_setlen(SYSCTLFN_ARGS)
{
int error;
error = sysctl_lookup(SYSCTLFN_CALL(rnode));
if (error || newp == NULL)
return (error);
switch (rnode->sysctl_num) {
case KERN_HOSTNAME:
hostnamelen = strlen((const char*)rnode->sysctl_data);
break;
case KERN_DOMAINNAME:
domainnamelen = strlen((const char*)rnode->sysctl_data);
break;
}
return (0);
}
/*
* sysctl helper routine for kern.clockrate. assembles a struct on
* the fly to be returned to the caller.
*/
static int
sysctl_kern_clockrate(SYSCTLFN_ARGS)
{
struct clockinfo clkinfo;
struct sysctlnode node;
clkinfo.tick = tick;
clkinfo.tickadj = tickadj;
clkinfo.hz = hz;
clkinfo.profhz = profhz;
clkinfo.stathz = stathz ? stathz : hz;
node = *rnode;
node.sysctl_data = &clkinfo;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* sysctl helper routine for kern.file pseudo-subtree.
*/
static int
sysctl_kern_file(SYSCTLFN_ARGS)
{
int error;
size_t buflen;
struct file *fp;
char *start, *where;
start = where = oldp;
buflen = *oldlenp;
if (where == NULL) {
/*
* overestimate by 10 files
*/
*oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
return (0);
}
/*
* first copyout filehead
*/
if (buflen < sizeof(filehead)) {
*oldlenp = 0;
return (0);
}
error = copyout(&filehead, where, sizeof(filehead));
if (error)
return (error);
buflen -= sizeof(filehead);
where += sizeof(filehead);
/*
* followed by an array of file structures
*/
LIST_FOREACH(fp, &filehead, f_list) {
if (CURTAIN(l->l_proc->p_ucred->cr_uid, fp->f_cred->cr_uid))
continue;
if (buflen < sizeof(struct file)) {
*oldlenp = where - start;
return (ENOMEM);
}
error = copyout(fp, where, sizeof(struct file));
if (error)
return (error);
buflen -= sizeof(struct file);
where += sizeof(struct file);
}
*oldlenp = where - start;
return (0);
}
/*
* sysctl helper routine for kern.autonicetime and kern.autoniceval.
* asserts that the assigned value is in the correct range.
*/
static int
sysctl_kern_autonice(SYSCTLFN_ARGS)
{
int error, t = 0;
struct sysctlnode node;
node = *rnode;
t = *(int*)node.sysctl_data;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
switch (node.sysctl_num) {
case KERN_AUTONICETIME:
if (t >= 0)
autonicetime = t;
break;
case KERN_AUTONICEVAL:
if (t < PRIO_MIN)
t = PRIO_MIN;
else if (t > PRIO_MAX)
t = PRIO_MAX;
autoniceval = t;
break;
}
return (0);
}
/*
* sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
* former it merely checks the message buffer is set up. for the latter,
* it also copies out the data if necessary.
*/
static int
sysctl_msgbuf(SYSCTLFN_ARGS)
{
char *where = oldp;
size_t len, maxlen;
long beg, end;
int error;
if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
msgbufenabled = 0;
return (ENXIO);
}
switch (rnode->sysctl_num) {
case KERN_MSGBUFSIZE: {
struct sysctlnode node = *rnode;
int msg_bufs = (int)msgbufp->msg_bufs;
node.sysctl_data = &msg_bufs;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
case KERN_MSGBUF:
break;
default:
return (EOPNOTSUPP);
}
if (newp != NULL)
return (EPERM);
if (oldp == NULL) {
/* always return full buffer size */
*oldlenp = msgbufp->msg_bufs;
return (0);
}
error = 0;
maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
/*
* First, copy from the write pointer to the end of
* message buffer.
*/
beg = msgbufp->msg_bufx;
end = msgbufp->msg_bufs;
while (maxlen > 0) {
len = MIN(end - beg, maxlen);
if (len == 0)
break;
error = copyout(&msgbufp->msg_bufc[beg], where, len);
if (error)
break;
where += len;
maxlen -= len;
/*
* ... then, copy from the beginning of message buffer to
* the write pointer.
*/
beg = 0;
end = msgbufp->msg_bufx;
}
return (error);
}
/*
* sysctl helper routine for kern.defcorename. in the case of a new
* string being assigned, check that it's not a zero-length string.
* (XXX the check in -current doesn't work, but do we really care?)
*/
static int
sysctl_kern_defcorename(SYSCTLFN_ARGS)
{
int error;
char *newcorename;
struct sysctlnode node;
newcorename = PNBUF_GET();
node = *rnode;
node.sysctl_data = &newcorename[0];
memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL) {
goto done;
}
/*
* when sysctl_lookup() deals with a string, it's guaranteed
* to come back nul terminated. so there. :)
*/
if (strlen(newcorename) == 0) {
error = EINVAL;
} else {
memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
error = 0;
}
done:
PNBUF_PUT(newcorename);
return error;
}
/*
* sysctl helper routine for kern.cp_time node. adds up cpu time
* across all cpus.
*/
static int
sysctl_kern_cptime(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
#ifndef MULTIPROCESSOR
if (namelen == 1) {
if (name[0] != 0)
return (ENOENT);
/*
* you're allowed to ask for the zero'th processor
*/
name++;
namelen--;
}
node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
#else /* MULTIPROCESSOR */
uint64_t *cp_time = NULL;
int error, n = sysctl_ncpus(), i;
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
/*
* if you specifically pass a buffer that is the size of the
* sum, or if you are probing for the size, you get the "sum"
* of cp_time (and the size thereof) across all processors.
