NetBSD/sys/dev/pci/cz.c
ad 88ab7da936 Merge some of the less invasive changes from the vmlocking branch:
- kthread, callout, devsw API changes
- select()/poll() improvements
- miscellaneous MT safety improvements
2007-07-09 20:51:58 +00:00

1652 lines
40 KiB
C

/* $NetBSD: cz.c,v 1.45 2007/07/09 21:00:52 ad Exp $ */
/*-
* Copyright (c) 2000 Zembu Labs, Inc.
* All rights reserved.
*
* Authors: Jason R. Thorpe <thorpej@zembu.com>
* Bill Studenmund <wrstuden@zembu.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Zembu Labs, Inc.
* 4. Neither the name of Zembu Labs nor the names of its employees may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
* RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
* CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Cyclades-Z series multi-port serial adapter driver for NetBSD.
*
* Some notes:
*
* - The Cyclades-Z has fully automatic hardware (and software!)
* flow control. We only use RTS/CTS flow control here,
* and it is implemented in a very simplistic manner. This
* may be an area of future work.
*
* - The PLX can map the either the board's RAM or host RAM
* into the MIPS's memory window. This would enable us to
* use less expensive (for us) memory reads/writes to host
* RAM, rather than time-consuming reads/writes to PCI
* memory space. However, the PLX can only map a 0-128M
* window, so we would have to ensure that the DMA address
* of the host RAM fits there. This is kind of a pain,
* so we just don't bother right now.
*
* - In a perfect world, we would use the autoconfiguration
* mechanism to attach the TTYs that we find. However,
* that leads to somewhat icky looking autoconfiguration
* messages (one for every TTY, up to 64 per board!). So
* we don't do it that way, but assign minors as if there
* were the max of 64 ports per board.
*
* - We don't bother with PPS support here. There are so many
* ports, each with a large amount of buffer space, that the
* normal mode of operation is to poll the boards regularly
* (generally, every 20ms or so). This makes this driver
* unsuitable for PPS, as the latency will be generally too
* high.
*/
/*
* This driver inspired by the FreeBSD driver written by Brian J. McGovern
* for FreeBSD 3.2.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cz.c,v 1.45 2007/07/09 21:00:52 ad Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/tty.h>
#include <sys/conf.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/fcntl.h>
#include <sys/syslog.h>
#include <sys/kauth.h>
#include <sys/callout.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/czreg.h>
#include <dev/pci/plx9060reg.h>
#include <dev/pci/plx9060var.h>
#include <dev/microcode/cyclades-z/cyzfirm.h>
#define CZ_DRIVER_VERSION 0x20000411
#define CZ_POLL_MS 20
/* These are the interrupts we always use. */
#define CZ_INTERRUPTS \
(C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY | \
C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT | \
C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR | \
C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK)
/*
* cztty_softc:
*
* Per-channel (TTY) state.
*/
struct cztty_softc {
struct cz_softc *sc_parent;
struct tty *sc_tty;
callout_t sc_diag_ch;
int sc_channel; /* Also used to flag unattached chan */
#define CZTTY_CHANNEL_DEAD -1
bus_space_tag_t sc_chan_st; /* channel space tag */
bus_space_handle_t sc_chan_sh; /* channel space handle */
bus_space_handle_t sc_buf_sh; /* buffer space handle */
u_int sc_overflows,
sc_parity_errors,
sc_framing_errors,
sc_errors;
int sc_swflags;
u_int32_t sc_rs_control_dtr,
sc_chanctl_hw_flow,
sc_chanctl_comm_baud,
sc_chanctl_rs_control,
sc_chanctl_comm_data_l,
sc_chanctl_comm_parity;
};
/*
* cz_softc:
*
* Per-board state.
*/
struct cz_softc {
struct device cz_dev; /* generic device info */
struct plx9060_config cz_plx; /* PLX 9060 config info */
bus_space_tag_t cz_win_st; /* window space tag */
bus_space_handle_t cz_win_sh; /* window space handle */
callout_t cz_callout; /* callout for polling-mode */
void *cz_ih; /* interrupt handle */
u_int32_t cz_mailbox0; /* our MAILBOX0 value */
int cz_nchannels; /* number of channels */
int cz_nopenchan; /* number of open channels */
struct cztty_softc *cz_ports; /* our array of ports */
bus_addr_t cz_fwctl; /* offset of firmware control */
};
static int cz_wait_pci_doorbell(struct cz_softc *, const char *);
static int cz_load_firmware(struct cz_softc *);
static int cz_intr(void *);
static void cz_poll(void *);
static int cztty_transmit(struct cztty_softc *, struct tty *);
static int cztty_receive(struct cztty_softc *, struct tty *);
static struct cztty_softc *cztty_getttysoftc(dev_t dev);
static int cztty_attached_ttys;
static int cz_timeout_ticks;
static void czttystart(struct tty *tp);
static int czttyparam(struct tty *tp, struct termios *t);
static void cztty_shutdown(struct cztty_softc *sc);
static void cztty_modem(struct cztty_softc *sc, int onoff);
static void cztty_break(struct cztty_softc *sc, int onoff);
static void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits);
static int cztty_to_tiocm(struct cztty_softc *sc);
static void cztty_diag(void *arg);
extern struct cfdriver cz_cd;
/*
* Macros to read and write the PLX.
