NetBSD/sys/dev/ic/rrunner.c

2377 lines
64 KiB
C

/* $NetBSD: rrunner.c,v 1.2 1998/05/17 16:46:28 kml Exp $ */
/*
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code contributed to The NetBSD Foundation by Kevin M. Lahey
* of the Numerical Aerospace Simulation Facility, NASA Ames Research
* Center.
*
* Partially based on a HIPPI driver written by Essential Communications
* Corporation. Thanks to Jason Thorpe, Matt Jacob, and Fred Templin
* for invaluable advice and encouragement!
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/select.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <net/if_hippi.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/ic/rrunnerreg.h>
#include <dev/ic/rrunnervar.h>
/*
#define ESH_PRINTF
*/
/* Autoconfig defintion of driver back-end */
extern struct cfdriver esh_cd;
struct esh_softc *esh_softc_debug; /* for gdb */
u_int32_t write_len;
u_int32_t max_write_len;
void eshinit __P((struct esh_softc *));
int eshioctl __P((struct ifnet *, u_long, caddr_t));
void eshread __P((struct esh_softc *, u_int16_t, int));
void eshreset __P((struct esh_softc *));
void eshstart __P((struct ifnet *));
static int eshstatus __P((struct esh_softc *));
void eshstop __P((struct esh_softc *));
static void eshshutdown __P((void *));
void eshwatchdog __P((struct ifnet *));
static void esh_send __P((struct esh_softc *));
static void esh_send2 __P((struct esh_softc *));
static void esh_send_cmd __P((struct esh_softc *,
u_int8_t, u_int8_t, u_int8_t));
static void esh_write_addr __P((bus_space_tag_t, bus_space_handle_t,
bus_addr_t, bus_addr_t));
static void esh_init_snap_ring __P((struct esh_softc *));
static void esh_fill_snap_ring __P((struct esh_softc *));
static void esh_reset_runcode __P((struct esh_softc *));
static void eshstart_cleanup __P((struct esh_softc *, u_int16_t, int));
static u_int32_t esh_read_eeprom __P((struct esh_softc *, u_int32_t));
static int esh_write_eeprom __P((struct esh_softc *,
u_int32_t, u_int32_t));
static void esh_print_ring __P((struct esh_softc *, char *,
struct esh_ring_ctl *, int));
static void esh_dma_sync __P((struct esh_softc *, void *,
int, int, int, int, int, int));
#ifdef ESH_PRINTF
static int esh_check __P((struct esh_softc *));
#endif
/*
* Back-end attach and configure. Allocate DMA space and initialize
* all structures.
*/
void
eshconfig(sc)
struct esh_softc *sc;
{
struct ifnet *ifp = &sc->sc_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t misc_host_ctl;
u_int32_t misc_local_ctl;
u_int32_t header_format;
u_int32_t ula_tmp;
bus_size_t size;
int rseg;
int error;
int i;
(volatile) sc->sc_flags = 0;
/*
* Allocate and divvy up some host side memory that can hold
* data structures that will be DMA'ed over to the NIC
*/
sc->sc_dma_size = sizeof(struct rr_gen_info) +
sizeof(struct rr_ring_ctl) * RR_ULP_COUNT +
max(sizeof(struct rr_descr) * RR_SEND_RING_SIZE,
sizeof(struct rr2_descr) * RR2_SEND_RING_SIZE) +
max(sizeof(struct rr_descr) * RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr2_descr) * RR2_SNAP_RECV_RING_SIZE) +
sizeof(struct rr_event) * RR_EVENT_RING_SIZE;
/* Configure the interface */
error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_dma_size,
0, RR_DMA_BOUNDRY, &sc->sc_dmaseg, 1,
&rseg, BUS_DMA_NOWAIT);
if (error) {
printf("%s: couldn't allocate space for host-side"
"data structures\n", sc->sc_dev.dv_xname);
return;
}
if (rseg > 1) {
printf("%s: contiguous memory not available\n",
sc->sc_dev.dv_xname);
goto bad_dmamem_map;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg,
sc->sc_dma_size, &sc->sc_dma_addr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error) {
printf("%s: couldn't map memory for host-side structures\n",
sc->sc_dev.dv_xname);
goto bad_dmamem_map;
}
if (bus_dmamap_create(sc->sc_dmat, sc->sc_dma_size,
1, sc->sc_dma_size, RR_DMA_BOUNDRY,
BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT,
&sc->sc_dma)) {
printf("%s: couldn't create DMA map\n", sc->sc_dev.dv_xname);
goto bad_dmamap_create;
}
if (bus_dmamap_load(sc->sc_dmat, sc->sc_dma, sc->sc_dma_addr,
sc->sc_dma_size, NULL, BUS_DMA_NOWAIT)) {
printf("%s: couldn't load DMA map\n", sc->sc_dev.dv_xname);
goto bad_dmamap_load;
}
bzero(sc->sc_dma_addr, sc->sc_dma_size);
sc->sc_gen_info_dma = sc->sc_dma->dm_segs->ds_addr;
sc->sc_gen_info = (struct rr_gen_info *) sc->sc_dma_addr;
size = sizeof(struct rr_gen_info);
sc->sc_recv_ring_table_dma = sc->sc_dma->dm_segs->ds_addr + size;
sc->sc_recv_ring_table =
(struct rr_ring_ctl *) (sc->sc_dma_addr + size);
size += sizeof(struct rr_ring_ctl) * RR_ULP_COUNT;
sc->sc_send_ring_dma = sc->sc_dma->dm_segs->ds_addr + size;
sc->sc_send_ring = (struct rr_descr *) (sc->sc_dma_addr + size);
sc->sc2_send_ring = (struct rr2_descr *) (sc->sc_dma_addr + size);
size += max(sizeof(struct rr_descr) * RR_SEND_RING_SIZE,
sizeof(struct rr2_descr) * RR2_SEND_RING_SIZE);
sc->sc_snap_recv_ring_dma = sc->sc_dma->dm_segs->ds_addr + size;
sc->sc_snap_recv_ring = (struct rr_descr *) (sc->sc_dma_addr + size);
sc->sc2_snap_recv_ring = (struct rr2_descr *) (sc->sc_dma_addr + size);
size += max(sizeof(struct rr_descr) * RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr2_descr) * RR2_SNAP_RECV_RING_SIZE);
sc->sc_event_ring_dma = sc->sc_dma->dm_segs->ds_addr + size;
sc->sc_event_ring = (struct rr_event *) (sc->sc_dma_addr + size);
size += sizeof(struct rr_event) * RR_EVENT_RING_SIZE;
#ifdef DIAGNOSTIC
if (size > sc->sc_dmaseg.ds_len) {
printf("%s: bogus size calculation\n", sc->sc_dev.dv_xname);
goto bad_other;
}
#endif
/*
* Allocate DMA maps for transfers. We do this here and now so we
* won't have to wait for them in the middle of sending something.
*
* XXX: Note that we only allocate space for one segment at a time.
* With IP, we will be mapping mbufs (bus_dmamap_load_mbuf was
* not finished at the time of this writing), so we'll only need
* room for a cluster at a time. We'll need to change this later,
* but allocating 256 or more segments for each dmamap seemed
* a little over the top!
*/
for (i = 0; i < max(RR_SEND_RING_SIZE, RR2_SEND_RING_SIZE); i++)
if (bus_dmamap_create(sc->sc_dmat, RR_DMA_MAX, 1,
RR_DMA_MAX, RR_DMA_BOUNDRY,
BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT,
&sc->sc_send.ec_dma[i])) {
printf("%s: failed bus_dmamap_create\n",
sc->sc_dev.dv_xname);
for (i--; i >= 0; i--)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_send.ec_dma[i]);
goto bad_other;
}
sc->sc_send.ec_descr = sc->sc_send_ring;
sc->sc_send.ec2_descr = sc->sc2_send_ring;
for (i = 0; i < RR_MAX_SNAP_RECV_RING_SIZE; i++)
if (bus_dmamap_create(sc->sc_dmat, RR_DMA_MAX, 1, RR_DMA_MAX,
RR_DMA_BOUNDRY,
BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT,
&sc->sc_snap_recv.ec_dma[i])) {
printf("%s: failed bus_dmamap_create\n",
sc->sc_dev.dv_xname);
for (i--; i >= 0; i--)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_snap_recv.ec_dma[i]);
goto bad_ring_dmamap_create;
}
/*
* If this is a coldboot, the NIC RunCode should be operational.
* If it is a warmboot, it may or may not be operational.
* Just to be sure, we'll stop the RunCode and reset everything.