*
* alternately, you can pass an additional mib number and get
* cp_time for that particular processor.
*/
switch (namelen) {
case 0:
if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) {
node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
n = -1; /* SUM */
}
else {
node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES;
n = -2; /* ALL */
}
break;
case 1:
if (name[0] < 0 || name[0] >= n)
return (ENOENT); /* ENOSUCHPROCESSOR */
node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
n = name[0];
/*
* adjust these so that sysctl_lookup() will be happy
*/
name++;
namelen--;
break;
default:
return (EINVAL);
}
cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
if (cp_time == NULL)
return (ENOMEM);
node.sysctl_data = cp_time;
memset(cp_time, 0, node.sysctl_size);
for (CPU_INFO_FOREACH(cii, ci)) {
if (n <= 0)
for (i = 0; i < CPUSTATES; i++)
cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
/*
* if a specific processor was requested and we just
* did it, we're done here
*/
if (n == 0)
break;
/*
* if doing "all", skip to next cp_time set for next processor
*/
if (n == -2)
cp_time += CPUSTATES;
/*
* if we're doing a specific processor, we're one
* processor closer
*/
if (n > 0)
n--;
}
error = sysctl_lookup(SYSCTLFN_CALL(&node));
free(node.sysctl_data, M_TEMP);
return (error);
#endif /* MULTIPROCESSOR */
}
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
/*
* sysctl helper routine for kern.sysvipc_info subtree.
*/
#define FILL_PERM(src, dst) do { \
(dst)._key = (src)._key; \
(dst).uid = (src).uid; \
(dst).gid = (src).gid; \
(dst).cuid = (src).cuid; \
(dst).cgid = (src).cgid; \
(dst).mode = (src).mode; \
(dst)._seq = (src)._seq; \
} while (/*CONSTCOND*/ 0);
#define FILL_MSG(src, dst) do { \
FILL_PERM((src).msg_perm, (dst).msg_perm); \
(dst).msg_qnum = (src).msg_qnum; \
(dst).msg_qbytes = (src).msg_qbytes; \
(dst)._msg_cbytes = (src)._msg_cbytes; \
(dst).msg_lspid = (src).msg_lspid; \
(dst).msg_lrpid = (src).msg_lrpid; \
(dst).msg_stime = (src).msg_stime; \
(dst).msg_rtime = (src).msg_rtime; \
(dst).msg_ctime = (src).msg_ctime; \
} while (/*CONSTCOND*/ 0)
#define FILL_SEM(src, dst) do { \
FILL_PERM((src).sem_perm, (dst).sem_perm); \
(dst).sem_nsems = (src).sem_nsems; \
(dst).sem_otime = (src).sem_otime; \
(dst).sem_ctime = (src).sem_ctime; \
} while (/*CONSTCOND*/ 0)
#define FILL_SHM(src, dst) do { \
FILL_PERM((src).shm_perm, (dst).shm_perm); \
(dst).shm_segsz = (src).shm_segsz; \
(dst).shm_lpid = (src).shm_lpid; \
(dst).shm_cpid = (src).shm_cpid; \
(dst).shm_atime = (src).shm_atime; \
(dst).shm_dtime = (src).shm_dtime; \
(dst).shm_ctime = (src).shm_ctime; \
(dst).shm_nattch = (src).shm_nattch; \
} while (/*CONSTCOND*/ 0)
static int
sysctl_kern_sysvipc(SYSCTLFN_ARGS)
{
void *where = oldp;
size_t *sizep = oldlenp;
#ifdef SYSVMSG
struct msg_sysctl_info *msgsi = NULL;
#endif
#ifdef SYSVSEM
struct sem_sysctl_info *semsi = NULL;
#endif
#ifdef SYSVSHM
struct shm_sysctl_info *shmsi = NULL;
#endif
size_t infosize, dssize, tsize, buflen;
void *bf = NULL;
char *start;
int32_t nds;
int i, error, ret;
if (namelen != 1)
return (EINVAL);
start = where;
buflen = *sizep;
switch (*name) {
case KERN_SYSVIPC_MSG_INFO:
#ifdef SYSVMSG
infosize = sizeof(msgsi->msginfo);
nds = msginfo.msgmni;
dssize = sizeof(msgsi->msgids[0]);
break;
#else
return (EINVAL);
#endif
case KERN_SYSVIPC_SEM_INFO:
#ifdef SYSVSEM
infosize = sizeof(semsi->seminfo);
nds = seminfo.semmni;
dssize = sizeof(semsi->semids[0]);
break;
#else
return (EINVAL);
#endif
case KERN_SYSVIPC_SHM_INFO:
#ifdef SYSVSHM
infosize = sizeof(shmsi->shminfo);
nds = shminfo.shmmni;
dssize = sizeof(shmsi->shmids[0]);
break;
#else
return (EINVAL);
#endif
default:
return (EINVAL);
}
/*
* Round infosize to 64 bit boundary if requesting more than just
* the info structure or getting the total data size.