*/
#define CZ_PLX_READ(cz, reg) \
bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg))
#define CZ_PLX_WRITE(cz, reg, val) \
bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, \
(reg), (val))
/*
* Macros to read and write the FPGA. We must already be in the FPGA
* window for this.
*/
#define CZ_FPGA_READ(cz, reg) \
bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg))
#define CZ_FPGA_WRITE(cz, reg, val) \
bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val))
/*
* Macros to read and write the firmware control structures in board RAM.
*/
#define CZ_FWCTL_READ(cz, off) \
bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, \
(cz)->cz_fwctl + (off))
#define CZ_FWCTL_WRITE(cz, off, val) \
bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, \
(cz)->cz_fwctl + (off), (val))
/*
* Convenience macros for cztty routines. PLX window MUST be to RAM.
*/
#define CZTTY_CHAN_READ(sc, off) \
bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off))
#define CZTTY_CHAN_WRITE(sc, off, val) \
bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh, \
(off), (val))
#define CZTTY_BUF_READ(sc, off) \
bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off))
#define CZTTY_BUF_WRITE(sc, off, val) \
bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh, \
(off), (val))
/*
* Convenience macros.
*/
#define CZ_WIN_RAM(cz) \
do { \
CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM); \
delay(100); \
} while (0)
#define CZ_WIN_FPGA(cz) \
do { \
CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA); \
delay(100); \
} while (0)
/*****************************************************************************
* Cyclades-Z controller code starts here...
*****************************************************************************/
/*
* cz_match:
*
* Determine if the given PCI device is a Cyclades-Z board.
*/
static int
cz_match(struct device *parent,
struct cfdata *match,
void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES) {
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_CYCLADES_CYCLOMZ_2:
return (1);
}
}
return (0);
}
/*
* cz_attach:
*
* A Cyclades-Z board was found; attach it.
*/
static void
cz_attach(struct device *parent,
struct device *self,
void *aux)
{
extern const struct cdevsw cz_cdevsw; /* XXX */
struct cz_softc *cz = (void *) self;
struct pci_attach_args *pa = aux;
pci_intr_handle_t ih;
const char *intrstr = NULL;
struct cztty_softc *sc;
struct tty *tp;
int i;
aprint_naive(": Multi-port serial controller\n");
aprint_normal(": Cyclades-Z multiport serial\n");
cz->cz_plx.plx_pc = pa->pa_pc;
cz->cz_plx.plx_tag = pa->pa_tag;
if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
&cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL) != 0) {
aprint_error("%s: unable to map PLX registers\n",
cz->cz_dev.dv_xname);
return;
}
if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
&cz->cz_win_st, &cz->cz_win_sh, NULL, NULL) != 0) {
aprint_error("%s: unable to map device window\n",
cz->cz_dev.dv_xname);
return;
}
cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0);
cz->cz_nopenchan = 0;
/*
* Make sure that the board is completely stopped.
*/
CZ_WIN_FPGA(cz);
CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0);
/*
* Load the board's firmware.
*/
if (cz_load_firmware(cz) != 0)
return;
/*
* Now that we're ready to roll, map and establish the interrupt
* handler.
*/
if (pci_intr_map(pa, &ih) != 0) {
/*
* The common case is for Cyclades-Z boards to run
* in polling mode, and thus not have an interrupt
* mapped for them. Don't bother reporting that
* the interrupt is not mappable, since this isn't
* really an error.
*/
cz->cz_ih = NULL;
goto polling_mode;
} else {
intrstr = pci_intr_string(pa->pa_pc, ih);
cz->cz_ih = pci_intr_establish(pa->pa_pc, ih, IPL_TTY,
cz_intr, cz);
}
if (cz->cz_ih == NULL) {
aprint_error("%s: unable to establish interrupt",
cz->cz_dev.dv_xname);
if (intrstr != NULL)
aprint_normal(" at %s", intrstr);
aprint_normal("\n");
/* We will fall-back on polling mode. */
} else
aprint_normal("%s: interrupting at %s\n",
cz->cz_dev.dv_xname, intrstr);
polling_mode:
if (cz->cz_ih == NULL) {
callout_init(&cz->cz_callout, 0);
if (cz_timeout_ticks == 0)
cz_timeout_ticks = max(1, hz * CZ_POLL_MS / 1000);
aprint_normal("%s: polling mode, %d ms interval (%d tick%s)\n",
cz->cz_dev.dv_xname, CZ_POLL_MS, cz_timeout_ticks,
cz_timeout_ticks == 1 ? "" : "s");
}
/*
* Allocate sufficient pointers for the children and
* attach them. Set all ports to a reasonable initial
* configuration while we're at it:
*
* disabled
* 8N1
* default baud rate
* hardware flow control.
