285 lines
8.7 KiB
C
285 lines
8.7 KiB
C
/* $NetBSD: ipsec_osdep.h,v 1.3 2003/10/06 22:05:15 tls Exp $ */
|
|
|
|
#ifndef NETIPSEC_OSDEP_H
|
|
#define NETIPSEC_OSDEP_H
|
|
|
|
/*
|
|
* Hide porting differences across different 4.4BSD-derived platforms.
|
|
*
|
|
* 1. KASSERT() differences:
|
|
* 2. Kernel Random-number API differences.
|
|
* 3. Is packet data in an mbuf object writeable?
|
|
* 4. Packet-header semantics.
|
|
* 5. Fast mbuf-cluster allocation.
|
|
* 6. Network packet-output macros.
|
|
* 7. Elased time, in seconds.
|
|
* 8. Test if a socket object opened by a privileged (super) user.
|
|
* 9. Global SLIST of all open raw sockets.
|
|
* 10. Global SLIST of known interface addresses.
|
|
* 11. Type of initialization functions.
|
|
*/
|
|
|
|
/*
|
|
* 1. KASSERT and spl differences
|
|
*
|
|
* FreeBSD takes an expression and parenthesized printf() argument-list.
|
|
* NetBSD takes one arg: the expression being asserted.
|
|
* FreeBSD's SPLASSERT() takes an SPL level as 1st arg and a
|
|
* parenthesized printf-format argument list as the second argument.
|
|
*
|
|
* This difference is hidden by two 2-argument macros and one 1-arg macro:
|
|
* IPSEC_ASSERT(expr, msg)
|
|
* IPSEC_SPLASSERT(spl, msg)
|
|
* One further difference is the spl names:
|
|
* NetBSD splsoftnet equates to FreeBSD splnet;
|
|
* NetBSD splnet equates to FreeBSD splimp.
|
|
* which is hidden by the macro IPSEC_SPLASSERT_SOFTNET(msg).
|
|
*/
|
|
#ifdef __FreeBSD__
|
|
#define IPSEC_SPLASSERT(x,y) SPLASSERT(x, y)
|
|
#define IPSEC_ASSERT(c,m) KASSERT(c, m)
|
|
#define IPSEC_SPLASSERT_SOFTNET(m) SPLASSERT(splnet, m)
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#ifdef __NetBSD__
|
|
#define IPSEC_SPLASSERT(x,y) (void)0
|
|
#define IPSEC_ASSERT(c,m) KASSERT(c)
|
|
#define IPSEC_SPLASSERT_SOFTNET(m) IPSEC_SPLASSERT(softnet, m)
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* 2. Kernel Randomness API.
|
|
* FreeBSD uses:
|
|
* u_int read_random(void *outbuf, int nbytes).
|
|
*/
|
|
#ifdef __FreeBSD__
|
|
#include <sys/random.h>
|
|
/* do nothing, use native random code. */
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#ifdef __NetBSD__
|
|
#include <sys/rnd.h>
|
|
static __inline u_int read_random(void *p, u_int len);
|
|
|
|
static __inline u_int
|
|
read_random(void *bufp, u_int len)
|
|
{
|
|
return rnd_extract_data(bufp, len, RND_EXTRACT_ANY /*XXX FIXME */);
|
|
}
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* 3. Test for mbuf mutability
|
|
* FreeBSD 4.x uses: M_EXT_WRITABLE
|
|
* NetBSD has M_READONLY(). Use !M_READONLY().
|
|
* Not an exact match to FreeBSD semantics, but adequate for IPsec purposes.
|
|
*
|
|
*/
|
|
#ifdef __NetBSD__
|
|
/* XXX wrong, but close enough for restricted ipsec usage. */
|
|
#define M_EXT_WRITABLE(m) (!M_READONLY(m))
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* 4. mbuf packet-header/packet-tag semantics.
|
|
* Sam Leffler explains, in private email, some problems with
|
|
* M_COPY_PKTHDR(), and why FreeBSD deprecated it and replaced it
|
|
* with new, explicit macros M_MOVE_PKTHDR()/M_DUP_PKTHDR().
|
|
* he original fast-ipsec source uses M_MOVE_PKTHDR.