*/
if (where == NULL || *sizep > infosize)
infosize = ((infosize + 7) / 8) * 8;
tsize = infosize + nds * dssize;
/* Return just the total size required. */
if (where == NULL) {
*sizep = tsize;
return (0);
}
/* Not enough room for even the info struct. */
if (buflen < infosize) {
*sizep = 0;
return (ENOMEM);
}
bf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
memset(bf, 0, min(tsize, buflen));
switch (*name) {
#ifdef SYSVMSG
case KERN_SYSVIPC_MSG_INFO:
msgsi = (struct msg_sysctl_info *)bf;
msgsi->msginfo = msginfo;
break;
#endif
#ifdef SYSVSEM
case KERN_SYSVIPC_SEM_INFO:
semsi = (struct sem_sysctl_info *)bf;
semsi->seminfo = seminfo;
break;
#endif
#ifdef SYSVSHM
case KERN_SYSVIPC_SHM_INFO:
shmsi = (struct shm_sysctl_info *)bf;
shmsi->shminfo = shminfo;
break;
#endif
}
buflen -= infosize;
ret = 0;
if (buflen > 0) {
/* Fill in the IPC data structures. */
for (i = 0; i < nds; i++) {
if (buflen < dssize) {
ret = ENOMEM;
break;
}
switch (*name) {
#ifdef SYSVMSG
case KERN_SYSVIPC_MSG_INFO:
FILL_MSG(msqids[i], msgsi->msgids[i]);
break;
#endif
#ifdef SYSVSEM
case KERN_SYSVIPC_SEM_INFO:
FILL_SEM(sema[i], semsi->semids[i]);
break;
#endif
#ifdef SYSVSHM
case KERN_SYSVIPC_SHM_INFO:
FILL_SHM(shmsegs[i], shmsi->shmids[i]);
break;
#endif
}
buflen -= dssize;
}
}
*sizep -= buflen;
error = copyout(bf, start, *sizep);
/* If copyout succeeded, use return code set earlier. */
if (error == 0)
error = ret;
if (bf)
free(bf, M_TEMP);
return (error);
}
#undef FILL_PERM
#undef FILL_MSG
#undef FILL_SEM
#undef FILL_SHM
#endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
#if NPTY > 0
/*
* sysctl helper routine for kern.maxptys. ensures that any new value
* is acceptable to the pty subsystem.
*/
static int
sysctl_kern_maxptys(SYSCTLFN_ARGS)
{
int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
int error, xmax;
struct sysctlnode node;
/* get current value of maxptys */
xmax = pty_maxptys(0, 0);
node = *rnode;
node.sysctl_data = &xmax;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (xmax != pty_maxptys(xmax, 1))
return (EINVAL);
return (0);
}
#endif /* NPTY > 0 */
/*
* sysctl helper routine for kern.sbmax. basically just ensures that
* any new value is not too small.
*/
static int
sysctl_kern_sbmax(SYSCTLFN_ARGS)
{
int error, new_sbmax;
struct sysctlnode node;
new_sbmax = sb_max;
node = *rnode;
node.sysctl_data = &new_sbmax;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
error = sb_max_set(new_sbmax);
return (error);
}
/*
* sysctl helper routine for kern.urandom node. picks a random number
* for you.
*/
static int
sysctl_kern_urnd(SYSCTLFN_ARGS)
{
#if NRND > 0
int v;
if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
struct sysctlnode node = *rnode;
node.sysctl_data = &v;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
else
return (EIO); /*XXX*/
#else
return (EOPNOTSUPP);
#endif
}
/*
* sysctl helper routine to do kern.lwp.* work.
*/
static int
sysctl_kern_lwp(SYSCTLFN_ARGS)
{
struct kinfo_lwp klwp;
struct proc *p;
struct lwp *l2;
char *where, *dp;
int pid, elem_size, elem_count;
int buflen, needed, error;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
dp = where = oldp;
buflen = where != NULL ? *oldlenp : 0;
error = needed = 0;
if (newp != NULL || namelen != 3)
return (EINVAL);
pid = name[0];
elem_size = name[1];
elem_count = name[2];
p = pfind(pid);
if (p == NULL)
return (ESRCH);
LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
if (buflen >= elem_size && elem_count > 0) {
fill_lwp(l2, &klwp);
/*
* Copy out elem_size, but not larger than
* the size of a struct kinfo_proc2.
*/
error = copyout(&klwp, dp,
min(sizeof(klwp), elem_size));
if (error)
goto cleanup;
dp += elem_size;
buflen -= elem_size;
elem_count--;
}
needed += elem_size;
}
if (where != NULL) {
*oldlenp = dp - where;
if (needed > *oldlenp)
return (ENOMEM);
} else {
needed += KERN_LWPSLOP;
*oldlenp = needed;
}
return (0);
cleanup:
return (error);
}
/*
* sysctl helper routine for kern.forkfsleep node. ensures that the
* given value is not too large or two small, and is at least one
* timer tick if not zero.