*/
/* Halt the processor (preserve NO_SWAP, if set) */
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
(misc_host_ctl & RR_MH_NO_SWAP) | RR_MH_HALT_PROC);
/* Make the EEPROM readable */
misc_local_ctl = bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL);
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL,
misc_local_ctl & ~(RR_LC_FAST_PROM | RR_LC_ADD_SRAM |
RR_LC_PARITY_ON));
/* Extract interesting information from the EEPROM: */
header_format = esh_read_eeprom(sc, RR_EE_HEADER_FORMAT);
if (header_format != RR_EE_HEADER_FORMAT_MAGIC) {
printf("%s: bogus EEPROM header format value %x\n",
sc->sc_dev.dv_xname, header_format);
goto bad_other;
}
/*
* As it is now, the runcode version in the EEPROM doesn't
* reflect the actual runcode version number. That is only
* available once the runcode starts up. We should probably
* change the firmware update code to modify this value,
* but Essential itself doesn't do it right now.
*/
sc->sc_sram_size = 4 * esh_read_eeprom(sc, RR_EE_SRAM_SIZE);
sc->sc_runcode_start = esh_read_eeprom(sc, RR_EE_RUNCODE_START);
sc->sc_runcode_version = esh_read_eeprom(sc, RR_EE_RUNCODE_VERSION);
sc->sc_pci_latency = esh_read_eeprom(sc, RR_EE_PCI_LATENCY);
sc->sc_pci_lat_gnt = esh_read_eeprom(sc, RR_EE_PCI_LAT_GNT);
/* General tuning values */
sc->sc_tune.rt_mode_and_status =
esh_read_eeprom(sc, RR_EE_MODE_AND_STATUS);
sc->sc_tune.rt_conn_retry_count =
esh_read_eeprom(sc, RR_EE_CONN_RETRY_COUNT);
sc->sc_tune.rt_conn_retry_timer =
esh_read_eeprom(sc, RR_EE_CONN_RETRY_TIMER);
sc->sc_tune.rt_conn_timeout =
esh_read_eeprom(sc, RR_EE_CONN_TIMEOUT);
sc->sc_tune.rt_interrupt_timer =
esh_read_eeprom(sc, RR_EE_INTERRUPT_TIMER);
sc->sc_tune.rt_tx_timeout =
esh_read_eeprom(sc, RR_EE_TX_TIMEOUT);
sc->sc_tune.rt_rx_timeout =
esh_read_eeprom(sc, RR_EE_RX_TIMEOUT);
sc->sc_tune.rt_stats_timer =
esh_read_eeprom(sc, RR_EE_STATS_TIMER);
sc->sc_tune.rt_stats_timer = ESH_STATS_TIMER_DEFAULT;
/* DMA tuning values */
sc->sc_tune.rt_pci_state =
esh_read_eeprom(sc, RR_EE_PCI_STATE);
sc->sc_tune.rt_dma_write_state =
esh_read_eeprom(sc, RR_EE_DMA_WRITE_STATE);
sc->sc_tune.rt_dma_read_state =
esh_read_eeprom(sc, RR_EE_DMA_READ_STATE);
sc->sc_tune.rt_driver_param =
esh_read_eeprom(sc, RR_EE_DRIVER_PARAM);
/*
* Snag the ULA. The first two bytes are reserved.
* We don't really use it immediately, but it would be good to
* have for building IPv6 addresses, etc.
*/
ula_tmp = esh_read_eeprom(sc, RR_EE_ULA_HI);
sc->sc_ula[0] = (ula_tmp >> 8) & 0xff;
sc->sc_ula[1] = ula_tmp & 0xff;
ula_tmp = esh_read_eeprom(sc, RR_EE_ULA_LO);
sc->sc_ula[2] = (ula_tmp >> 24) & 0xff;
sc->sc_ula[3] = (ula_tmp >> 16) & 0xff;
sc->sc_ula[4] = (ula_tmp >> 8) & 0xff;
sc->sc_ula[5] = ula_tmp & 0xff;
/* Reset EEPROM readability */
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL, misc_local_ctl);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = eshstart;
ifp->if_ioctl = eshioctl;
ifp->if_watchdog = eshwatchdog;
ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_NOARP;
if_attach(ifp);
hippi_ifattach(ifp, sc->sc_ula);
/* Some more configuration? */
sc->sc_misaligned_bufs = sc->sc_bad_lens = 0;
#if NBPFILTER > 0
bpfattach(&sc->sc_if.if_bpf, ifp, DLT_HIPPI,
sizeof(struct hippi_header));
#endif
return;
bad_ring_dmamap_create:
for (i = 0; i < RR_MAX_SEND_RING_SIZE; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_send.ec_dma[i]);
bad_other:
bus_dmamap_unload(sc->sc_dmat, sc->sc_dma);
bad_dmamap_load:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dma);
bad_dmamap_create:
bus_dmamem_unmap(sc->sc_dmat, sc->sc_dma_addr, sc->sc_dma_size);
bad_dmamem_map:
bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
return;
}
/*
* Bring device up.
*
* Assume that the on-board processor has already been stopped,
* the rings have been cleared of valid buffers, and everything
* is pretty much as it was when the system started.
*
* Stop the processor (just for good measure), clear the SRAM,
* reload the boot code, and start it all up again, with the PC
* pointing at the boot code. Once the boot code has had a chance
* to come up, adjust all of the appropriate parameters, and send
* the 'start firmware' command.
*
* The NIC won't actually be up until it gets an interrupt with an
* event indicating things are up.
*/
void
eshinit(sc)
register struct esh_softc *sc;
{
register struct ifnet *ifp = &sc->sc_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct rr_ring_ctl *ring;
u_int32_t misc_host_ctl;
u_int32_t misc_local_ctl;
u_int32_t value;
u_int32_t mode;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma, 0, sc->sc_dma_size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Halt the processor (preserve NO_SWAP, if set) */
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
(misc_host_ctl & RR_MH_NO_SWAP)
| RR_MH_HALT_PROC | RR_MH_CLEAR_INT);
/* Make the EEPROM readable */
misc_local_ctl = bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL);
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL,
misc_local_ctl & ~(RR_LC_FAST_PROM |
RR_LC_ADD_SRAM |
RR_LC_PARITY_ON));
/* Reset DMA */
bus_space_write_4(iot, ioh, RR_RX_STATE, RR_RS_RESET);
bus_space_write_4(iot, ioh, RR_TX_STATE, 0);
bus_space_write_4(iot, ioh, RR_DMA_READ_STATE, RR_DR_RESET);
bus_space_write_4(iot, ioh, RR_DMA_WRITE_STATE, RR_DW_RESET);
bus_space_write_4(iot, ioh, RR_PCI_STATE, 0);
bus_space_write_4(iot, ioh, RR_TIMER, 0);
bus_space_write_4(iot, ioh, RR_TIMER_REF, 0);
/*
* Reset the assist register that the documentation suggests
* resetting. Too bad that the docs don't mention anything
* else about the register!