*/
CZ_WIN_RAM(cz);
if (cz->cz_nchannels == 0) {
/* No channels? No more work to do! */
return;
}
cz->cz_ports = malloc(sizeof(struct cztty_softc) * cz->cz_nchannels,
M_DEVBUF, M_WAITOK|M_ZERO);
cztty_attached_ttys += cz->cz_nchannels;
for (i = 0; i < cz->cz_nchannels; i++) {
sc = &cz->cz_ports[i];
sc->sc_channel = i;
sc->sc_chan_st = cz->cz_win_st;
sc->sc_parent = cz;
if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0),
ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) {
aprint_error(
"%s: unable to subregion channel %d control\n",
cz->cz_dev.dv_xname, i);
sc->sc_channel = CZTTY_CHANNEL_DEAD;
continue;
}
if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0),
ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) {
aprint_error(
"%s: unable to subregion channel %d buffer\n",
cz->cz_dev.dv_xname, i);
sc->sc_channel = CZTTY_CHANNEL_DEAD;
continue;
}
callout_init(&sc->sc_diag_ch, 0);
tp = ttymalloc();
tp->t_dev = makedev(cdevsw_lookup_major(&cz_cdevsw),
(device_unit(&cz->cz_dev) * ZFIRM_MAX_CHANNELS) + i);
tp->t_oproc = czttystart;
tp->t_param = czttyparam;
tty_attach(tp);
sc->sc_tty = tp;
CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS);
CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0);
CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11);
CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13);
CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED);
CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE);
CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP);
CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0);
CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS);
CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0);
}
}
CFATTACH_DECL(cz, sizeof(struct cz_softc),
cz_match, cz_attach, NULL, NULL);
#if 0
/*
* cz_reset_board:
*
* Reset the board via the PLX.
*/
static void
cz_reset_board(struct cz_softc *cz)
{
u_int32_t reg;
reg = CZ_PLX_READ(cz, PLX_CONTROL);
CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR);
delay(1000);
CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
delay(1000);
/* Now reload the PLX from its EEPROM. */
reg = CZ_PLX_READ(cz, PLX_CONTROL);
CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG);
delay(1000);
CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
}
#endif
/*
* cz_load_firmware:
*
* Load the ZFIRM firmware into the board's RAM and start it
* running.
*/
static int
cz_load_firmware(struct cz_softc *cz)
{
const struct zfirm_header *zfh;
const struct zfirm_config *zfc;
const struct zfirm_block *zfb, *zblocks;
const u_int8_t *cp;
const char *board;
u_int32_t fid;
int i, j, nconfigs, nblocks, nbytes;
zfh = (const struct zfirm_header *) cycladesz_firmware;
/* Find the config header. */
if (le32toh(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) {
aprint_error("%s: bad ZFIRM config offset: 0x%x\n",
cz->cz_dev.dv_xname, le32toh(zfh->zfh_configoff));
return (EIO);
}
zfc = (const struct zfirm_config *)(cycladesz_firmware +
le32toh(zfh->zfh_configoff));
nconfigs = le32toh(zfh->zfh_nconfig);
/* Locate the correct configuration for our board. */
for (i = 0; i < nconfigs; i++, zfc++) {
if (le32toh(zfc->zfc_mailbox) == cz->cz_mailbox0 &&
le32toh(zfc->zfc_function) == ZFC_FUNCTION_NORMAL)
break;
}
if (i == nconfigs) {
aprint_error("%s: unable to locate config header\n",
cz->cz_dev.dv_xname);
return (EIO);
}
nblocks = le32toh(zfc->zfc_nblocks);
zblocks = (const struct zfirm_block *)(cycladesz_firmware +
le32toh(zfh->zfh_blockoff));
/*
* 8Zo ver. 1 doesn't have an FPGA. Load it on all others if
* necessary.
*/
if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1
#if 0
&& ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0)
#endif
) {
#ifdef CZ_DEBUG
aprint_debug("%s: Loading FPGA...", cz->cz_dev.dv_xname);
#endif
CZ_WIN_FPGA(cz);
for (i = 0; i < nblocks; i++) {
/* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
if (le32toh(zfb->zfb_type) == ZFB_TYPE_FPGA) {
nbytes = le32toh(zfb->zfb_size);
cp = &cycladesz_firmware[
le32toh(zfb->zfb_fileoff)];
for (j = 0; j < nbytes; j++, cp++) {
bus_space_write_1(cz->cz_win_st,
cz->cz_win_sh, 0, *cp);
/* FPGA needs 30-100us to settle. */
delay(10);
}
}
}
#ifdef CZ_DEBUG
aprint_debug("done\n");
#endif
}
/* Now load the firmware. */
CZ_WIN_RAM(cz);
for (i = 0; i < nblocks; i++) {
/* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
if (le32toh(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) {
const u_int32_t *lp;
u_int32_t ro = le32toh(zfb->zfb_ramoff);
nbytes = le32toh(zfb->zfb_size);
lp = (const u_int32_t *)
&cycladesz_firmware[le32toh(zfb->zfb_fileoff)];
for (j = 0; j < nbytes; j += 4, lp++) {
bus_space_write_4(cz->cz_win_st, cz->cz_win_sh,
ro + j, le32toh(*lp));
delay(10);
}
}
}
/* Now restart the MIPS. */
CZ_WIN_FPGA(cz);
CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0);
/* Wait for the MIPS to start, then report the results. */
CZ_WIN_RAM(cz);
#ifdef CZ_DEBUG
aprint_debug("%s: waiting for MIPS to start", cz->cz_dev.dv_xname);
#endif
for (i = 0; i < 100; i++) {
fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
ZFIRM_SIG_OFF);
if (fid == ZFIRM_SIG) {
/* MIPS has booted. */
break;
} else if (fid == ZFIRM_HLT) {
/*
* The MIPS has halted, usually due to a power
* shortage on the expansion module.