|
|
* NetBSD currently still uses M_COPY_PKTHDR(), so we define
|
|
* M_MOVE_PKTHDR in terms of M_COPY_PKTHDR(). Fast-IPsec
|
|
* will delete the source mbuf shortly after copying packet tags,
|
|
* so we are safe for fast-ipsec but not in general..
|
|
*/
|
|
#ifdef __NetBSD__
|
|
#define M_MOVE_PKTHDR(_f, _t) M_COPY_PKTHDR(_f, _t)
|
|
#endif /* __NetBSD__ */
|
|
|
|
|
|
/*
|
|
* 5. Fast mbuf-cluster allocation.
|
|
* FreeBSD 4.6 introduce m_getcl(), which performs `fast' allocation
|
|
* mbuf clusters from a cache of recently-freed clusters. (If the cache
|
|
* is empty, new clusters are allocated en-masse).
|
|
* On NetBSD, for now, implement the `cache' as an inline function
|
|
*using normal NetBSD mbuf/cluster allocation macros. Replace this
|
|
* with fast-cache code, if and when NetBSD implements one.
|
|
*/
|
|
#ifdef __NetBSD__
|
|
static __inline struct mbuf *
|
|
m_getcl(int how, short type, int flags)
|
|
{
|
|
struct mbuf *mp;
|
|
if (flags & M_PKTHDR)
|
|
MGETHDR(mp, how, type);
|
|
else
|
|
MGET(mp, how, type);
|
|
if (mp == NULL)
|
|
return NULL;
|
|
|
|
MCLGET(mp, how);
|
|
return mp;
|
|
}
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* 6. Network output macros
|
|
* FreeBSD uses the IF_HANDOFF(), which raises SPL, enqueues
|
|
* a packet, and updates interface counters. NetBSD has IFQ_ENQUE(),
|
|
* which leaves SPL changes up to the caller.
|
|
* For now, we provide an emulation of IF_HANOOFF() which works
|
|
* for protocol input queues.
|
|
*/
|
|
#ifdef __FreeBSD__
|
|
/* nothing to do */
|
|
#endif /* __FreeBSD__ */
|
|
#ifdef __NetBSD__
|
|
#define IF_HANDOFF(ifq, m, f) if_handoff(ifq, m, f, 0)
|
|
|
|
#include <net/if.h>
|
|
|
|
static __inline int
|
|
if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
|
|
{
|
|
int need_if_start = 0;
|
|
int s = splnet();
|
|
|
|
if (IF_QFULL(ifq)) {
|
|
IF_DROP(ifq);
|
|
splx(s);
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
if (ifp != NULL) {
|
|
ifp->if_obytes += m->m_pkthdr.len + adjust;
|
|
if (m->m_flags & M_MCAST)
|
|
ifp->if_omcasts++;
|
|
need_if_start = !(ifp->if_flags & IFF_OACTIVE);
|
|
}
|
|
IF_ENQUEUE(ifq, m);
|
|
if (need_if_start)
|
|
(*ifp->if_start)(ifp);
|
|
splx(s);
|
|
return (1);
|
|
}
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* 7. Elapsed Time: time_second as time in seconds.
|
|
* Original FreeBSD fast-ipsec code references a FreeBSD kernel global,
|
|
* time_second(). NetBSD: kludge #define to use time_mono_time.tv_sec.
|
|
*/
|
|
#ifdef __NetBSD__
|
|
#include <sys/kernel.h>
|
|
#define time_second mono_time.tv_sec
|
|
#endif /* __NetBSD__ */
|
|
|
|
/* protosw glue */
|
|
#ifdef __NetBSD__
|
|
#include <sys/protosw.h>
|
|
#define ipprotosw protosw
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* 8. Test for "privileged" socket opened by superuser.
|
|
* FreeBSD tests ((so)->so_cred && (so)->so_cred.cr_uid == 0),
|
|
* NetBSD (1.6N) tests (so)->so_uid == 0).
|
|
* This difference is wrapped inside the IPSEC_PRIVILEGED_SO() macro.
|
|
*
|
|
*/
|
|
#ifdef __FreeBSD__
|
|
#define IPSEC_PRIVILEGED_SO(so) ((so)->so_cred && (so)->so_cred.cr_uid == 0)
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#ifdef __NetBSD__
|
|
/* superuser opened socket? */
|
|
#define IPSEC_PRIVILEGED_SO(so) ((so)->so_uid == 0)
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* 9. Raw socket list
|
|
* FreeBSD uses: listhead = rawcb_list, SLIST()-next field "list".