*/
bus_space_write_4(iot, ioh, 0x15C, 1);
/* Clear BIST, set the PC to the start of the code and let 'er rip */
value = bus_space_read_4(iot, ioh, RR_PCI_BIST);
bus_space_write_4(iot, ioh, RR_PCI_BIST, (value & ~0xff) | 8);
sc->sc_bist_write(sc, 0);
esh_reset_runcode(sc);
bus_space_write_4(iot, ioh, RR_PROC_PC, sc->sc_runcode_start);
bus_space_write_4(iot, ioh, RR_PROC_BREAKPT, 0x00000001);
misc_host_ctl &= ~RR_MH_HALT_PROC;
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL, misc_host_ctl);
delay(1000); /* Need 500 us, but we'll give it more */
value = sc->sc_bist_read(sc);
#ifdef ESH_PRINTF
printf("%s: BIST is %x\n", sc->sc_dev.dv_xname, value);
eshstatus(sc);
#endif
/* RunCode is up. Initialize NIC */
esh_write_addr(iot, ioh, RR_GEN_INFO_PTR, sc->sc_gen_info_dma);
esh_write_addr(iot, ioh, RR_RECV_RING_PTR, sc->sc_recv_ring_table_dma);
sc->sc_event_consumer = 0;
bus_space_write_4(iot, ioh, RR_EVENT_CONSUMER, sc->sc_event_consumer);
sc->sc_event_producer = bus_space_read_4(iot, ioh, RR_EVENT_PRODUCER);
sc->sc_cmd_producer = RR_INIT_CMD;
sc->sc_cmd_consumer = 0;
mode = bus_space_read_4(iot, ioh, RR_MODE_AND_STATUS);
mode |= (RR_MS_WARNINGS |
RR_MS_ERR_TERM |
RR_MS_NO_RESTART |
RR_MS_SWAP_DATA);
bus_space_write_4(iot, ioh, RR_MODE_AND_STATUS, mode);
/* Set tuning parameters */
bus_space_write_4(iot, ioh, RR_CONN_RETRY_COUNT,
sc->sc_tune.rt_conn_retry_count);
bus_space_write_4(iot, ioh, RR_CONN_RETRY_TIMER,
sc->sc_tune.rt_conn_retry_timer);
bus_space_write_4(iot, ioh, RR_CONN_TIMEOUT,
sc->sc_tune.rt_conn_timeout);
bus_space_write_4(iot, ioh, RR_INTERRUPT_TIMER,
sc->sc_tune.rt_interrupt_timer);
bus_space_write_4(iot, ioh, RR_TX_TIMEOUT,
sc->sc_tune.rt_tx_timeout);
bus_space_write_4(iot, ioh, RR_RX_TIMEOUT,
sc->sc_tune.rt_rx_timeout);
bus_space_write_4(iot, ioh, RR_STATS_TIMER,
sc->sc_tune.rt_stats_timer);
bus_space_write_4(iot, ioh, RR_PCI_STATE,
sc->sc_tune.rt_pci_state);
bus_space_write_4(iot, ioh, RR_DMA_WRITE_STATE,
sc->sc_tune.rt_dma_write_state);
bus_space_write_4(iot, ioh, RR_DMA_READ_STATE,
sc->sc_tune.rt_dma_read_state);
sc->sc_runcode_version =
bus_space_read_4(iot, ioh, RR_RUNCODE_VERSION);
sc->sc_version = sc->sc_runcode_version >> 16;
if (sc->sc_version != 1 && sc->sc_version != 2) {
printf("%s: bad version number %d in runcode\n",
sc->sc_dev.dv_xname, sc->sc_version);
return;
}
if (sc->sc_version == 1) {
sc->sc_options = 0;
} else {
value = bus_space_read_4(iot, ioh, RR_ULA);
sc->sc_options = value >> 16;
}
printf("%s: startup runcode version %d.%d.%d, options %x\n",
sc->sc_dev.dv_xname,
sc->sc_version,
(sc->sc_runcode_version >> 8) & 0xff,
sc->sc_runcode_version & 0xff,
sc->sc_options);
/* Initialize the general ring information */
bzero(sc->sc_recv_ring_table,
sizeof(struct rr_ring_ctl) * RR_ULP_COUNT);
ring = &sc->sc_gen_info->ri_event_ring_ctl;
ring->rr_ring_addr = sc->sc_event_ring_dma;
ring->rr_entry_size = sizeof(struct rr_event);
ring->rr_free_bufs = RR_EVENT_RING_SIZE / 4;
ring->rr_entries = RR_EVENT_RING_SIZE;
ring->rr_prod_index = 0;
ring = &sc->sc_gen_info->ri_cmd_ring_ctl;
ring->rr_free_bufs = 8;
ring->rr_entry_size = sizeof(union rr_cmd);
ring->rr_prod_index = RR_INIT_CMD;
ring = &sc->sc_gen_info->ri_send_ring_ctl;
ring->rr_ring_addr = sc->sc_send_ring_dma;
if (sc->sc_version == 1) {
ring->rr_free_bufs = RR_RR_DONT_COMPLAIN;
} else {
ring->rr_free_bufs = 0;
}
if (sc->sc_options & RR_OP_LONG_TX) {
ring->rr_entries = RR2_SEND_RING_SIZE;
ring->rr_entry_size = sizeof(struct rr2_descr);
} else {
ring->rr_entries = RR_SEND_RING_SIZE;
ring->rr_entry_size = sizeof(struct rr_descr);
}
ring->rr_prod_index = sc->sc_send.ec_producer =
sc->sc_send.ec_consumer = 0;
sc->sc_snap_recv.ec_descr = sc->sc_snap_recv_ring;
sc->sc_snap_recv.ec2_descr = sc->sc2_snap_recv_ring;
sc->sc_snap_recv.ec_consumer = sc->sc_snap_recv.ec_producer = 0;
/* Initialize the ring of descriptors as necessary */
if (sc->sc_version == 2 && (sc->sc_options & RR_OP_LONG_TX)) {
int i;
for (i = 0; i < RR2_SEND_RING_SIZE; i++)
sc->sc_snap_recv.ec2_descr[i].rd_dma_state = RR_DM_TX;
}
#ifdef ESH_PRINTF
eshstatus(sc);
#endif
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma, 0, sc->sc_dma_size,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
esh_send_cmd(sc, RR_CC_START_RUNCODE, 0, 0);
#ifdef ESH_PRINTF
eshstatus(sc);
#endif
/* Set up the watchdog to make sure something happens! */
sc->sc_watchdog = 0;
ifp->if_timer = 5;
/*
* Can't actually turn on interface until we see some events,
* so set initialized flag, but don't start sending.
*/
(volatile) sc->sc_flags = ESH_FL_INITIALIZED;
}
/*
* Handle interrupts. We only get interrupts to indicate that there
* are events to process, so this is all just event handling code.
*/
int
eshintr(arg)
void *arg;
{
register struct esh_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_if;
u_int32_t rc_offsets;
u_int32_t misc_host_ctl;
int rc_send_consumer = 0; /* shut up compiler */
int rc_snap_ring_consumer = 0; /* ditto */
int start_consumer;
int ret = 0;
/* Check to see if this is our interrupt. */
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
if ((misc_host_ctl & RR_MH_INTERRUPT) == 0)
return 0;
rc_offsets = bus_space_read_4(iot, ioh, RR_EVENT_PRODUCER);
sc->sc_event_producer = rc_offsets & 0xff;
if (sc->sc_version == 2) {
rc_send_consumer = (rc_offsets >> 8) & 0xff;
rc_snap_ring_consumer = (rc_offsets >> 16) & 0xff;
}
start_consumer = sc->sc_event_consumer;
/* Take care of synchronizing DMA with entries we read... */
esh_dma_sync(sc, sc->sc_event_ring,
start_consumer, sc->sc_event_producer,
RR_EVENT_RING_SIZE, sizeof(struct rr_event), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (sc->sc_event_consumer != sc->sc_event_producer) {
struct rr_event *event =
&sc->sc_event_ring[sc->sc_event_consumer];
#ifdef ESH_PRINTF
printf("%s: event code %x, index %x\n", sc->sc_dev.dv_xname,
event->re_code, event->re_index);
#endif
ret = 1; /* some action was taken by card */
switch(event->re_code) {
case RR_EC_RUNCODE_UP:
printf("%s: firmware up\n", sc->sc_dev.dv_xname);
(volatile) sc->sc_flags |= ESH_FL_RUNCODE_UP;
esh_send_cmd(sc, RR_CC_WATCHDOG, 0, 0);
esh_send_cmd(sc, RR_CC_UPDATE_STATS, 0, 0);
esh_init_snap_ring(sc);
break;
case RR_EC_WATCHDOG:
/*
* Record the watchdog event.
* This is checked by eshwatchdog
*/
sc->sc_watchdog = 1;
break;
case RR_EC_SET_CMD_CONSUMER:
sc->sc_cmd_consumer = event->re_index;
break;
case RR_EC_LINK_ON:
printf("%s: link up\n", sc->sc_dev.dv_xname);
(volatile) sc->sc_flags |= ESH_FL_LINK_UP;
esh_send_cmd(sc, RR_CC_WATCHDOG, 0, 0);
esh_send_cmd(sc, RR_CC_UPDATE_STATS, 0, 0);
if (((volatile) sc->sc_flags) & ESH_FL_RRING_UP) {
/* Interface is now `running', with no output active. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* Attempt to start output, if any. */
eshstart(ifp);
}
break;
case RR_EC_LINK_OFF:
(volatile) sc->sc_flags &= ~ESH_FL_LINK_UP;
break;
/*
* These are all unexpected. We need to handle all
* of them, though.
*/
#define CALLOUT(a) case a: \
printf("Event " #a " received -- ring %x index %x timestamp %x\n", \
event->re_ring, event->re_index, event->re_timestamp); \
break;
case RR_EC_INVALID_CMD:
case RR_EC_INTERNAL_ERROR:
case RR2_EC_INTERNAL_ERROR:
case RR_EC_BAD_SEND_RING:
case RR_EC_BAD_SEND_BUF:
case RR_EC_BAD_SEND_DESC:
case RR_EC_RING_ENABLE_ERR:
case RR_EC_RING_DISABLED:
case RR_EC_RECV_RING_FLUSH:
case RR_EC_RECV_ERROR_INFO:
case RR_EC_BAD_RECV_BUF:
case RR_EC_BAD_RECV_DESC:
case RR_EC_BAD_RECV_RING:
case RR_EC_UNIMPLEMENTED:
printf("%s: unexpected event %x;"
"shutting down interface\n",
sc->sc_dev.dv_xname, event->re_code);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
eshstatus(sc);
break;
CALLOUT(RR_EC_OUT_OF_BUF);
CALLOUT(RR_EC_NO_RING_FOR_ULP);
CALLOUT(RR_EC_REJECTING); /* dropping packets */
#undef CALLOUT
/* Send events */
case RR_EC_PACKET_SENT: /* not used in firmware 2.x */
ifp->if_opackets++;
/* FALLTHROUGH */
case RR_EC_SET_SND_CONSUMER:
assert(sc->sc_version == 1);
/* FALLTHROUGH */
case RR_EC_SEND_RING_LOW:
eshstart_cleanup(sc, event->re_index, 0);
break;
case RR_EC_CONN_REJECT:
case RR_EC_CAMPON_TIMEOUT:
case RR_EC_CONN_TIMEOUT:
case RR_EC_DISCONN_ERR:
case RR_EC_INTERNAL_PARITY:
case RR_EC_TX_IDLE:
case RR_EC_SEND_LINK_OFF:
eshstart_cleanup(sc, event->re_index, event->re_code);
break;
/* Receive events */
case RR_EC_RING_ENABLED:
(volatile) sc->sc_flags |= ESH_FL_RRING_UP;
assert(event->re_ring == HIPPI_ULP_802);
/* XXX: need to pass in rc consumer: */
esh_fill_snap_ring(sc);
if ((volatile) sc->sc_flags & ESH_FL_LINK_UP) {
/*
* Interface is now `running', with no
* output active.