*/
aprint_error("%s: MIPS halted; possible power supply "
"problem\n", cz->cz_dev.dv_xname);
return (EIO);
} else {
#ifdef CZ_DEBUG
if ((i % 8) == 0)
aprint_debug(".");
#endif
delay(250000);
}
}
#ifdef CZ_DEBUG
aprint_debug("\n");
#endif
if (i == 100) {
CZ_WIN_FPGA(cz);
aprint_error(
"%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n",
cz->cz_dev.dv_xname, ZFIRM_SIG, fid);
aprint_error("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n",
cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID),
CZ_FPGA_READ(cz, FPGA_VERSION));
return (EIO);
}
/*
* Locate the firmware control structures.
*/
cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
ZFIRM_CTRLADDR_OFF);
#ifdef CZ_DEBUG
aprint_debug("%s: FWCTL structure at offset 0x%08lx\n",
cz->cz_dev.dv_xname, cz->cz_fwctl);
#endif
CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD);
CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION);
cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL);
switch (cz->cz_mailbox0) {
case MAILBOX0_8Zo_V1:
board = "Cyclades-8Zo ver. 1";
break;
case MAILBOX0_8Zo_V2:
board = "Cyclades-8Zo ver. 2";
break;
case MAILBOX0_Ze_V1:
board = "Cyclades-Ze";
break;
default:
board = "unknown Cyclades Z-series";
break;
}
fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION);
aprint_normal("%s: %s, ", cz->cz_dev.dv_xname, board);
if (cz->cz_nchannels == 0)
aprint_normal("no channels attached, ");
else
aprint_normal("%d channels (ttyCZ%04d..ttyCZ%04d), ",
cz->cz_nchannels, cztty_attached_ttys,
cztty_attached_ttys + (cz->cz_nchannels - 1));
aprint_normal("firmware %x.%x.%x\n",
(fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf);
return (0);
}
/*
* cz_poll:
*
* This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS
* ms.
*/
static void
cz_poll(void *arg)
{
int s = spltty();
struct cz_softc *cz = arg;
cz_intr(cz);
callout_reset(&cz->cz_callout, cz_timeout_ticks, cz_poll, cz);
splx(s);
}
/*
* cz_intr:
*
* Interrupt service routine.
*
* We either are receiving an interrupt directly from the board, or we are
* in polling mode and it's time to poll.
*/
static int
cz_intr(void *arg)
{
int rval = 0;
u_int command, channel, param;
struct cz_softc *cz = arg;
struct cztty_softc *sc;
struct tty *tp;
while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) {
rval = 1;
channel = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_CHANNEL);
param = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_PARAM);
/* now clear this interrupt, posslibly enabling another */
CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command);
if (cz->cz_ports == NULL) {
#ifdef CZ_DEBUG
printf("%s: interrupt on channel %d, but no channels\n",
cz->cz_dev.dv_xname, channel);
#endif
continue;
}
sc = &cz->cz_ports[channel];
if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
break;
tp = sc->sc_tty;
switch (command) {
case C_CM_TXFEMPTY: /* transmit cases */
case C_CM_TXBEMPTY:
case C_CM_TXLOWWM:
case C_CM_INTBACK:
if (!ISSET(tp->t_state, TS_ISOPEN)) {
#ifdef CZ_DEBUG
printf("%s: tx intr on closed channel %d\n",
cz->cz_dev.dv_xname, channel);
#endif
break;
}
if (cztty_transmit(sc, tp)) {
/*
* Do wakeup stuff here.
*/
ttwakeup(tp);
wakeup(tp);
}
break;
case C_CM_RXNNDT: /* receive cases */
case C_CM_RXHIWM:
case C_CM_INTBACK2: /* from restart ?? */
#if 0
case C_CM_ICHAR:
#endif
if (!ISSET(tp->t_state, TS_ISOPEN)) {
CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
break;
}
if (cztty_receive(sc, tp)) {
/*
* Do wakeup stuff here.
*/
ttwakeup(tp);
wakeup(tp);
}
break;
case C_CM_MDCD:
if (!ISSET(tp->t_state, TS_ISOPEN))
break;
(void) (*tp->t_linesw->l_modem)(tp,
ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc,
CHNCTL_RS_STATUS)));
break;
case C_CM_MDSR:
case C_CM_MRI:
case C_CM_MCTS:
case C_CM_MRTS:
break;
case C_CM_IOCTLW:
break;
case C_CM_PR_ERROR:
sc->sc_parity_errors++;
goto error_common;
case C_CM_FR_ERROR:
sc->sc_framing_errors++;
goto error_common;
case C_CM_OVR_ERROR:
sc->sc_overflows++;
error_common:
if (sc->sc_errors++ == 0)
callout_reset(&sc->sc_diag_ch, 60 * hz,
cztty_diag, sc);
break;
case C_CM_RXBRK:
if (!ISSET(tp->t_state, TS_ISOPEN))
break;
/*
* A break is a \000 character with TTY_FE error
* flags set. So TTY_FE by itself works.