*/
static int
sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
{
/* userland sees value in ms, internally is in ticks */
extern int forkfsleep; /* defined in kern/kern_fork.c */
int error, timo, lsleep;
struct sysctlnode node;
lsleep = forkfsleep * 1000 / hz;
node = *rnode;
node.sysctl_data = &lsleep;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
/* refuse negative values, and overly 'long time' */
if (lsleep < 0 || lsleep > MAXSLP * 1000)
return (EINVAL);
timo = mstohz(lsleep);
/* if the interval is >0 ms && <1 tick, use 1 tick */
if (lsleep != 0 && timo == 0)
forkfsleep = 1;
else
forkfsleep = timo;
return (0);
}
/*
* sysctl helper routine for kern.root_partition
*/
static int
sysctl_kern_root_partition(SYSCTLFN_ARGS)
{
int rootpart = DISKPART(rootdev);
struct sysctlnode node = *rnode;
node.sysctl_data = &rootpart;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* sysctl helper function for kern.drivers
*/
static int
sysctl_kern_drivers(SYSCTLFN_ARGS)
{
int error;
size_t buflen;
struct kinfo_drivers kd;
char *start, *where;
const char *dname;
int i;
extern struct devsw_conv *devsw_conv;
extern int max_devsw_convs;
if (newp != NULL || namelen != 0)
return (EINVAL);
start = where = oldp;
buflen = *oldlenp;
if (where == NULL) {
*oldlenp = max_devsw_convs * sizeof kd;
return 0;
}
/*
* An array of kinfo_drivers structures
*/
error = 0;
for (i = 0; i < max_devsw_convs; i++) {
dname = devsw_conv[i].d_name;
if (dname == NULL)
continue;
if (buflen < sizeof kd) {
error = ENOMEM;
break;
}
memset(&kd, 0, sizeof(kd));
kd.d_bmajor = devsw_conv[i].d_bmajor;
kd.d_cmajor = devsw_conv[i].d_cmajor;
strlcpy(kd.d_name, dname, sizeof kd.d_name);
error = copyout(&kd, where, sizeof kd);
if (error != 0)
break;
buflen -= sizeof kd;
where += sizeof kd;
}
*oldlenp = where - start;
return error;
}
/*
* sysctl helper function for kern.file2
*/
static int
sysctl_kern_file2(SYSCTLFN_ARGS)
{
struct proc *p;
struct file *fp;
struct filedesc *fd;
struct kinfo_file kf;
char *dp;
u_int i, op;
size_t len, needed, elem_size, out_size;
int error, arg, elem_count;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
if (namelen != 4)
return (EINVAL);
error = 0;
dp = oldp;
len = (oldp != NULL) ? *oldlenp : 0;
op = name[0];
arg = name[1];
elem_size = name[2];
elem_count = name[3];
out_size = MIN(sizeof(kf), elem_size);
needed = 0;
if (elem_size < 1 || elem_count < 0)
return (EINVAL);
switch (op) {
case KERN_FILE_BYFILE:
/*
* doesn't use arg so it must be zero
*/
if (arg != 0)
return (EINVAL);
LIST_FOREACH(fp, &filehead, f_list) {
if (CURTAIN(l->l_proc->p_ucred->cr_uid,
fp->f_cred->cr_uid))
continue;
if (len >= elem_size && elem_count > 0) {
fill_file(&kf, fp, NULL, 0);
error = copyout(&kf, dp, out_size);
if (error)
break;
dp += elem_size;
len -= elem_size;
}
if (elem_count > 0) {
needed += elem_size;
if (elem_count != INT_MAX)
elem_count--;
}
}
break;
case KERN_FILE_BYPID:
if (arg < -1)
/* -1 means all processes */
return (EINVAL);
proclist_lock_read();
PROCLIST_FOREACH(p, &allproc) {
if (p->p_stat == SIDL)
/* skip embryonic processes */
continue;
if (CURTAIN(l->l_proc->p_ucred->cr_uid,
p->p_ucred->cr_uid))
continue;
if (arg > 0 && p->p_pid != arg)
/* pick only the one we want */
/* XXX want 0 to mean "kernel files" */
continue;
fd = p->p_fd;
for (i = 0; i < fd->fd_nfiles; i++) {
fp = fd->fd_ofiles[i];
if (fp == NULL || !FILE_IS_USABLE(fp))
continue;
if (len >= elem_size && elem_count > 0) {
fill_file(&kf, fd->fd_ofiles[i],
p, i);
error = copyout(&kf, dp, out_size);
if (error)
break;
dp += elem_size;
len -= elem_size;
}
if (elem_count > 0) {
needed += elem_size;
if (elem_count != INT_MAX)
elem_count--;
}
}
}
proclist_unlock_read();
break;
default:
return (EINVAL);
}
if (oldp == NULL)
needed += KERN_FILESLOP * elem_size;
*oldlenp = needed;
return (error);
}
static void
fill_file(struct kinfo_file *kp, const struct file *fp, struct proc *p, int i)
{
memset(kp, 0, sizeof(*kp));
kp->ki_fileaddr = PTRTOUINT64(fp);
kp->ki_flag = fp->f_flag;
kp->ki_iflags = fp->f_iflags;
kp->ki_ftype = fp->f_type;
kp->ki_count = fp->f_count;
kp->ki_msgcount = fp->f_msgcount;
kp->ki_usecount = fp->f_usecount;
kp->ki_fucred = PTRTOUINT64(fp->f_cred);
kp->ki_fuid = fp->f_cred->cr_uid;
kp->ki_fgid = fp->f_cred->cr_gid;
kp->ki_fops = PTRTOUINT64(fp->f_ops);
kp->ki_foffset = fp->f_offset;
kp->ki_fdata = PTRTOUINT64(fp->f_data);
/* vnode information to glue this file to something */
if (fp->f_type == DTYPE_VNODE) {
struct vnode *vp = (struct vnode *)fp->f_data;
kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
kp->ki_vsize = vp->v_size;
kp->ki_vtype = vp->v_type;
kp->ki_vtag = vp->v_tag;
kp->ki_vdata = PTRTOUINT64(vp->v_data);
}
/* process information when retrieved via KERN_FILE_BYPID */
if (p) {
kp->ki_pid = p->p_pid;
kp->ki_fd = i;
kp->ki_ofileflags = p->p_fd->fd_ofileflags[i];
}
}
static int
sysctl_doeproc(SYSCTLFN_ARGS)
{
struct eproc eproc;
struct kinfo_proc2 kproc2;
struct kinfo_proc *dp;
struct proc *p;
const struct proclist_desc *pd;
char *where, *dp2;
int type, op, arg;
u_int elem_size, elem_count;
size_t buflen, needed;
int error;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
dp = oldp;
dp2 = where = oldp;
buflen = where != NULL ? *oldlenp : 0;
error = 0;
needed = 0;
type = rnode->sysctl_num;
if (type == KERN_PROC) {
if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
return (EINVAL);
op = name[0];
if (op != KERN_PROC_ALL)
arg = name[1];
else
arg = 0; /* Quell compiler warning */
elem_size = elem_count = 0; /* Ditto */
} else {
if (namelen != 4)
return (EINVAL);
op = name[0];
arg = name[1];
elem_size = name[2];
elem_count = name[3];
}
proclist_lock_read();
pd = proclists;
again:
PROCLIST_FOREACH(p, pd->pd_list) {
/*
* Skip embryonic processes.