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* Attempt to start output, if any. */
eshstart(ifp);
}
break;
case RR_EC_RECV_RING_LOW:
case RR_EC_RECV_RING_OUT:
case RR_EC_SET_RECV_CONSUMER:
case RR_EC_PACKET_RECVED:
eshread(sc, event->re_index, 0);
break;
case RR_EC_PACKET_DISCARDED:
case RR_EC_PARITY_ERR:
case RR_EC_LLRC_ERR:
case RR_EC_PKT_LENGTH_ERR:
case RR_EC_IP_HDR_CKSUM_ERR:
case RR_EC_DATA_CKSUM_ERR:
case RR_EC_SHORT_BURST_ERR:
case RR_EC_RECV_LINK_OFF:
case RR_EC_FLAG_SYNC_ERR:
case RR_EC_FRAME_ERR:
case RR_EC_RECV_IDLE:
case RR_EC_STATE_TRANS_ERR:
case RR_EC_NO_READY_PULSE:
eshread(sc, event->re_index, event->re_code);
break;
/*
* Statistics events can be ignored for now. They might become
* necessary if we have to deliver stats on demand, rather than
* just returning the statistics block of memory.
*/
case RR_EC_STATS_UPDATE:
case RR_EC_STATS_RETRIEVED:
case RR_EC_TRACE:
break;
default:
printf("%s: Bogus event code %x, "
"ring %x, index %x, timestamp %x\n",
sc->sc_dev.dv_xname, event->re_code,
event->re_ring, event->re_index,
event->re_timestamp);
break;
}
sc->sc_event_consumer = NEXT_EVENT(sc->sc_event_consumer);
}
/* Do the receive and send ring processing for version 2 RunCode */
if (sc->sc_version == 2) {
if (sc->sc_send.ec_consumer != rc_send_consumer) {
eshstart_cleanup(sc, rc_send_consumer, 0);
ret = 1;
}
if (sc->sc_snap_recv.ec_consumer != rc_snap_ring_consumer) {
eshread(sc, rc_snap_ring_consumer, 0);
ret = 1;
}
rc_offsets = (sc->sc_snap_recv.ec_consumer << 16) |
(sc->sc_send.ec_consumer << 8) | sc->sc_event_consumer;
} else {
rc_offsets = sc->sc_event_consumer;
}
esh_dma_sync(sc, sc->sc_event_ring,
start_consumer, sc->sc_event_producer,
RR_EVENT_RING_SIZE, sizeof(struct rr_event), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Clear interrupt */
bus_space_write_4(iot, ioh, RR_EVENT_CONSUMER, rc_offsets);
return (ret);
}
/*
* Start output on the interface. Always called as splnet().
* Check to see if there are any mbufs that didn't get sent the
* last time this was called. If there are none, get more mbufs
* and send 'em.
*
* For now, we only send one packet at a time.
*/
void
eshstart(ifp)
struct ifnet *ifp;
{
register struct esh_softc *sc = ifp->if_softc;
struct mbuf *m, *m0;
u_int32_t m_write_len;
struct esh_ring_ctl *send = &sc->sc_send;
/* Don't transmit if interface is busy or not running */
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
#ifdef ESH_PRINTF
if (esh_check(sc))
return;
#endif
/* If we have sent the current packet, get another */
if (!(m = send->ec_cur_mbuf)) {
struct mbuf *n, *n0;
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0) /* not really needed */
return;
#if NBPFILTER > 0
if (ifp->if_bpf) {
/*
* On output, the raw packet has a eight-byte CCI
* field prepended. On input, there is no such field.
* The bpf expects the packet to look the same in both
* places, so we temporarily lop off the prepended CCI
* field here, then replace it. Ugh.
*
* XXX: Need to use standard mbuf manipulation
* functions, first mbuf may be less than
* 8 bytes long.
*/
m->m_len -= 8;
m->m_data += 8;
m->m_pkthdr.len -= 8;
bpf_mtap(ifp->if_bpf, m);
m->m_len += 8;
m->m_data -= 8;
m->m_pkthdr.len += 8;
}
#endif
/*
* Version 1 over the firmware sent an event each
* time it sent out a packet. Later versions do not
* (which results in a considerable speedup), so we
* have to keep track here.
*/
if (sc->sc_version != 1)
sc->sc_if.if_opackets++;
m_write_len = write_len = m->m_pkthdr.len;
if (write_len > max_write_len)
max_write_len = write_len;
/*
* XXX: Ouch: The NIC can only send word-aligned
* buffers, and only the last buffer in the packet can
* have a length that is not a multiple of four!
*
* Here we traverse the packet, pick out the bogus mbufs,
* and fix 'em if possible. The fix is amazingly expensive,
* so we sure hope that this is a rare occurance (it seems to
* be). Note that we can really play pretty rough with this
* stuff, since the send routine doesn't need mbuf packet
* headers or any of that silly stuff...
*/
for (n0 = n = m; n; n = n->m_next) {
while (n && n->m_len == 0) {
MFREE(n, m0);
if (n == m)
n = n0 = m = m0;
else
n = n0->m_next = m0;
}
if (n == NULL)
break;
if (mtod(n, long) & 3 || (n->m_next && n->m_len & 3)) {
/* Gotta clean it up */
struct mbuf *o;
u_int32_t len;
sc->sc_misaligned_bufs++;
#ifdef ESH_PRINTF
assert(n != NULL);
printf("eshstart: adjusting misaligned "
"mbuf %p, len %x\n",
mtod(n, void *), n->m_len);
#endif
MGETHDR(o, M_DONTWAIT, MT_DATA);
if (!o)
goto bogosity;
MCLGET(o, M_DONTWAIT);
if (!(o->m_flags & M_EXT)) {
MFREE(o, m0);
goto bogosity;
}
/*
* XXX: Copy as much as we can into the
* cluster. For now we can't have more
* than a cluster in there. May change.
* I'd prefer not to get this
* down-n-dirty, but we have to be able
* to do this kind of funky copy.
*/
len = min(MCLBYTES, m_write_len);
#ifdef ESH_PRINTF
printf("eshstart: using len of %x,"
"o of %p\n",
len, mtod(o, void *));
assert(n->m_len <= len);
assert(len <= MCLBYTES);
#endif
m_copydata(n, 0, len, mtod(o, void *));
m_adj(n, len);
o->m_len = len;
o->m_next = n;
if (n == m)
m = o;
else
n0->m_next = o;
n = o;
}
n0 = n;
m_write_len -= n->m_len;
}
#ifdef ESH_PRINTF
printf("eshstart: m_write_len %d, m %p\n", m_write_len, m);
#endif
send->ec_cur_mbuf = send->ec_cur_pkt = m;
}
if (sc->sc_options & RR_OP_LONG_TX)
esh_send2(sc);
else
esh_send(sc);
return;
bogosity:
printf("%s: eshstart: unable to allocate cluster for "
"mbuf %p, len %x\n",
sc->sc_dev.dv_xname, mtod(m, void *), m->m_len);
m_freem(m);
send->ec_cur_mbuf = m = NULL;
return;
}
/*
* Yeah, this is a little ugly. For some unknown reason, I've decided
* to try to make this driver work for HIPPI, and possibly Giga-E,
* or whatever else is annoying enough to use long descriptors.
* Just trying to switch on all the instances of ec_descr drove
* me nuts, so I broke out the function into esh_send and esh_send2.
* I'm still not convinced I shouldn't yank out all of the
* long descriptor stuff!