*/
(*tp->t_linesw->l_rint)(TTY_FE, tp);
ttwakeup(tp);
wakeup(tp);
break;
default:
#ifdef CZ_DEBUG
printf("%s: channel %d: Unknown interrupt 0x%x\n",
cz->cz_dev.dv_xname, sc->sc_channel, command);
#endif
break;
}
}
return (rval);
}
/*
* cz_wait_pci_doorbell:
*
* Wait for the pci doorbell to be clear - wait for pending
* activity to drain.
*/
static int
cz_wait_pci_doorbell(struct cz_softc *cz, const char *wstring)
{
int error;
while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) {
error = tsleep(cz, TTIPRI | PCATCH, wstring, max(1, hz/100));
if ((error != 0) && (error != EWOULDBLOCK))
return (error);
}
return (0);
}
/*****************************************************************************
* Cyclades-Z TTY code starts here...
*****************************************************************************/
#define CZTTYDIALOUT_MASK 0x80000
#define CZTTY_DIALOUT(dev) (minor((dev)) & CZTTYDIALOUT_MASK)
#define CZTTY_CZ(sc) ((sc)->sc_parent)
#define CZTTY_SOFTC(dev) cztty_getttysoftc(dev)
static struct cztty_softc *
cztty_getttysoftc(dev_t dev)
{
int i, j, k = 0, u = minor(dev) & ~CZTTYDIALOUT_MASK;
struct cz_softc *cz = NULL;
for (i = 0, j = 0; i < cz_cd.cd_ndevs; i++) {
k = j;
cz = device_lookup(&cz_cd, i);
if (cz == NULL)
continue;
if (cz->cz_ports == NULL)
continue;
j += cz->cz_nchannels;
if (j > u)
break;
}
if (i >= cz_cd.cd_ndevs)
return (NULL);
else
return (&cz->cz_ports[u - k]);
}
/*
* czttytty:
*
* Return a pointer to our tty.
*/
static struct tty *
czttytty(dev_t dev)
{
struct cztty_softc *sc = CZTTY_SOFTC(dev);
#ifdef DIAGNOSTIC
if (sc == NULL)
panic("czttytty");
#endif
return (sc->sc_tty);
}
/*
* cztty_shutdown:
*
* Shut down a port.
*/
static void
cztty_shutdown(struct cztty_softc *sc)
{
struct cz_softc *cz = CZTTY_CZ(sc);
struct tty *tp = sc->sc_tty;
int s;
s = spltty();
/* Clear any break condition set with TIOCSBRK. */
cztty_break(sc, 0);
/*
* Hang up if necessary. Wait a bit, so the other side has time to
* notice even if we immediately open the port again.
*/
if (ISSET(tp->t_cflag, HUPCL)) {
cztty_modem(sc, 0);
(void) tsleep(tp, TTIPRI, ttclos, hz);
}
/* Disable the channel. */
cz_wait_pci_doorbell(cz, "czdis");
CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL);
if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) {
#ifdef CZ_DEBUG
printf("%s: Disabling polling\n", cz->cz_dev.dv_xname);
#endif
callout_stop(&cz->cz_callout);
}
splx(s);
}
/*
* czttyopen:
*
* Open a Cyclades-Z serial port.
*/
static int
czttyopen(dev_t dev, int flags, int mode, struct lwp *l)
{
struct cztty_softc *sc = CZTTY_SOFTC(dev);
struct cz_softc *cz;
struct tty *tp;
int s, error;
if (sc == NULL)
return (ENXIO);
if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
return (ENXIO);
cz = CZTTY_CZ(sc);
tp = sc->sc_tty;
if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
return (EBUSY);
s = spltty();
/*
* Do the following iff this is a first open.
*/
if (!ISSET(tp->t_state, TS_ISOPEN) && (tp->t_wopen == 0)) {
struct termios t;
tp->t_dev = dev;
/* If we're turning things on, enable interrupts */
if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) {
#ifdef CZ_DEBUG
printf("%s: Enabling polling.\n",
cz->cz_dev.dv_xname);
#endif
callout_reset(&cz->cz_callout, cz_timeout_ticks,
cz_poll, cz);
}
/*
* Enable the channel. Don't actually ring the
* doorbell here; czttyparam() will do it for us.
*/
cz_wait_pci_doorbell(cz, "czopen");
CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE);
/*
* Initialize the termios status to the defaults. Add in the
* sticky bits from TIOCSFLAGS.