*/
if (p->p_stat == SIDL)
continue;
if (CURTAIN(l->l_proc->p_ucred->cr_uid, p->p_ucred->cr_uid))
continue;
/*
* TODO - make more efficient (see notes below).
* do by session.
*/
switch (op) {
case KERN_PROC_PID:
/* could do this with just a lookup */
if (p->p_pid != (pid_t)arg)
continue;
break;
case KERN_PROC_PGRP:
/* could do this by traversing pgrp */
if (p->p_pgrp->pg_id != (pid_t)arg)
continue;
break;
case KERN_PROC_SESSION:
if (p->p_session->s_sid != (pid_t)arg)
continue;
break;
case KERN_PROC_TTY:
if (arg == (int) KERN_PROC_TTY_REVOKE) {
if ((p->p_flag & P_CONTROLT) == 0 ||
p->p_session->s_ttyp == NULL ||
p->p_session->s_ttyvp != NULL)
continue;
} else if ((p->p_flag & P_CONTROLT) == 0 ||
p->p_session->s_ttyp == NULL) {
if ((dev_t)arg != KERN_PROC_TTY_NODEV)
continue;
} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
continue;
break;
case KERN_PROC_UID:
if (p->p_ucred->cr_uid != (uid_t)arg)
continue;
break;
case KERN_PROC_RUID:
if (p->p_cred->p_ruid != (uid_t)arg)
continue;
break;
case KERN_PROC_GID:
if (p->p_ucred->cr_gid != (uid_t)arg)
continue;
break;
case KERN_PROC_RGID:
if (p->p_cred->p_rgid != (uid_t)arg)
continue;
break;
case KERN_PROC_ALL:
/* allow everything */
break;
default:
error = EINVAL;
goto cleanup;
}
if (type == KERN_PROC) {
if (buflen >= sizeof(struct kinfo_proc)) {
fill_eproc(p, &eproc);
error = copyout(p, &dp->kp_proc,
sizeof(struct proc));
if (error)
goto cleanup;
error = copyout(&eproc, &dp->kp_eproc,
sizeof(eproc));
if (error)
goto cleanup;
dp++;
buflen -= sizeof(struct kinfo_proc);
}
needed += sizeof(struct kinfo_proc);
} else { /* KERN_PROC2 */
if (buflen >= elem_size && elem_count > 0) {
fill_kproc2(p, &kproc2);
/*
* Copy out elem_size, but not larger than
* the size of a struct kinfo_proc2.
*/
error = copyout(&kproc2, dp2,
min(sizeof(kproc2), elem_size));
if (error)
goto cleanup;
dp2 += elem_size;
buflen -= elem_size;
elem_count--;
}
needed += elem_size;
}
}
pd++;
if (pd->pd_list != NULL)
goto again;
proclist_unlock_read();
if (where != NULL) {
if (type == KERN_PROC)
*oldlenp = (char *)dp - where;
else
*oldlenp = dp2 - where;
if (needed > *oldlenp)
return (ENOMEM);
} else {
needed += KERN_PROCSLOP;
*oldlenp = needed;
}
return (0);
cleanup:
proclist_unlock_read();
return (error);
}
/*
* sysctl helper routine for kern.proc_args pseudo-subtree.
*/
static int
sysctl_kern_proc_args(SYSCTLFN_ARGS)
{
struct ps_strings pss;
struct proc *p, *up = l->l_proc;
size_t len, upper_bound, xlen, i;
struct uio auio;
struct iovec aiov;
vaddr_t argv;
pid_t pid;
int nargv, type, error;
char *arg;
char *tmp;
struct vmspace *vmspace;
vaddr_t psstr_addr;
vaddr_t offsetn;
vaddr_t offsetv;
if (namelen == 1 && name[0] == CTL_QUERY)
return (sysctl_query(SYSCTLFN_CALL(rnode)));
if (newp != NULL || namelen != 2)
return (EINVAL);
pid = name[0];
type = name[1];
switch (type) {
case KERN_PROC_ARGV:
case KERN_PROC_NARGV:
case KERN_PROC_ENV:
case KERN_PROC_NENV:
/* ok */
break;
default:
return (EINVAL);
}
proclist_lock_read();
/* check pid */
if ((p = p_find(pid, PFIND_LOCKED)) == NULL) {
error = EINVAL;
goto out_locked;
}
if (CURTAIN(l->l_proc->p_ucred->cr_uid, p->p_ucred->cr_uid)) {
error = EPERM;
goto out_locked;
}
/* only root or same user change look at the environment */
if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
if (up->p_ucred->cr_uid != 0) {
if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
up->p_cred->p_ruid != p->p_cred->p_svuid) {
error = EPERM;
goto out_locked;
}
}
}
if (oldp == NULL) {
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
*oldlenp = sizeof (int);
else
*oldlenp = ARG_MAX; /* XXX XXX XXX */
error = 0;
goto out_locked;
}
/*
* Zombies don't have a stack, so we can't read their psstrings.
* System processes also don't have a user stack.
*/
if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0) {
error = EINVAL;
goto out_locked;
}
/*
* Lock the process down in memory.