*/
static void
esh_send(sc)
struct esh_softc *sc;
{
struct esh_ring_ctl *send = &sc->sc_send;
struct mbuf *m = send->ec_cur_mbuf;
int start_producer = send->ec_producer;
#ifdef ESH_PRINTF
printf("esh_send: producer %x consumer %x m %p\n",
send->ec_producer, send->ec_consumer, m);
#endif
esh_dma_sync(sc, send->ec_descr,
send->ec_producer, send->ec_consumer,
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 1,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (NEXT_SEND(send->ec_producer) != send->ec_consumer && m) {
int offset = send->ec_producer;
int error;
send->ec_m[offset] = m;
error = bus_dmamap_load(sc->sc_dmat, send->ec_dma[offset],
mtod(m, void *), m->m_len,
NULL, BUS_DMA_NOWAIT);
if (error)
panic("%s: eshstart: bus_dmamap_load failed "
"descr %x err %d\n",
sc->sc_dev.dv_xname, offset, error);
/*
* In this implementation, we should only see one segment
* per DMA.
*/
assert(send->ec_dma[offset]->dm_nsegs == 1);
send->ec_descr[offset].rd_buffer_addr =
send->ec_dma[offset]->dm_segs->ds_addr;
send->ec_descr[offset].rd_length =
send->ec_dma[offset]->dm_segs->ds_len;
send->ec_descr[offset].rd_control = 0;
if (m == send->ec_cur_pkt) {
/* Start of the mbuf... */
send->ec_descr[offset].rd_control |=
RR_CT_PACKET_START;
}
if (!m->m_next) {
send->ec_descr[offset].rd_control |= RR_CT_PACKET_END;
}
#ifdef ESH_PRINTF
printf("esh_send: offset %x buf addr %x len %d "
"control %x m->m_len %d\n",
offset,
send->ec_descr[offset].rd_buffer_addr,
send->ec_descr[offset].rd_length,
send->ec_descr[offset].rd_control, m->m_len);
#endif
/*
* When we have bus_dmamap_load_mbuf, this can be done once at
* the end of the load.
*/
bus_dmamap_sync(sc->sc_dmat, send->ec_dma[offset], 0, m->m_len,
BUS_DMASYNC_PREWRITE);
m = m->m_next;
send->ec_producer = NEXT_SEND(send->ec_producer);
}
esh_dma_sync(sc, send->ec_descr,
start_producer, send->ec_consumer,
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#ifdef ESH_PRINTF
if (m) printf("eshstart: couldn't fit packet in send ring!\n");
#endif
send->ec_cur_mbuf = m;
if (sc->sc_version == 1) {
esh_send_cmd(sc, RR_CC_SET_SEND_PRODUCER,
0, send->ec_producer);
} else {
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_SEND_PRODUCER, send->ec_producer);
}
return;
}
static void
esh_send2(sc)
struct esh_softc *sc;
{
struct esh_ring_ctl *send = &sc->sc_send;
struct mbuf *m = send->ec_cur_mbuf;
int start_producer = send->ec_producer;
esh_dma_sync(sc, send->ec2_descr,
start_producer, send->ec_consumer,
RR2_SEND_RING_SIZE, sizeof(struct rr2_descr), 1,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (NEXT_SEND2(send->ec_producer) != send->ec_consumer && m) {
int offset = send->ec_producer;
int error;
send->ec_m[offset] = m;
error = bus_dmamap_load(sc->sc_dmat, send->ec_dma[offset],
mtod(m, void *), m->m_len,
NULL, BUS_DMA_NOWAIT);
if (error)
panic("%s: eshstart: bus_dmamap_load failed "
"descr %x err %d\n",
sc->sc_dev.dv_xname, offset, error);
/*
* In this implementation, we should only see one segment
* per DMA
*/
assert(send->ec_dma[offset]->dm_nsegs == 1);
/* Load into the descriptors */
send->ec2_descr[offset].rd_buffer_addr =
send->ec_dma[offset]->dm_segs->ds_addr;
send->ec2_descr[offset].rd_length =
send->ec_dma[offset]->dm_segs->ds_len;
send->ec2_descr[offset].rd_control = 0;
if (m == send->ec_cur_pkt) {
/* Start of the mbuf... */
send->ec2_descr[offset].rd_control |=
RR2_CT_PACKET_START;
}
if (!m->m_next) {
send->ec2_descr[offset].rd_control |=
RR2_CT_PACKET_END;
}
/*
* When we have bus_dmamap_load_mbuf, this can be done once at
* the end of the load.
*/
bus_dmamap_sync(sc->sc_dmat, send->ec_dma[offset], 0, m->m_len,
BUS_DMASYNC_PREWRITE);
m = m->m_next;
send->ec_producer = NEXT_SEND2(send->ec_producer);
}
esh_dma_sync(sc, send->ec2_descr,
start_producer, send->ec_consumer,
RR2_SEND_RING_SIZE, sizeof(struct rr2_descr), 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#ifdef ESH_PRINTF
if (m) printf("eshstart: couldn't fit packet in send ring!\n");
#endif
send->ec_cur_mbuf = m;
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_SEND_PRODUCER, send->ec_producer);
return;
}
/*
* Cleanup for the send routine. When the NIC sends us an event to
* let us know that it has consumed our buffers, we need to free the
* buffers and increment our count.
*/
static void
eshstart_cleanup(sc, consumer, error)
register struct esh_softc *sc;
u_int16_t consumer;
int error;
{
struct esh_ring_ctl *send = &sc->sc_send;
struct mbuf *m0; /* garbage for MFREE */
int start_consumer = send->ec_consumer;
int offset;
#ifdef ESH_PRINTF
printf("eshstart_cleanup: consumer %x, send->consumer %x\n",
consumer, send->ec_consumer);
#endif
if (sc->sc_options & RR_OP_LONG_TX)
esh_dma_sync(sc, send->ec2_descr,
send->ec_consumer, consumer,
RR2_SEND_RING_SIZE, sizeof(struct rr2_descr), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
else
esh_dma_sync(sc, send->ec_descr,
send->ec_consumer, consumer,
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (send->ec_consumer != consumer) {
offset = send->ec_consumer;
assert(send->ec_dma[offset]->dm_nsegs);
assert(send->ec_m[offset]);
bus_dmamap_sync(sc->sc_dmat, send->ec_dma[offset],
0, send->ec_m[offset]->m_len,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, send->ec_dma[offset]);
MFREE(send->ec_m[offset], m0);
send->ec_m[offset] = NULL;
send->ec_dma[offset]->dm_nsegs = 0;
if (sc->sc_options & RR_OP_LONG_TX) {
send->ec2_descr[offset].rd_length = 0;
send->ec_consumer = NEXT_SEND2(send->ec_consumer);
} else {
send->ec_descr[offset].rd_length = 0;
send->ec_consumer = NEXT_SEND(send->ec_consumer);
}
}
if (sc->sc_options & RR_OP_LONG_TX)
esh_dma_sync(sc, send->ec2_descr,
start_consumer, consumer,
RR2_SEND_RING_SIZE, sizeof(struct rr2_descr), 0,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
else
esh_dma_sync(sc, send->ec_descr,
start_consumer, consumer,
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 0,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
eshstart(&sc->sc_if);
}
/*
* Read in the current valid entries from the ring and forward
* them to the upper layer protocols. It is possible that we
* haven't received the whole packet yet, in which case we just
* add each of the buffers into the packet until we have the whole
* thing.
*/
void
eshread(sc, consumer, error)
register struct esh_softc *sc;
u_int16_t consumer;
int error;
{
struct ifnet *ifp = &sc->sc_if;
struct esh_ring_ctl *recv = &sc->sc_snap_recv;
struct hippi_header *hh;
int start_consumer = recv->ec_consumer;
u_int16_t control;
if (error)
recv->ec_error = error;
if (sc->sc_options & RR_OP_LONG_TX)
esh_dma_sync(sc, recv->ec2_descr,
start_consumer, consumer,
RR2_SNAP_RECV_RING_SIZE,
sizeof(struct rr2_descr), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
else
esh_dma_sync(sc, recv->ec_descr,
start_consumer, consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (recv->ec_consumer != consumer) {
u_int16_t offset = recv->ec_consumer;
struct mbuf *m;
m = recv->ec_m[offset];
if (sc->sc_options & RR_OP_LONG_RX) {
m->m_len = recv->ec2_descr[offset].rd_length;
control = recv->ec2_descr[offset].rd_control;
} else {
m->m_len = recv->ec_descr[offset].rd_length;
control = recv->ec_descr[offset].rd_control;
}
bus_dmamap_sync(sc->sc_dmat, recv->ec_dma[offset], 0, m->m_len,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, recv->ec_dma[offset]);
#ifdef ESH_PRINTF
printf("eshread: offset %x addr %p len %x flags %x\n",
offset, mtod(m, void *), m->m_len, control);
#endif
if (control & RR_CT_PACKET_START || !recv->ec_cur_mbuf) {
if (recv->ec_cur_pkt) {
m_freem(recv->ec_cur_pkt);
recv->ec_cur_pkt = NULL;
printf("%s: possible skipped packet!\n",
sc->sc_dev.dv_xname);
}
recv->ec_cur_pkt = recv->ec_cur_mbuf = m;
/* allocated buffers all have pkthdrs... */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len;
} else {
if (!recv->ec_cur_pkt)
panic("eshread: no cur_pkt");
recv->ec_cur_mbuf->m_next = m;
recv->ec_cur_mbuf = m;
recv->ec_cur_pkt->m_pkthdr.len += m->m_len;
}
recv->ec_m[offset] = NULL;
if (sc->sc_options & RR_OP_LONG_TX) {
recv->ec2_descr[offset].rd_length = 0;
recv->ec2_descr[offset].rd_buffer_addr = 0;
} else {
recv->ec_descr[offset].rd_length = 0;
recv->ec_descr[offset].rd_buffer_addr = 0;
}
/* Note that we can START and END on the same buffer */
if (control & RR_CT_PACKET_END) { /* XXX: RR2_ matches */
m = recv->ec_cur_pkt;
if (!error && !recv->ec_error) {
/* We have a complete packet, send it up
* the stack...