*/
t.c_ispeed = 0;
t.c_ospeed = TTYDEF_SPEED;
t.c_cflag = TTYDEF_CFLAG;
if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
SET(t.c_cflag, CLOCAL);
if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
SET(t.c_cflag, CRTSCTS);
/*
* Reset the input and output rings. Do this before
* we call czttyparam(), as that function enables
* the channel.
*/
CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT,
CZTTY_BUF_READ(sc, BUFCTL_TX_GET));
/* Make sure czttyparam() will see changes. */
tp->t_ospeed = 0;
(void) czttyparam(tp, &t);
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_lflag = TTYDEF_LFLAG;
ttychars(tp);
ttsetwater(tp);
/*
* Turn on DTR. We must always do this, even if carrier is not
* present, because otherwise we'd have to use TIOCSDTR
* immediately after setting CLOCAL, which applications do not
* expect. We always assert DTR while the device is open
* unless explicitly requested to deassert it.
*/
cztty_modem(sc, 1);
}
splx(s);
error = ttyopen(tp, CZTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
if (error)
goto bad;
error = (*tp->t_linesw->l_open)(dev, tp);
if (error)
goto bad;
return (0);
bad:
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
/*
* We failed to open the device, and nobody else had it opened.
* Clean up the state as appropriate.
*/
cztty_shutdown(sc);
}
return (error);
}
/*
* czttyclose:
*
* Close a Cyclades-Z serial port.
*/
static int
czttyclose(dev_t dev, int flags, int mode, struct lwp *l)
{
struct cztty_softc *sc = CZTTY_SOFTC(dev);
struct tty *tp = sc->sc_tty;
/* XXX This is for cons.c. */
if (!ISSET(tp->t_state, TS_ISOPEN))
return (0);
(*tp->t_linesw->l_close)(tp, flags);
ttyclose(tp);
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
/*
* Although we got a last close, the device may still be in
* use; e.g. if this was the dialout node, and there are still
* processes waiting for carrier on the non-dialout node.
*/
cztty_shutdown(sc);
}
return (0);
}
/*
* czttyread:
*
* Read from a Cyclades-Z serial port.
*/
static int
czttyread(dev_t dev, struct uio *uio, int flags)
{
struct cztty_softc *sc = CZTTY_SOFTC(dev);
struct tty *tp = sc->sc_tty;
return ((*tp->t_linesw->l_read)(tp, uio, flags));
}
/*
* czttywrite:
*
* Write to a Cyclades-Z serial port.
*/
static int
czttywrite(dev_t dev, struct uio *uio, int flags)
{
struct cztty_softc *sc = CZTTY_SOFTC(dev);
struct tty *tp = sc->sc_tty;
return ((*tp->t_linesw->l_write)(tp, uio, flags));
}
/*
* czttypoll:
*
* Poll a Cyclades-Z serial port.
*/
static int
czttypoll(dev_t dev, int events, struct lwp *l)
{
struct cztty_softc *sc = CZTTY_SOFTC(dev);
struct tty *tp = sc->sc_tty;
return ((*tp->t_linesw->l_poll)(tp, events, l));
}
/*
* czttyioctl:
*
* Perform a control operation on a Cyclades-Z serial port.
*/
static int
czttyioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
struct cztty_softc *sc = CZTTY_SOFTC(dev);
struct tty *tp = sc->sc_tty;
int s, error;
error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
if (error != EPASSTHROUGH)
return (error);
error = ttioctl(tp, cmd, data, flag, l);
if (error != EPASSTHROUGH)
return (error);
error = 0;
s = spltty();
switch (cmd) {
case TIOCSBRK:
cztty_break(sc, 1);
break;
case TIOCCBRK:
cztty_break(sc, 0);
break;
case TIOCGFLAGS:
*(int *)data = sc->sc_swflags;
break;
case TIOCSFLAGS:
error = kauth_authorize_device_tty(l->l_cred,
KAUTH_DEVICE_TTY_PRIVSET, tp);
if (error)
break;
sc->sc_swflags = *(int *)data;
break;
case TIOCSDTR:
cztty_modem(sc, 1);
break;
case TIOCCDTR:
cztty_modem(sc, 0);
break;
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
tiocm_to_cztty(sc, cmd, *(int *)data);
break;
case TIOCMGET:
*(int *)data = cztty_to_tiocm(sc);
break;
default:
error = EPASSTHROUGH;
break;
}
splx(s);
return (error);
}
/*
* cztty_break:
*
* Set or clear BREAK on a port.
*/
static void
cztty_break(struct cztty_softc *sc, int onoff)
{
struct cz_softc *cz = CZTTY_CZ(sc);
cz_wait_pci_doorbell(cz, "czbreak");
CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL,
onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK);
}
/*
* cztty_modem:
*
* Set or clear DTR on a port.
*/
static void
cztty_modem(struct cztty_softc *sc, int onoff)
{
struct cz_softc *cz = CZTTY_CZ(sc);
if (sc->sc_rs_control_dtr == 0)
return;
cz_wait_pci_doorbell(cz, "czmod");
if (onoff)
sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr;
else
sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr;
CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
}
/*
* tiocm_to_cztty:
*
* Process TIOCM* ioctls.