*/
/* XXXCDC: how should locking work here? */
if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1)) {
error = EFAULT;
goto out_locked;
}
psstr_addr = (vaddr_t)p->p_psstr;
if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
offsetn = p->p_psnargv;
offsetv = p->p_psargv;
} else {
offsetn = p->p_psnenv;
offsetv = p->p_psenv;
}
vmspace = p->p_vmspace;
vmspace->vm_refcnt++; /* XXX */
proclist_unlock_read();
/*
* Allocate a temporary buffer to hold the arguments.
*/
arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
/*
* Read in the ps_strings structure.
*/
aiov.iov_base = &pss;
aiov.iov_len = sizeof(pss);
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = psstr_addr;
auio.uio_resid = sizeof(pss);
auio.uio_rw = UIO_READ;
UIO_SETUP_SYSSPACE(&auio);
error = uvm_io(&vmspace->vm_map, &auio);
if (error)
goto done;
memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
error = copyout(&nargv, oldp, sizeof(nargv));
*oldlenp = sizeof(nargv);
goto done;
}
/*
* Now read the address of the argument vector.
*/
switch (type) {
case KERN_PROC_ARGV:
/* XXX compat32 stuff here */
/* FALLTHROUGH */
case KERN_PROC_ENV:
memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
break;
default:
return (EINVAL);
}
auio.uio_offset = (off_t)(unsigned long)tmp;
aiov.iov_base = &argv;
aiov.iov_len = sizeof(argv);
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_resid = sizeof(argv);
auio.uio_rw = UIO_READ;
UIO_SETUP_SYSSPACE(&auio);
error = uvm_io(&vmspace->vm_map, &auio);
if (error)
goto done;
/*
* Now copy in the actual argument vector, one page at a time,
* since we don't know how long the vector is (though, we do
* know how many NUL-terminated strings are in the vector).
*/
len = 0;
upper_bound = *oldlenp;
for (; nargv != 0 && len < upper_bound; len += xlen) {
aiov.iov_base = arg;
aiov.iov_len = PAGE_SIZE;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = argv + len;
xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
auio.uio_resid = xlen;
auio.uio_rw = UIO_READ;
UIO_SETUP_SYSSPACE(&auio);
error = uvm_io(&vmspace->vm_map, &auio);
if (error)
goto done;
for (i = 0; i < xlen && nargv != 0; i++) {
if (arg[i] == '\0')
nargv--; /* one full string */
}
/*
* Make sure we don't copyout past the end of the user's
* buffer.
*/
if (len + i > upper_bound)
i = upper_bound - len;
error = copyout(arg, (char *)oldp + len, i);
if (error)
break;
if (nargv == 0) {
len += i;
break;
}
}
*oldlenp = len;
done:
uvmspace_free(vmspace);
free(arg, M_TEMP);
return error;
out_locked:
proclist_unlock_read();
return error;
}
/*
* Sysctl helper routine for Verified Exec.
*/
#ifdef VERIFIED_EXEC
static int
sysctl_kern_veriexec(SYSCTLFN_ARGS)
{
int newval, error;
int *var = NULL, raise_only = 0;
struct sysctlnode node;
node = *rnode;
switch (rnode->sysctl_num) {
case VERIEXEC_STRICT:
raise_only = 1;
var = &veriexec_strict;
break;
case VERIEXEC_ALGORITHMS:
node.sysctl_data = veriexec_fp_names;
node.sysctl_size = strlen(veriexec_fp_names) + 1;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
default:
return (EINVAL);
}
newval = *var;
node.sysctl_data = &newval;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL) {
return (error);
}
if (raise_only && (newval < *var))
return (EPERM);
*var = newval;
return (error);
}
#endif /* VERIFIED_EXEC */
static int
sysctl_security_setidcore(SYSCTLFN_ARGS)
{
int newsize, error;
struct sysctlnode node;
node = *rnode;
node.sysctl_data = &newsize;
newsize = *(int *)rnode->sysctl_data;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (securelevel > 0)
return (EPERM);
*(int *)rnode->sysctl_data = newsize;
return 0;
}
static int
sysctl_security_setidcorename(SYSCTLFN_ARGS)
{
int error;
char newsetidcorename[MAXPATHLEN];
struct sysctlnode node;
node = *rnode;
node.sysctl_data = &newsetidcorename[0];
memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (securelevel > 0)
return (EPERM);
if (strlen(newsetidcorename) == 0)
return (EINVAL);
memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
return (0);
}
/*
* sysctl helper routine for kern.cp_id node. maps cpus to their
* cpuids.
*/
static int
sysctl_kern_cpid(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
#ifndef MULTIPROCESSOR
uint64_t id;
if (namelen == 1) {
if (name[0] != 0)
return (ENOENT);
/*
* you're allowed to ask for the zero'th processor
*/
name++;
namelen--;
}
node.sysctl_data = &id;
node.sysctl_size = sizeof(id);
id = cpu_number();
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
#else /* MULTIPROCESSOR */
uint64_t *cp_id = NULL;
int error, n = sysctl_ncpus();
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
/*
* here you may either retrieve a single cpu id or the whole
* set. the size you get back when probing depends on what
* you ask for.