*/
ifp->if_ipackets++;
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this
* interface. If so, hand off the raw packet
* to BPF.
*/
if (ifp->if_bpf) {
/*
* Incoming packets start with the FP
* data, so no alignment problems
* here...
*/
bpf_mtap(ifp->if_bpf, m);
}
#endif
m = m_pullup(m, sizeof(struct hippi_header *));
hh = mtod(m, struct hippi_header *);
m_adj(m, sizeof(struct hippi_header));
hippi_input(ifp, hh, m);
} else {
ifp->if_ierrors++;
recv->ec_error = 0;
m_freem(m);
}
recv->ec_cur_pkt = recv->ec_cur_mbuf = NULL;
}
if (sc->sc_options & RR_OP_LONG_RX) {
recv->ec2_descr[offset].rd_control = 0;
recv->ec_consumer = NEXT_RECV2(recv->ec_consumer);
} else {
recv->ec_descr[offset].rd_control = 0;
recv->ec_consumer = NEXT_RECV(recv->ec_consumer);
}
}
if (sc->sc_options & RR_OP_LONG_TX)
esh_dma_sync(sc, recv->ec2_descr,
start_consumer, consumer,
RR2_SNAP_RECV_RING_SIZE,
sizeof(struct rr2_descr), 0,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
else
esh_dma_sync(sc, recv->ec_descr,
start_consumer, consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 0,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
esh_fill_snap_ring(sc);
}
/*
* Add the SNAP (IEEE 802) receive ring to the NIC. It is possible
* that we are doing this after resetting the card, in which case
* the structures have already been filled in and we may need to
* resume sending data.
*/
static void
esh_init_snap_ring(sc)
struct esh_softc *sc;
{
struct rr_ring_ctl *ring = sc->sc_recv_ring_table + HIPPI_ULP_802;
int i;
if (ring->rr_entry_size == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
(caddr_t) ring - (caddr_t) sc->sc_dma_addr,
sizeof(ring),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ring->rr_ring_addr = sc->sc_snap_recv_ring_dma;
ring->rr_free_bufs = RR_SNAP_RECV_RING_SIZE / 4;
if (sc->sc_options & RR_OP_LONG_RX) {
ring->rr_entries = RR2_SNAP_RECV_RING_SIZE;
ring->rr_entry_size = sizeof(struct rr2_descr);
} else {
ring->rr_entries = RR_SNAP_RECV_RING_SIZE;
ring->rr_entry_size = sizeof(struct rr_descr);
}
ring->rr_prod_index = sc->sc_snap_recv.ec_producer = 0;
ring->rr_mode = RR_RR_IP;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
(caddr_t) ring - (caddr_t) sc->sc_dma_addr,
sizeof(ring),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
} else {
printf("%s: snap receive ring already initialized!\n",
sc->sc_dev.dv_xname);
}
if (sc->sc_options & RR_OP_LONG_RX) {
struct rr2_descr *d = sc->sc2_snap_recv_ring;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
(caddr_t) d - (caddr_t) sc->sc_dma_addr,
sizeof(struct rr2_descr) *
RR2_SNAP_RECV_RING_SIZE,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bzero(d, sizeof(struct rr2_descr) * RR2_SNAP_RECV_RING_SIZE);
for (i = 0; i < RR2_SNAP_RECV_RING_SIZE; i++)
d[i].rd_dma_state = RR_DM_RX;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
(caddr_t) d - (caddr_t) sc->sc_dma_addr,
sizeof(struct rr2_descr) *
RR2_SNAP_RECV_RING_SIZE,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
esh_send_cmd(sc, RR_CC_ENABLE_RING, HIPPI_ULP_802,
sc->sc_snap_recv.ec_producer);
}
/*
* Fill in the snap ring with more mbuf buffers so that we can
* receive traffic.
*/
static void
esh_fill_snap_ring(sc)
struct esh_softc *sc;
{
struct esh_ring_ctl *recv = &sc->sc_snap_recv;
int count = 0;
int start_producer = recv->ec_producer;
int error;
if (sc->sc_options & RR_OP_LONG_TX)
esh_dma_sync(sc, recv->ec2_descr,
recv->ec_producer, recv->ec_consumer,
RR2_SNAP_RECV_RING_SIZE,
sizeof(struct rr2_descr), 1,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
else
esh_dma_sync(sc, recv->ec_descr,
recv->ec_producer, recv->ec_consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 1,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (((sc->sc_options & RR_OP_LONG_RX) ?
NEXT_RECV2(recv->ec_producer) :
NEXT_RECV(recv->ec_producer)) != recv->ec_consumer) {
int offset = recv->ec_producer;
struct mbuf *m, *m0;
count++;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (!m)
break;
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
MFREE(m, m0);
break;
}
error = bus_dmamap_load(sc->sc_dmat, recv->ec_dma[offset],
mtod(m, void *), MCLBYTES,
NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: esh_fill_recv_ring: bus_dmamap_load "
"failed\toffset %x, error code %d\n",
sc->sc_dev.dv_xname, offset, error);
MFREE(m, m0);
break;
}
/*
* In this implementation, we should only see one segment
* per DMA.
*/
assert(recv->ec_dma[offset]->dm_nsegs == 1);
/*
* Load into the descriptors.
*/
if (sc->sc_options & RR_OP_LONG_RX) {
recv->ec2_descr[offset].rd_buffer_addr =
recv->ec_dma[offset]->dm_segs->ds_addr;
recv->ec2_descr[offset].rd_length =
recv->ec_dma[offset]->dm_segs->ds_len;
recv->ec2_descr[offset].rd_control = 0;
} else {
recv->ec_descr[offset].rd_ring =
(sc->sc_version == 1) ? HIPPI_ULP_802 : 0;
recv->ec_descr[offset].rd_buffer_addr =
recv->ec_dma[offset]->dm_segs->ds_addr;
recv->ec_descr[offset].rd_length =
recv->ec_dma[offset]->dm_segs->ds_len;
recv->ec_descr[offset].rd_control = 0;
}
bus_dmamap_sync(sc->sc_dmat, recv->ec_dma[offset], 0, MCLBYTES,
BUS_DMASYNC_PREREAD);
recv->ec_m[offset] = m;
if (sc->sc_options & RR_OP_LONG_RX)
recv->ec_producer = NEXT_RECV2(recv->ec_producer);
else
recv->ec_producer = NEXT_RECV(recv->ec_producer);
}
if (sc->sc_options & RR_OP_LONG_TX)
esh_dma_sync(sc, recv->ec2_descr,
start_producer, recv->ec_consumer,
RR2_SNAP_RECV_RING_SIZE,
sizeof(struct rr2_descr), 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
else
esh_dma_sync(sc, recv->ec_descr,
start_producer, recv->ec_consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->sc_version == 1)
esh_send_cmd(sc, RR_CC_SET_RECV_PRODUCER, HIPPI_ULP_802,
recv->ec_producer);
else
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_SNAP_RECV_PRODUCER, recv->ec_producer);
}
int
eshioctl(ifp, cmd, data)
register struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
int error = 0;
struct esh_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifdrv *ifd = (struct ifdrv *) data;
struct rr_eeprom rr_eeprom;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t misc_host_ctl;
u_int32_t misc_local_ctl;
u_int32_t address;
u_int32_t value;
u_int32_t offset;
u_int32_t length;
u_long len;
int s, i;
s = splnet();
while ((volatile) sc->sc_flags & ESH_FL_EEPROM_BUSY) {
error = tsleep(&sc->sc_flags, PCATCH | PRIBIO, "esheeprom", 0);
if (error != 0)
goto ioctl_done;
}
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
/* The driver doesn't really care about IP addresses */
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina =
&IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)
LLADDR(ifp->if_sadl);
else
bcopy(ina->x_host.c_host,
LLADDR(ifp->if_sadl),
ifp->if_addrlen);
/* Set new address. */
eshinit(sc);
break;
}
#endif
default:
eshinit(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
eshstop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it. But wait -- if the interface has
* just been reset, and is coming up again,
* don't reset it again! There aren't yet
* any flags we care about.