*/
static void
tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits)
{
struct cz_softc *cz = CZTTY_CZ(sc);
u_int32_t czttybits;
czttybits = 0;
if (ISSET(ttybits, TIOCM_DTR))
SET(czttybits, C_RS_DTR);
if (ISSET(ttybits, TIOCM_RTS))
SET(czttybits, C_RS_RTS);
cz_wait_pci_doorbell(cz, "cztiocm");
switch (how) {
case TIOCMBIC:
CLR(sc->sc_chanctl_rs_control, czttybits);
break;
case TIOCMBIS:
SET(sc->sc_chanctl_rs_control, czttybits);
break;
case TIOCMSET:
CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS);
SET(sc->sc_chanctl_rs_control, czttybits);
break;
}
CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
}
/*
* cztty_to_tiocm:
*
* Process the TIOCMGET ioctl.
*/
static int
cztty_to_tiocm(struct cztty_softc *sc)
{
struct cz_softc *cz = CZTTY_CZ(sc);
u_int32_t rs_status, op_mode;
int ttybits = 0;
cz_wait_pci_doorbell(cz, "cztty");
rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE);
if (ISSET(rs_status, C_RS_RTS))
SET(ttybits, TIOCM_RTS);
if (ISSET(rs_status, C_RS_CTS))
SET(ttybits, TIOCM_CTS);
if (ISSET(rs_status, C_RS_DCD))
SET(ttybits, TIOCM_CAR);
if (ISSET(rs_status, C_RS_DTR))
SET(ttybits, TIOCM_DTR);
if (ISSET(rs_status, C_RS_RI))
SET(ttybits, TIOCM_RNG);
if (ISSET(rs_status, C_RS_DSR))
SET(ttybits, TIOCM_DSR);
if (ISSET(op_mode, C_CH_ENABLE))
SET(ttybits, TIOCM_LE);
return (ttybits);
}
/*
* czttyparam:
*
* Set Cyclades-Z serial port parameters from termios.
*
* XXX Should just copy the whole termios after making
* XXX sure all the changes could be done.
*/
static int
czttyparam(struct tty *tp, struct termios *t)
{
struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
struct cz_softc *cz = CZTTY_CZ(sc);
u_int32_t rs_status;
int ospeed, cflag;
ospeed = t->c_ospeed;
cflag = t->c_cflag;
/* Check requested parameters. */
if (ospeed < 0)
return (EINVAL);
if (t->c_ispeed && t->c_ispeed != ospeed)
return (EINVAL);
if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) {
SET(cflag, CLOCAL);
CLR(cflag, HUPCL);
}
/*
* If there were no changes, don't do anything. This avoids dropping
* input and improves performance when all we did was frob things like
* VMIN and VTIME.
*/
if (tp->t_ospeed == ospeed &&
tp->t_cflag == cflag)
return (0);
/* Data bits. */
sc->sc_chanctl_comm_data_l = 0;
switch (t->c_cflag & CSIZE) {
case CS5:
sc->sc_chanctl_comm_data_l |= C_DL_CS5;
break;
case CS6:
sc->sc_chanctl_comm_data_l |= C_DL_CS6;
break;
case CS7:
sc->sc_chanctl_comm_data_l |= C_DL_CS7;
break;
case CS8:
sc->sc_chanctl_comm_data_l |= C_DL_CS8;
break;
}
/* Stop bits. */
if (t->c_cflag & CSTOPB) {
if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5)
sc->sc_chanctl_comm_data_l |= C_DL_15STOP;
else
sc->sc_chanctl_comm_data_l |= C_DL_2STOP;
} else
sc->sc_chanctl_comm_data_l |= C_DL_1STOP;
/* Parity. */
if (t->c_cflag & PARENB) {
if (t->c_cflag & PARODD)
sc->sc_chanctl_comm_parity = C_PR_ODD;
else
sc->sc_chanctl_comm_parity = C_PR_EVEN;
} else
sc->sc_chanctl_comm_parity = C_PR_NONE;
/*
* Initialize flow control pins depending on the current flow control
* mode.
*/
if (ISSET(t->c_cflag, CRTSCTS)) {
sc->sc_rs_control_dtr = C_RS_DTR;
sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS;
} else if (ISSET(t->c_cflag, MDMBUF)) {
sc->sc_rs_control_dtr = 0;
sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR;
} else {
/*
* If no flow control, then always set RTS. This will make
* the other side happy if it mistakenly thinks we're doing
* RTS/CTS flow control.
*/
sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS;
sc->sc_chanctl_hw_flow = 0;
if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR))
SET(sc->sc_chanctl_rs_control, C_RS_RTS);
else
CLR(sc->sc_chanctl_rs_control, C_RS_RTS);
}
/* Baud rate. */
sc->sc_chanctl_comm_baud = ospeed;
/* Copy to tty. */
tp->t_ispeed = 0;
tp->t_ospeed = t->c_ospeed;
tp->t_cflag = t->c_cflag;
/*
* Now load the channel control structure.