*/
switch (namelen) {
case 0:
node.sysctl_size = n * sizeof(uint64_t);
n = -2; /* ALL */
break;
case 1:
if (name[0] < 0 || name[0] >= n)
return (ENOENT); /* ENOSUCHPROCESSOR */
node.sysctl_size = sizeof(uint64_t);
n = name[0];
/*
* adjust these so that sysctl_lookup() will be happy
*/
name++;
namelen--;
break;
default:
return (EINVAL);
}
cp_id = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
if (cp_id == NULL)
return (ENOMEM);
node.sysctl_data = cp_id;
memset(cp_id, 0, node.sysctl_size);
for (CPU_INFO_FOREACH(cii, ci)) {
if (n <= 0)
cp_id[0] = ci->ci_cpuid;
/*
* if a specific processor was requested and we just
* did it, we're done here
*/
if (n == 0)
break;
/*
* if doing "all", skip to next cp_id slot for next processor
*/
if (n == -2)
cp_id++;
/*
* if we're doing a specific processor, we're one
* processor closer
*/
if (n > 0)
n--;
}
error = sysctl_lookup(SYSCTLFN_CALL(&node));
free(node.sysctl_data, M_TEMP);
return (error);
#endif /* MULTIPROCESSOR */
}
/*
* sysctl helper routine for hw.usermem and hw.usermem64. values are
* calculate on the fly taking into account integer overflow and the
* current wired count.
*/
static int
sysctl_hw_usermem(SYSCTLFN_ARGS)
{
u_int ui;
u_quad_t uq;
struct sysctlnode node;
node = *rnode;
switch (rnode->sysctl_num) {
case HW_USERMEM:
if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
ui = UINT_MAX;
else
ui *= PAGE_SIZE;
node.sysctl_data = &ui;
break;
case HW_USERMEM64:
uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
node.sysctl_data = &uq;
break;
default:
return (EINVAL);
}
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* sysctl helper routine for kern.cnmagic node. pulls the old value
* out, encoded, and stuffs the new value in for decoding.
*/
static int
sysctl_hw_cnmagic(SYSCTLFN_ARGS)
{
char magic[CNS_LEN];
int error;
struct sysctlnode node;
if (oldp)
cn_get_magic(magic, CNS_LEN);
node = *rnode;
node.sysctl_data = &magic[0];
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
return (cn_set_magic(magic));
}
static int
sysctl_hw_ncpu(SYSCTLFN_ARGS)
{
int ncpu;
struct sysctlnode node;
ncpu = sysctl_ncpus();
node = *rnode;
node.sysctl_data = &ncpu;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* ********************************************************************
* section 3: public helper routines that are used for more than one
* node
* ********************************************************************
*/
/*
* sysctl helper routine for the kern.root_device node and some ports'
* machdep.root_device nodes.
*/
int
sysctl_root_device(SYSCTLFN_ARGS)
{
struct sysctlnode node;
node = *rnode;
node.sysctl_data = root_device->dv_xname;
node.sysctl_size = strlen(root_device->dv_xname) + 1;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* sysctl helper routine for kern.consdev, dependent on the current
* state of the console. also used for machdep.console_device on some
* ports.
*/
int
sysctl_consdev(SYSCTLFN_ARGS)
{
dev_t consdev;
struct sysctlnode node;
if (cn_tab != NULL)
consdev = cn_tab->cn_dev;
else
consdev = NODEV;
node = *rnode;
node.sysctl_data = &consdev;
node.sysctl_size = sizeof(consdev);
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* ********************************************************************
* section 4: support for some helpers
* ********************************************************************
*/
/*
* Fill in a kinfo_proc2 structure for the specified process.
*/
static void
fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
{
struct tty *tp;
struct lwp *l;
struct timeval ut, st;
memset(ki, 0, sizeof(*ki));
ki->p_paddr = PTRTOUINT64(p);
ki->p_fd = PTRTOUINT64(p->p_fd);
ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
ki->p_stats = PTRTOUINT64(p->p_stats);
ki->p_limit = PTRTOUINT64(p->p_limit);
ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
ki->p_sess = PTRTOUINT64(p->p_session);
ki->p_tsess = 0; /* may be changed if controlling tty below */
ki->p_ru = PTRTOUINT64(p->p_ru);
ki->p_eflag = 0;
ki->p_exitsig = p->p_exitsig;
ki->p_flag = p->p_flag;
ki->p_pid = p->p_pid;
if (p->p_pptr)
ki->p_ppid = p->p_pptr->p_pid;
else
ki->p_ppid = 0;
ki->p_sid = p->p_session->s_sid;
ki->p__pgid = p->p_pgrp->pg_id;
ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
ki->p_uid = p->p_ucred->cr_uid;
ki->p_ruid = p->p_cred->p_ruid;
ki->p_gid = p->p_ucred->cr_gid;
ki->p_rgid = p->p_cred->p_rgid;
ki->p_svuid = p->p_cred->p_svuid;
ki->p_svgid = p->p_cred->p_svgid;
memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
ki->p_jobc = p->p_pgrp->pg_jobc;
if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
ki->p_tdev = tp->t_dev;
ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