*
* The sc->sc_flags is set to INITIALIZED when
* the NIC has been reset; the RUNCODE_UP
* flag gets added when it actually comes up.
* If it fails to come up in five seconds,
* it'll get shut down anyway.
*/
if (sc->sc_flags != ESH_FL_INITIALIZED) {
eshreset(sc);
}
}
break;
case SIOCSDRVSPEC: /* Driver-specific configuration calls */
cmd = ifd->ifd_cmd;
len = ifd->ifd_len;
data = ifd->ifd_data;
/* XXX: these functions need to check for suser! */
switch (cmd) {
case EIOCGTUNE:
if (len != sizeof(struct rr_tuning))
error = EMSGSIZE;
else {
error = copyout((caddr_t) &sc->sc_tune, data,
sizeof(struct rr_tuning));
}
break;
case EIOCSTUNE:
if ((ifp->if_flags & IFF_UP) == 0) {
if (len != sizeof(struct rr_tuning)) {
error = EMSGSIZE;
} else {
error = copyin(data,
(caddr_t) &sc->sc_tune,
sizeof(struct rr_tuning));
}
} else {
error = EBUSY;
}
break;
case EIOCGSTATS:
if (len != sizeof(struct rr_stats))
error = EMSGSIZE;
else
error = copyout((caddr_t) &sc->sc_gen_info->ri_stats,
data, sizeof(struct rr_stats));
break;
case EIOCGEEPROM:
case EIOCSEEPROM:
if ((ifp->if_flags & IFF_UP) != 0) {
error = EBUSY;
break;
}
if (len != sizeof(struct rr_eeprom)) {
error = EMSGSIZE;
break;
}
error = copyin(data, (caddr_t) &rr_eeprom,
sizeof(rr_eeprom));
if (error != 0)
break;
offset = rr_eeprom.ifr_offset;
length = rr_eeprom.ifr_length;
if (length > RR_EE_MAX_LEN * sizeof(u_int32_t)) {
error = EFBIG;
break;
}
if (offset + length >
RR_EE_MAX_LEN * sizeof(u_int32_t)) {
error = EFAULT;
break;
}
if (offset % 4 || length % 4) {
error = EIO;
break;
}
/* Halt the processor (preserve NO_SWAP, if set) */
misc_host_ctl = bus_space_read_4(iot, ioh,
RR_MISC_HOST_CTL);
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
(misc_host_ctl & RR_MH_NO_SWAP) |
RR_MH_HALT_PROC);
/* Make the EEPROM accessable */
misc_local_ctl = bus_space_read_4(iot, ioh,
RR_MISC_LOCAL_CTL);
value = misc_local_ctl &
~(RR_LC_FAST_PROM | RR_LC_ADD_SRAM |
RR_LC_PARITY_ON);
if (cmd == EIOCSEEPROM) /* make writeable! */
value |= RR_LC_WRITE_PROM;
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL, value);
if (cmd == EIOCSEEPROM) {
printf("%s: writing EEPROM\n",
sc->sc_dev.dv_xname);
(volatile) sc->sc_flags |= ESH_FL_EEPROM_BUSY;
splx(s);
}
/* Do that EEPROM voodoo that you do so well... */
address = offset * RR_EE_BYTE_LEN;
for (i = 0; i < length; i += 4) {
if (cmd == EIOCGEEPROM) {
value = esh_read_eeprom(sc, address);
address += RR_EE_WORD_LEN;
if (copyout(&value,
(caddr_t) rr_eeprom.ifr_buffer + i,
sizeof(u_int32_t)) != 0) {
error = EFAULT;
break;
}
} else {
if (copyin((caddr_t) rr_eeprom.ifr_buffer + i,
&value,
sizeof(u_int32_t)) != 0) {
error = EFAULT;
break;
}
if (esh_write_eeprom(sc,
address,
value) != 0) {
error = EIO;
break;
}
/*
* Have to give up control now and
* then, so sleep for a clock tick.
* Might be good to figure out how
* long a tick is, so that we could
* intelligently chose the frequency
* of these pauses.
*/
if (i % 40 == 0) {
tsleep(&sc->sc_flags, PRIBIO,
"eshweeprom", 1);
}
address += RR_EE_WORD_LEN;
}
}
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL,
misc_local_ctl);
if (cmd == EIOCSEEPROM) {
(volatile) sc->sc_flags &= ~ESH_FL_EEPROM_BUSY;
wakeup(&sc->sc_flags);
s = splnet();
printf("%s: done writing EEPROM\n",
sc->sc_dev.dv_xname);
}
break;
default:
error = EINVAL;
break;
}
break;
default:
error = EINVAL;
break;
}
ioctl_done:
splx(s);
return (error);
}
void
eshreset(sc)
struct esh_softc *sc;
{
int s;
s = splnet();
eshstop(sc);
eshinit(sc);
splx(s);
}
/*
* The NIC expects a watchdog command every 10 seconds. If it doesn't
* get the watchdog, it figures the host is dead and stops. When it does
* get the command, it'll generate a watchdog event to let the host know
* that it is still alive. We watch for this.
*/
void
eshwatchdog(ifp)
struct ifnet *ifp;
{
struct esh_softc *sc = ifp->if_softc;
if (!sc->sc_watchdog) {
printf("%s: watchdog timer expired. "
"Should reset interface!\n",
sc->sc_dev.dv_xname);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
eshstatus(sc);
} else {
sc->sc_watchdog = 0;
esh_send_cmd(sc, RR_CC_WATCHDOG, 0, 0);
ifp->if_timer = 5;
if (ifp->if_flags & IFF_LINK1) {
esh_send_cmd(sc, RR_CC_UPDATE_STATS, 0, 0);
eshstatus(sc);
}
}
}
/*
* Stop the NIC and throw away packets that have started to be sent,
* but didn't make it all the way. Re-adjust the various queue
* pointers to account for this.
*/
void
eshstop(sc)
register struct esh_softc *sc;
{
struct ifnet *ifp = &sc->sc_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct rr_ring_ctl *ring;
struct esh_ring_ctl *ring_ctl;
u_int32_t misc_host_ctl;
if (!((volatile) sc->sc_flags & ESH_FL_INITIALIZED))
return;
/* Just shut it all down. This isn't pretty, but it works */
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma, 0, sc->sc_dma_size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
(misc_host_ctl & RR_MH_NO_SWAP) | RR_MH_HALT_PROC);
ring = sc->sc_recv_ring_table + HIPPI_ULP_802;
ring_ctl = &sc->sc_snap_recv;
while (ring_ctl->ec_consumer != ring_ctl->ec_producer) {
struct mbuf *m0;
u_int16_t offset = ring_ctl->ec_consumer;
bus_dmamap_unload(sc->sc_dmat, ring_ctl->ec_dma[offset]);
MFREE(ring_ctl->ec_m[offset], m0);
ring_ctl->ec_m[offset] = NULL;
if (sc->sc_options & RR_OP_LONG_RX)
ring_ctl->ec_consumer =
NEXT_RECV2(ring_ctl->ec_consumer);
else
ring_ctl->ec_consumer =
NEXT_RECV(ring_ctl->ec_consumer);
}
ring = &sc->sc_gen_info->ri_send_ring_ctl;
ring_ctl = &sc->sc_send;
while (ring_ctl->ec_consumer != ring_ctl->ec_producer) {
struct mbuf *m0;
u_int16_t offset = ring_ctl->ec_consumer;
bus_dmamap_unload(sc->sc_dmat, ring_ctl->ec_dma[offset]);
MFREE(ring_ctl->ec_m[offset], m0);
ring_ctl->ec_m[offset] = NULL;
if (sc->sc_options & RR_OP_LONG_TX)
ring_ctl->ec_consumer =
NEXT_SEND2(ring_ctl->ec_consumer);
else
ring_ctl->ec_consumer =
NEXT_SEND(ring_ctl->ec_consumer);
}
(volatile) sc->sc_flags = 0;
ifp->if_timer = 0; /* turn off watchdog timer */
}
/*
* Before reboots, reset card completely.
*/
static void
eshshutdown(arg)
void *arg;
{
register struct esh_softc *sc = arg;
int i;
esh_print_ring(sc, "Shutting Down:", &sc->sc_send, 0);
esh_reset_runcode(sc);
esh_init_snap_ring(sc);
eshstop(sc);
eshstatus(sc);
eshshutdown(sc);
for (i = 0; i < RR_SEND_RING_SIZE; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_send.ec_dma[i]);
for (i = 0; i < RR_SNAP_RECV_RING_SIZE; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_snap_recv.ec_dma[i]);
}
/*
* Read a value from the eeprom. This expects that the NIC has already
* been tweaked to put it into the right state for reading from the
* EEPROM -- the HALT bit is set in the MISC_HOST_CTL register,
* and the FAST_PROM, ADD_SRAM, and PARITY flags have been cleared
* in the MISC_LOCAL_CTL register.