*/
cz_wait_pci_doorbell(cz, "czparam");
CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud);
CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l);
CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity);
CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow);
CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW);
cz_wait_pci_doorbell(cz, "czparam");
CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
cz_wait_pci_doorbell(cz, "czparam");
/*
* Update the tty layer's idea of the carrier bit, in case we changed
* CLOCAL. We don't hang up here; we only do that by explicit
* request.
*/
rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
(void) (*tp->t_linesw->l_modem)(tp, ISSET(rs_status, C_RS_DCD));
return (0);
}
/*
* czttystart:
*
* Start or restart transmission.
*/
static void
czttystart(struct tty *tp)
{
struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
int s;
s = spltty();
if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
goto out;
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (ISSET(tp->t_state, TS_ASLEEP)) {
CLR(tp->t_state, TS_ASLEEP);
wakeup(&tp->t_outq);
}
selwakeup(&tp->t_wsel);
if (tp->t_outq.c_cc == 0)
goto out;
}
cztty_transmit(sc, tp);
out:
splx(s);
}
/*
* czttystop:
*
* Stop output, e.g., for ^S or output flush.
*/
static void
czttystop(struct tty *tp, int flag)
{
/*
* XXX We don't do anything here, yet. Mostly, I don't know
* XXX exactly how this should be implemented on this device.
* XXX We've given a big chunk of data to the MIPS already,
* XXX and I don't know how we request the MIPS to stop sending
* XXX the data. So, punt for now. --thorpej
*/
}
/*
* cztty_diag:
*
* Issue a scheduled diagnostic message.
*/
static void
cztty_diag(void *arg)
{
struct cztty_softc *sc = arg;
struct cz_softc *cz = CZTTY_CZ(sc);
u_int overflows, parity_errors, framing_errors;
int s;
s = spltty();
overflows = sc->sc_overflows;
sc->sc_overflows = 0;
parity_errors = sc->sc_parity_errors;
sc->sc_parity_errors = 0;
framing_errors = sc->sc_framing_errors;
sc->sc_framing_errors = 0;
sc->sc_errors = 0;
splx(s);
log(LOG_WARNING,
"%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n",
cz->cz_dev.dv_xname, sc->sc_channel,
overflows, overflows == 1 ? "" : "s",
parity_errors,
framing_errors, framing_errors == 1 ? "" : "s");
}
const struct cdevsw cz_cdevsw = {
czttyopen, czttyclose, czttyread, czttywrite, czttyioctl,
czttystop, czttytty, czttypoll, nommap, ttykqfilter, D_TTY
};
/*
* tx and rx ring buffer size macros:
*
* The transmitter and receiver both use ring buffers. For each one, there
* is a get (consumer) and a put (producer) offset. The get value is the
* next byte to be read from the ring, and the put is the next one to be
* put into the ring. get == put means the ring is empty.
*
* For each ring, the firmware controls one of (get, put) and this driver
* controls the other. For transmission, this driver updates put to point
* past the valid data, and the firmware moves get as bytes are sent. Likewise
* for receive, the driver controls put, and this driver controls get.
*/
#define TX_MOVEABLE(g, p, s) (((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p)))
#define RX_MOVEABLE(g, p, s) (((g) > (p)) ? ((s) - (g)) : ((p) - (g)))
/*
* cztty_transmit()
*
* Look at the tty for this port and start sending.
*/
static int
cztty_transmit(struct cztty_softc *sc, struct tty *tp)
{
struct cz_softc *cz = CZTTY_CZ(sc);
u_int move, get, put, size, address;
#ifdef HOSTRAMCODE
int error, done = 0;
#else
int done = 0;
#endif
size = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE);
get = CZTTY_BUF_READ(sc, BUFCTL_TX_GET);
put = CZTTY_BUF_READ(sc, BUFCTL_TX_PUT);
address = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR);
while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){
#ifdef HOSTRAMCODE
if (0) {
move = min(tp->t_outq.c_cc, move);
error = q_to_b(&tp->t_outq, 0, move);
if (error != move) {
printf("%s: channel %d: error moving to "
"transmit buf\n", cz->cz_dev.dv_xname,
sc->sc_channel);
move = error;
}
} else {
#endif
move = min(ndqb(&tp->t_outq, 0), move);
bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh,
address + put, tp->t_outq.c_cf, move);
ndflush(&tp->t_outq, move);
#ifdef HOSTRAMCODE
}
#endif
put = ((put + move) % size);
done = 1;
}
if (done) {
CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put);
}
return (done);
}
static int
cztty_receive(struct cztty_softc *sc, struct tty *tp)
{
struct cz_softc *cz = CZTTY_CZ(sc);
u_int get, put, size, address;
int done = 0, ch;
size = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE);
get = CZTTY_BUF_READ(sc, BUFCTL_RX_GET);
put = CZTTY_BUF_READ(sc, BUFCTL_RX_PUT);
address = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR);
while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) {
#ifdef HOSTRAMCODE
if (hostram) {
ch = ((char *)fifoaddr)[get];
} else {
#endif
ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh,
address + get);
#ifdef HOSTRAMCODE
}
#endif
(*tp->t_linesw->l_rint)(ch, tp);
get = (get + 1) % size;
done = 1;
}
if (done) {
CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get);
}
return (done);
}