ki->p_tsess = PTRTOUINT64(tp->t_session);
} else {
ki->p_tdev = NODEV;
}
ki->p_estcpu = p->p_estcpu;
ki->p_rtime_sec = p->p_rtime.tv_sec;
ki->p_rtime_usec = p->p_rtime.tv_usec;
ki->p_cpticks = p->p_cpticks;
ki->p_pctcpu = p->p_pctcpu;
ki->p_uticks = p->p_uticks;
ki->p_sticks = p->p_sticks;
ki->p_iticks = p->p_iticks;
ki->p_tracep = PTRTOUINT64(p->p_tracep);
ki->p_traceflag = p->p_traceflag;
memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
ki->p_realstat = p->p_stat;
ki->p_nice = p->p_nice;
ki->p_xstat = p->p_xstat;
ki->p_acflag = p->p_acflag;
strncpy(ki->p_comm, p->p_comm,
min(sizeof(ki->p_comm), sizeof(p->p_comm)));
strncpy(ki->p_login, p->p_session->s_login,
min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
ki->p_nlwps = p->p_nlwps;
ki->p_nrlwps = p->p_nrlwps;
ki->p_realflag = p->p_flag;
if (p->p_stat == SIDL || P_ZOMBIE(p)) {
ki->p_vm_rssize = 0;
ki->p_vm_tsize = 0;
ki->p_vm_dsize = 0;
ki->p_vm_ssize = 0;
l = NULL;
} else {
struct vmspace *vm = p->p_vmspace;
ki->p_vm_rssize = vm_resident_count(vm);
ki->p_vm_tsize = vm->vm_tsize;
ki->p_vm_dsize = vm->vm_dsize;
ki->p_vm_ssize = vm->vm_ssize;
/* Pick a "representative" LWP */
l = proc_representative_lwp(p);
ki->p_forw = PTRTOUINT64(l->l_forw);
ki->p_back = PTRTOUINT64(l->l_back);
ki->p_addr = PTRTOUINT64(l->l_addr);
ki->p_stat = l->l_stat;
ki->p_flag |= l->l_flag & P_SHARED;
ki->p_swtime = l->l_swtime;
ki->p_slptime = l->l_slptime;
if (l->l_stat == LSONPROC) {
KDASSERT(l->l_cpu != NULL);
ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
} else
ki->p_schedflags = 0;
ki->p_holdcnt = l->l_holdcnt;
ki->p_priority = l->l_priority;
ki->p_usrpri = l->l_usrpri;
if (l->l_wmesg)
strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
ki->p_wchan = PTRTOUINT64(l->l_wchan);
}
if (p->p_session->s_ttyvp)
ki->p_eflag |= EPROC_CTTY;
if (SESS_LEADER(p))
ki->p_eflag |= EPROC_SLEADER;
/* XXX Is this double check necessary? */
if (P_ZOMBIE(p)) {
ki->p_uvalid = 0;
} else {
ki->p_uvalid = 1;
ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
calcru(p, &ut, &st, 0);
ki->p_uutime_sec = ut.tv_sec;
ki->p_uutime_usec = ut.tv_usec;
ki->p_ustime_sec = st.tv_sec;
ki->p_ustime_usec = st.tv_usec;
ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
timeradd(&p->p_stats->p_cru.ru_utime,
&p->p_stats->p_cru.ru_stime, &ut);
ki->p_uctime_sec = ut.tv_sec;
ki->p_uctime_usec = ut.tv_usec;
}
#ifdef MULTIPROCESSOR
if (l && l->l_cpu != NULL)
ki->p_cpuid = l->l_cpu->ci_cpuid;
else
#endif
ki->p_cpuid = KI_NOCPU;
}
/*
* Fill in a kinfo_lwp structure for the specified lwp.
*/
static void
fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
{
kl->l_forw = PTRTOUINT64(l->l_forw);
kl->l_back = PTRTOUINT64(l->l_back);
kl->l_laddr = PTRTOUINT64(l);
kl->l_addr = PTRTOUINT64(l->l_addr);
kl->l_stat = l->l_stat;
kl->l_lid = l->l_lid;
kl->l_flag = l->l_flag;
kl->l_swtime = l->l_swtime;
kl->l_slptime = l->l_slptime;
if (l->l_stat == LSONPROC) {
KDASSERT(l->l_cpu != NULL);
kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
} else
kl->l_schedflags = 0;
kl->l_holdcnt = l->l_holdcnt;
kl->l_priority = l->l_priority;
kl->l_usrpri = l->l_usrpri;
if (l->l_wmesg)
strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
kl->l_wchan = PTRTOUINT64(l->l_wchan);
#ifdef MULTIPROCESSOR
if (l->l_cpu != NULL)
kl->l_cpuid = l->l_cpu->ci_cpuid;
else
#endif
kl->l_cpuid = KI_NOCPU;
}
/*
* Fill in an eproc structure for the specified process.
*/
void
fill_eproc(struct proc *p, struct eproc *ep)
{
struct tty *tp;
struct lwp *l;
ep->e_paddr = p;
ep->e_sess = p->p_session;
ep->e_pcred = *p->p_cred;
ep->e_ucred = *p->p_ucred;
if (p->p_stat == SIDL || P_ZOMBIE(p)) {
ep->e_vm.vm_rssize = 0;
ep->e_vm.vm_tsize = 0;
ep->e_vm.vm_dsize = 0;
ep->e_vm.vm_ssize = 0;
/* ep->e_vm.vm_pmap = XXX; */
} else {
struct vmspace *vm = p->p_vmspace;
ep->e_vm.vm_rssize = vm_resident_count(vm);
ep->e_vm.vm_tsize = vm->vm_tsize;
ep->e_vm.vm_dsize = vm->vm_dsize;
ep->e_vm.vm_ssize = vm->vm_ssize;
/* Pick a "representative" LWP */
l = proc_representative_lwp(p);
if (l->l_wmesg)
strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
}
if (p->p_pptr)
ep->e_ppid = p->p_pptr->p_pid;
else
ep->e_ppid = 0;
ep->e_pgid = p->p_pgrp->pg_id;
ep->e_sid = ep->e_sess->s_sid;
ep->e_jobc = p->p_pgrp->pg_jobc;
if ((p->p_flag & P_CONTROLT) &&
(tp = ep->e_sess->s_ttyp)) {
ep->e_tdev = tp->t_dev;
ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
ep->e_tsess = tp->t_session;
} else
ep->e_tdev = NODEV;
ep->e_xsize = ep->e_xrssize = 0;
ep->e_xccount = ep->e_xswrss = 0;
ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
if (SESS_LEADER(p))
ep->e_flag |= EPROC_SLEADER;
strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
}