|
|
* NetBSD uses: listhead = rawcb, SLIST()-next field "list"
|
|
*
|
|
* This version of fast-ipsec source code uses rawcb_list as the head,
|
|
* and (to avoid namespace collisions) uses rcb_list as the "next" field.
|
|
*/
|
|
#ifdef __FreeBSD__
|
|
#define rcb_list list
|
|
#endif /* __FreeBSD__ */
|
|
#ifdef __NetBSD__
|
|
#define rawcb_list rawcb
|
|
#endif /* __NetBSD__ */
|
|
|
|
|
|
/*
|
|
* 10. List of all known network interfaces.
|
|
* FreeBSD has listhead in_ifaddread, with ia_link as link.
|
|
* NetBSD has listhead in_ifaddr, with ia_list as link.
|
|
* No name-clahses, so just #define the appropriate names on NetBSD.
|
|
* NB: Is it worth introducing iterator (find-first-list/find-next-list)
|
|
* functions or macros to encapsulate these?
|
|
*/
|
|
#ifdef __FreeBSD__
|
|
/* nothing to do for raw interface list */
|
|
#endif /* FreeBSD */
|
|
#ifdef __NetBSD__
|
|
/* For now, use FreeBSD-compatible names for raw interface list. */
|
|
#define in_ifaddrhead in_ifaddr
|
|
#define ia_link ia_list
|
|
#endif /* __NetBSD__ */
|
|
|
|
/*
|
|
* 11. Type of initialization functions.
|
|
*/
|
|
#ifdef __FreeBSD__
|
|
#define INITFN static
|
|
#endif
|
|
#ifdef __NetBSD__
|
|
#define INITFN extern
|
|
#endif
|
|
|
|
/*
|
|
* Differences that we don't attempt to hide:
|
|
*
|
|
* A. Initialization code. This is the largest difference of all.
|
|
*
|
|
* FreeBSD uses compile/link-time perl hackery to generate special
|
|
* .o files with linker sections that give the moral equivalent of
|
|
* C++ file-level-object constructors. NetBSD has no such facility.
|
|
*
|
|
* Either we implement it (ideally, in a way that can emulate
|
|
* FreeBSD's SYSINIT() macros), or we must take other means
|
|
* to have the per-file init functions called at some appropriate time.
|
|
*
|
|
* In the absence of SYSINIT(), all the file-level init functions
|
|
* now have "extern" linkage. There is a new fast-ipsec init()
|
|
* function which calls each of the per-file in an appropriate order.
|
|
* init_main will arrange to call the fast-ipsec init function
|
|
* after the crypto framework has registered its transforms (including
|
|
* any autoconfigured hardware crypto accelerators) but before
|
|
* initializing the network stack to send or receive packet.
|
|
*
|
|
* B. Protosw() differences.
|
|
* CSRG-style BSD TCP/IP uses a generic protocol-dispatch-function
|
|
* where the specific request is identified by an enum argument.
|
|
* FreeBSD replaced that with an array of request-specific
|
|
* function pointers.
|
|
*
|
|
* These differences affect the handlers for key-protocol user requests
|
|
* so pervasively that I gave up on the fast-ipsec code, and re-worked the
|
|
* NetBSD KAME code to match the (relative few) API differences
|
|
* between NetBSD and FreeBSD's KAME netkey, and Fast-IPsec netkey.
|
|
*
|
|
* C. Timeout() versus callout(9):
|
|
* The FreeBSD 4.x netipsec/ code still uses timeout().
|
|
* FreeBSD 4.7 has callout(9), so I just replaced
|
|
* timeout_*() with the nearest callout_*() equivalents,
|
|
* and added a callout handle to the ipsec context.
|
|
*
|
|
* D. SPL name differences.
|
|
* FreeBSD splnet() equates directly to NetBSD's splsoftnet();
|
|
* FreeBSD uses splimp() where (for networking) NetBSD would use splnet().
|
|
*/
|
|
#endif /* NETIPSEC_OSDEP_H */
|