*
* The EEPROM layout is a little weird. There is a valid byte every
* eight bytes. Words are then smeared out over 32 bytes.
* All addresses listed here are the actual starting addresses.
*/
static u_int32_t
esh_read_eeprom(sc, addr)
struct esh_softc *sc;
u_int32_t addr;
{
int i;
u_int32_t tmp;
u_int32_t value = 0;
/* If the offset hasn't been added, add it. Otherwise pass through */
if (!(addr & RR_EE_OFFSET))
addr += RR_EE_OFFSET;
for (i = 0; i < 4; i++, addr += RR_EE_BYTE_LEN) {
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_WINDOW_BASE, addr);
tmp = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
RR_WINDOW_DATA);
value = (value << 8) | ((tmp >> 24) & 0xff);
}
return value;
}
/*
* Write a value to the eeprom. Just like esh_read_eeprom, this routine
* expects that the NIC has already been tweaked to put it into the right
* state for reading from the EEPROM. Things are further complicated
* in that we need to read each byte after we write it to ensure that
* the new value has been successfully written. It can take as long
* as 1ms (!) to write a byte.
*/
static int
esh_write_eeprom(sc, addr, value)
struct esh_softc *sc;
u_int32_t addr;
u_int32_t value;
{
int i, j;
u_int32_t shifted_value, tmp;
/* If the offset hasn't been added, add it. Otherwise pass through */
if (!(addr & RR_EE_OFFSET))
addr += RR_EE_OFFSET;
for (i = 0; i < 4; i++, addr += RR_EE_BYTE_LEN) {
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_WINDOW_BASE, addr);
/*
* Get the byte out of value, starting with the top, and
* put it into the top byte of the word to write.
*/
shifted_value = ((value >> ((3 - i) * 8)) & 0xff) << 24;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, RR_WINDOW_DATA,
shifted_value);
for (j = 0; j < 50; j++) {
tmp = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
RR_WINDOW_DATA);
if (tmp == shifted_value)
break;
delay(500); /* 50us break * 20 = 1ms */
}
if (tmp != shifted_value)
return -1;
}
return 0;
}
/*
* Send a command to the NIC. If there is no room in the command ring,
* panic.
*/
static void
esh_send_cmd(sc, cmd, ring, index)
struct esh_softc *sc;
u_int8_t cmd;
u_int8_t ring;
u_int8_t index;
{
union rr_cmd c;
#define NEXT_CMD(i) (((i) + 0x10 - 1) & 0x0f)
if (ring && ring != 4)
printf("esh_send_cmd: bogus ring %x\n", ring);
c.l = 0;
c.b.rc_code = cmd;
c.b.rc_ring = ring;
c.b.rc_index = index;
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_COMMAND_RING + sizeof(c) * sc->sc_cmd_producer,
c.l);
#ifdef ESH_PRINTF
/* avoid annoying messages when possible */
if (cmd != RR_CC_WATCHDOG)
printf("esh_send_cmd: cmd %x ring %x index %x slot %x\n",
cmd, ring, index, sc->sc_cmd_producer);
#endif
sc->sc_cmd_producer = NEXT_CMD(sc->sc_cmd_producer);
}
/*
* Write an address to the device.
* XXX: This belongs in bus-dependent land!
*/
static void
esh_write_addr(iot, ioh, addr, value)
bus_space_tag_t iot;
bus_space_handle_t ioh;
bus_addr_t addr;
bus_addr_t value;
{
bus_space_write_4(iot, ioh, addr, 0);
bus_space_write_4(iot, ioh, addr + sizeof(u_int32_t), value);
}
/* Copy the RunCode from EEPROM to SRAM. Ughly. */
static void
esh_reset_runcode(sc)
struct esh_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t value;
u_int32_t len;
u_int32_t i;
u_int32_t segments;
u_int32_t ee_addr;
u_int32_t rc_addr;
u_int32_t sram_addr;
/* Zero the SRAM */
for (i = 0; i < sc->sc_sram_size; i += 4) {
bus_space_write_4(iot, ioh, RR_WINDOW_BASE, i);
bus_space_write_4(iot, ioh, RR_WINDOW_DATA, 0);
}
/* Find the address of the segment description section */
rc_addr = esh_read_eeprom(sc, RR_EE_RUNCODE_SEGMENTS);
segments = esh_read_eeprom(sc, rc_addr);
for (i = 0; i < segments; i++) {
rc_addr += RR_EE_WORD_LEN;
sram_addr = esh_read_eeprom(sc, rc_addr);
rc_addr += RR_EE_WORD_LEN;
len = esh_read_eeprom(sc, rc_addr);
rc_addr += RR_EE_WORD_LEN;
ee_addr = esh_read_eeprom(sc, rc_addr);
while (len--) {
value = esh_read_eeprom(sc, ee_addr);
bus_space_write_4(iot, ioh, RR_WINDOW_BASE, sram_addr);
bus_space_write_4(iot, ioh, RR_WINDOW_DATA, value);
ee_addr += RR_EE_WORD_LEN;
sram_addr += 4;
}
}
}
/*
* Perform bus DMA syncing operations on various rings.
* We have to worry about our relative position in the ring,
* and whether the ring has wrapped. All of this code should take
* care of those worries.
*/
static void
esh_dma_sync(sc, mem, start, end, entries, size, do_equal, ops)
struct esh_softc *sc;
void *mem;
int start;
int end;
int size;
int do_equal;
int ops;
{
int offset = mem - (void *) sc->sc_dma_addr;
if (start < end) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
offset + start * size,
(end - start) * size, ops);
} else if (do_equal || start != end) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
offset,
end * size, ops);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
offset + start * size,
(entries - start) * size, ops);
}
}
/* ------------------------- debugging functions --------------------------- */
/*
* Print out status information about the NIC and the driver.
*/
static int
eshstatus(sc)
struct esh_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
/* XXX: This looks pathetic, and should be improved! */
printf("%s: status -- fail1 %x fail2 %x\n",
sc->sc_dev.dv_xname,
bus_space_read_4(iot, ioh, RR_RUNCODE_FAIL1),
bus_space_read_4(iot, ioh, RR_RUNCODE_FAIL2));
printf("\tmisc host ctl %x misc local ctl %x\n",
bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL),
bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL));
printf("\toperating mode %x event producer %x\n",
bus_space_read_4(iot, ioh, RR_MODE_AND_STATUS),
bus_space_read_4(iot, ioh, RR_EVENT_PRODUCER));
printf("\tPC %x max rings %x\n",
bus_space_read_4(iot, ioh, RR_PROC_PC),
bus_space_read_4(iot, ioh, RR_MAX_RECV_RINGS));
printf("\tHIPPI tx state %x rx state %x\n",
bus_space_read_4(iot, ioh, RR_TX_STATE),
bus_space_read_4(iot, ioh, RR_RX_STATE));
printf("\tDMA write state %x read state %x\n",
bus_space_read_4(iot, ioh, RR_DMA_WRITE_STATE),
bus_space_read_4(iot, ioh, RR_DMA_READ_STATE));
printf("\tDMA write addr %x%x read addr %x%x\n",
bus_space_read_4(iot, ioh, RR_WRITE_HOST),
bus_space_read_4(iot, ioh, RR_WRITE_HOST + 4),
bus_space_read_4(iot, ioh, RR_READ_HOST),
bus_space_read_4(iot, ioh, RR_READ_HOST + 4));
for (i = 0; i < 64; i++)
if (sc->sc_gen_info->ri_stats.rs_stats[i])
printf("stat %x is %x\n", i * 4,
sc->sc_gen_info->ri_stats.rs_stats[i]);
return 0;
}
/*
* Print out the contents of a ring
*/
static void
esh_print_ring(sc, name, ring, size)
struct esh_softc *sc;
char *name;
struct esh_ring_ctl *ring;
int size;
{
int i;
printf("%s ring:\n\n", name);
for (i = 0; i < size; i++) {
printf("%2x %c%c addr: %8x len: %4x ring: %2x control %2x\n",
i,
(i == ring->ec_producer) ? 'P' : ' ',
(i == ring->ec_consumer) ? 'C' : ' ',
ring->ec_descr[i].rd_buffer_addr,
ring->ec_descr[i].rd_length,
ring->ec_descr[i].rd_ring,
ring->ec_descr[i].rd_control);
}
}
#ifdef ESH_PRINTF
/* Check to make sure that the NIC is still running */
static int
esh_check(sc)
struct esh_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
if (bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL) & RR_MH_HALT_PROC) {
printf("esh_check: NIC stopped\n");
eshstatus(sc);
return 1;
} else {
return 0;
}
}
#endif